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Although computer simulations indicate that mitosis may be important to the mechanics of morphogenetic movements,
algorithms to identify mitoses in bright field images of embryonic epithelia have not previously been available. Here, the
authors present an algorithm that identifies mitoses and their orientations based on the motion field between successive
images. Within this motion field, the algorithm seeks ‘mitosis motion field prototypes’ characterised by convergent motion
in one direction and divergent motion in the orthogonal direction, the local motions produced by the division process.
The algorithm uses image processing, vector field analyses and pattern recognition to identify occurrences of this prototype
and to determine its orientation. When applied to time-lapse images of gastrulation and neurulation-stage amphibian
(Ambystoma mexicanum) embryos, the algorithm achieves identification accuracies of 68 and 67%, respectively and angular
accuracies of the order of 308, values sufficient to assess the role of mitosis in these developmental processes.
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1. Introduction

Coordinated tissue motions are a crucial component of

early embryo development and factors that are known to

affect these motions include gene expression patterns,

force generation by sub-cellular structural components and

embryo geometry (Chen and Brodland 2008). Compu-

tational models suggest that mitosis may also be an

important factor (Brodland and Veldhuis 2002). However,

to assess its possible role, the locations, frequencies and

orientations of mitoses must be quantified in live embryos,

a task that is impractical to carry out manually.

The present study focuses on two critical processes

common to all vertebrates; namely, gastrulation and

neurulation. Embryos of the axolotl (Ambystoma mex-

icanum), a type of amphibian (Figure 1), were chosen for

the study because a great variety of mechanical data –

including kinematic data (Brodland et al. 1995), strain

maps (Veldhuis et al. 2005), tensile properties (Wiebe and

Brodland 2005) and in vivo stresses (Benko and Brodland

2007) – have already been obtained for it. Thus, a

developmental mechanics context exists for interpretation

of findings.

Currently available image processing algorithms can

identify mitoses under certain conditions. For example, if

cells remain isolated from each other, as they often do in

culture, individual cells can be identified by image

segmentation and the topological changes associated with

the separation of the daughter cells (Bertucco et al. 1998;

Chen et al. 1999; Refai et al. 2003; Shimada et al. 2005)

used to identify mitoses. Alternatively, if adequate contrast

exists between the cell boundary and the interiors of cells,

then cell boundary algorithms can be used (Vincent and

Masters 1992; Talukder and Casasent 1998; Puddister

2003; Phukpattaranont and Boonyaphiphat 2006; Iles et al.

2007). Another approach is to stain the cell nuclei and

identify mitotic figures manually or automatically by

geometric changes in the nucleus (Kaman et al. 1984;

Simpson et al. 1992; van Diest et al. 1992; Kate et al. 1993;

Cross and Start 1996; Gal et al. 2005). Unfortunately, none

of these approaches are applicable to early-stage axolotls

because the cells in the monolayer epithelium that form

their surface are confluent, and suitable membrane and

nuclear stains are not currently available for axolotls at

such early stages of development.

The objective of the present study is to develop a

computer algorithm that will allow mitoses to be identified

in bright field images of the embryo surface (Brodland and

Veldhuis 1998). These mitoses can be identified manually

in such images because they produce local cell-level tissue

motions (Figure 2). Manual observations of many such

mitoses revealed that these motions are characterised by

two components: inward motion along the plane of the cell

division, as at the points marked þ in Figure 2, and

outward motion along an axis through the centers of the

newly-formed cells, as at the points marked o and *.

Interkinetic migration (Baye and Link 2007), a character-

istic apical–basal motion of the nucleus associated with

mitosis, appears not to be a significant driver of the

observed motions, since it would produce isotropic

motions. Instead, these motions, which are consistent
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with those predicted by 2D computer simulations

(Brodland and Veldhuis 2002), are approximately normal

to each other and of opposite sense. Mathematically, this

pattern of motion (Figure 3) is known as a saddle point

(Shu and Jain 1994) and herein this pattern of motion is

referred to as the mitosis motion field prototype or simply

mitosis prototype.

Automated detection of this pattern of motion in

bright field images (Figure 2) is more difficult than

one might expect and the solution we found required

concepts from image processing, vector field analyses and

pattern recognition (Siva 2007). It also required the use of

mathematical function expansion and cut-off methods to

improve discrimination of the algorithm. The resulting

algorithm is able to determine the locations, frequencies

and angular orientations of mitosis prototypes based on

pairs of time lapse images. Such locations are deemed to be

mitoses and the angle of the extensile component of the

prototype to define the mitosis orientation.

The algorithms were tested on 15 time-lapse image

sequences (Table 1) consisting of between 21 and 61 frames

each. The first set consisted of 25, 640 £ 480 pixel images

taken 5 min apart during early gastrulation, Stage 9–10

(Bordziloyskaya et al. 1989). The average cell area was 317

pixels, and no significant change in average cell size was

seen in the image set. The other image sequences used here

Figure 1. An early neurulation-stage axolotl embryo. In this
dorsal view of a stage 13 embryo, the cephalic end of the embryo
is toward the top of the image and the caudal end toward the
bottom. The mid-sagittal plane lies along a vertical bisector of the
image. Images were collected from the three-labelled regions.

Figure 2. A high-magnification view of a single mitosis. Mitosis produces inward movement of the points labelledþ and outward movement
of the points labelled o and *. A magnification of 2.5mm/pixel was used. (a) t ¼ 0 min, (b) t ¼ 5 min, (c) t ¼ 15 min and (d) t ¼ 20 min.

P. Siva et al.152
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were based on 400 £ 400 pixel sub-images extracted from

one very long set that consisted of 389 images taken 1 min

apart during early neurulation (Stages 12–13). A different

camera system and higher lens magnification were used to

collect these images and the average cell area was 2567

pixels. Amphibian embryos do not feed during early

development and it is generally assumed that individual

tissues do not change in mass. However, ongoing mitoses

would tend to cause average cell volume to decrease slowly

because the cell mass becomes more finely partitioned, and

in-plane tissue expansion or contraction and their

associated thickness changes could also affect cell

planform area (Veldhuis et al. 2005). In the image sets

used here, these effects were negligible. The algorithm

presented here would be applicable to more general

situations, though, since the characteristic times of these

effects would be much longer than those of the M phase of

the cell cycle, the phase producing the motions the present

algorithm detects. The algorithm achieved identification

accuracies of 68 and 67% in the two respective image sets,

and angular orientation accuracies were of the order of 308.

Where cell fabric analyses revealed cells to be elongated in

a particular direction, mitoses orientations correlated with

that direction, a finding consistent with current concepts of

cell mechanics (Brodland and Veldhuis 2002).

2. The mitosis identification algorithm

Manual identification of mitoses in time lapse images is

possible because of the remarkable processing capabilities

of the human visual system. To replicate these capabilities

using a computer is a challenging task. Here, we show that

when a suitable combination of computer algorithms are

used, mitoses locations and orientations can be identified.

In brief, image processing algorithms are used to

calculate the optical flow of the image and to remove any

bulk motions present in the image. Vector analysis and

pattern recognition methods are then used to identify local

patterns of motion and motion magnitudes consistent with

mitosis. It was found that treating the patterns and

magnitudes separately and then combining them using

probability concepts reduced the dimension of the required

searches and improved discrimination.

2.1 Calculation of optical flow

If the locations of all points in a source image are tracked to

their new positions in a subsequent target image (Veldhuis

and Brodland 1999), the resulting vector field of relative

displacements is called a motion field. In embryos, these

Figure 3. The mitosis motion field prototype. Outward
movement occurs along the x-axis and inward movement along
the y-axis. The field shown corresponds to Equation (4) with A as
defined in Equation (5).

Table 1. Summary of the image sets.

Stage Frame Sequence number No. of frames
Frame interval

(min)
Average cell area

(pixels) No. of mitoses

Early gastrulation A 1 25 5 317 94
Early neurulation B 2 21 1 2567 1

B 3 51 2
B 4 21 1
B 5 21 1
B 6 21 1
B 7 21 1
B 8 21 1
B 9 21 2
B 10 21 2
B 11 21 1
C 12 21 3
C 13 21 2
C 14 21 1
C 15 61 5

Computer Methods in Biomechanics and Biomedical Engineering 153
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fields tend to be relatively smooth and mathematically well

behaved. Since embryo illumination is essentially uniform

and constant, the motion field can be accurately

approximated by its optical flow, ‘the distribution of

apparent velocities of movement of brightness patterns in

an image’ (Horn and Schunck 1981).

Optical flow can be extracted from image sequences by

a variety of image processing methods including

differential approaches, region matching, and energy and

phase based techniques (Barron et al. 1994). Differential

based techniques perform poorly in the present application

because of image noise and the grainy pigmentation of the

epithelium. Energy and phase based techniques, which are

also more complex to implement, have limited usefulness

here because of pigmentation (intensity) changes produced

during nucleus division. A region matching method was

ultimately chosen because it performs better than

differential based techniques under noise and better than

energy and phase methods in the presence of pigmentation

changes.

A modified version of Singh’s (1992) region matching

algorithm was used here to determine the optical flow field

U(x,y), where (x,y) are Cartesian image coordinates. The

algorithm trial matches 2a þ 1 by 2b þ 1 pixel templates

from a source image having pixel intensities I1(x,y) with

regions in a target image I2(x,y) over a 2A þ 1 by 2B þ 1

search region centered on the location of the template in

the source image. Here, the sum of squared difference used

by Singh to assess the strength of each trial match was

replaced by the more versatile normalised cross-corre-

lation function

For a pixel at (x,y) in the source image, the numerator

calculates the amount by which each pixel in an (2a þ 1)

by (2b þ 1) template centered on (x,y) differs from the

mean �I1 of the points in that template. It then does the same

for an (2a þ 1) by (2b þ 1) template in the target image

centered on trial pixel positions (x þ u, y þ v) within the

(2A þ 1) by (2B þ 1) search area. The products of

corresponding normalised pixel values in the two

templates are then summed. The sum is normalised by

dividing it by the product of the root mean squared (RMS)

values of the normalised pixels in each of the templates.

For a particular pixel (x,y), the function calculates the

average correlation of pixels in the source template

centered on that location with corresponding pixels offset

by (u,v) in the target image. The ranges of u and v are

2A # u # A and 2B # v # B, respectively.

In many applications, the (u*,v*) pair giving the

highest N(u,v) value is deemed to define the offset to the

new location of the pixel (x,y). Here, however, we follow

Singh’s more robust approach of expanding the function

N(u,v) mathematically to produce a new function

Qðu; vÞ ¼ ekNðu;vÞ: ð2Þ

A k-value of 7 was found to produce adequate selective

expansion. The purpose of expanding the function is to

emphasise the points of highest correlation, so that the

mass center of the new function Q(u,v) over its (2A þ 1)

by (2B þ 1) range can be taken as the best estimate of the

offset or optical flow vector U(x,y). The vector field was

then edited using a selective smoothing procedure (Singh

1992) so that any spurious motions could be eliminated.

For the smoothing algorithm, a local template size of 1 cell

diameter was used.

The template window size (2a þ 1 by 2b þ 1) was

set to approximately 2a þ 1 ¼ 2b þ 1 ¼ 0.5D, where

D is a typical cell diameter and the search window size

(2A þ 1 by 2B þ 1) was set to approximately 2A þ 1 ¼

2B þ 1 ¼ 1.5D. Average cell diameter can be obtained

manually or using an automated algorithm (Iles et al.

2007). In terms of pixels, the search template was 9 £ 9

pixels in the gastrulation-stage images and 21 £ 21 pixels

in the neurulation-stage images and the search region was

29 £ 29 pixels in the gastrulation-stage images and

65 £ 65 pixels in the neurulation-stage images.

While Singh’s optical flow algorithm uses a central

difference approach based on three successive frames, the

motion field changed so much with time when mitoses

occurred that more accurate results were obtained by using

pairs of images. Ideally, the images used should be

separated by approximately 0.5 times the mitosis duration

and the first image should show the area just before mitosis

motions begin. Because mitoses are not synchronised with

image collection, image frequency should be such that

three to five images are collected during a typical mitosis.

Although the algorithm is relatively insensitive to the

spacing between the images used to calculate the motion

field, this rate of image collection allows the timing

criteria to be met without collection of unnecessary data.

It also allows the user to choose a fixed spacing between

the images used for calculating the motion field (the

images are generally not consecutive) and parameters to

be determined for successful mitosis detection within a

given set of images. When analyzing gastrulation-stage

embryos, motion fields were calculated using frames

separated by 5 min, while for neurulation-stage embryos,

frames were separated by 2 min.

Nðu; vÞ ¼

Pa
i¼2a

Pb
j¼2b ½I1ðx2 i; y2 jÞ2 �I1ðx; yÞ�½I2ðx2 u2 i; y2 v2 jÞ2 �I2ðx2 u; y2 vÞ�

i¼2a

Pb
j¼2b ½I1ðx2 i; y2 jÞ2 �I1ðx; yÞ�2

Pa
i¼2a

Pb
j¼2b ½I2ðx2 u2 i; y2 v2 jÞ2 �I2ðx2 u; y2 vÞ�2

q : ð1Þ

P. Siva et al.154
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2.2 Removal of bulk image motion

Dramatic bulk tissue movements occur during organogen-

esis, and these movements cause significant bulk

translation, rotation, stretch and shear to be present in

the images. Depending on the magnification of the

collected images, particular components of this motion

field will be more important than others.

In the present study, a 1280 £ 1024 pixel camera was

used and magnifications were set high enough that the

average cell diameter was at least 42 pixels. As a result, the

length of the image diagonal was not more than 35 cell

diameters. At relatively-high magnifications like this, bulk

image translation dominates rotation and local tissue

deformation. In some of the images sets used in this study,

translations of as much as 3 cell diameters occurred during

the course of a typical mitosis (20 min). Rotation and local

deformation contributions were estimated in a few sample

images and found to contribute less than 0.5 pixels to the

total motion field during the course of a typical mitosis.

Based on these calculations, the total motion field U(x,y)

was deemed to consist of two components: bulk image

translation and local deformation. In order that the mitosis-

generated local motions not be obscured by bulk translations,

the average bulk translation T between two image frames

had to be found and removed from the total motion field.

A variety of methods are available for estimating global

translation (Maintz and Viergever 1998). The simplest of

these methods is the normalised cross-correlation function,

as defined in Equation (1), and it performs well when

rotation, stretch and shear components are small and

intensities between frames are constant, as they are in the

present application. To estimate bulk motion, the template

was chosen to be a rectangle one-third of the image height

and width and it was centered on the source image. The

search window was set to two-thirds of the image height and

width, thus giving the largest search region possible.

A new motion field

Lðx; yÞ ¼ Uðx; yÞ2 T; ð3Þ

(Figure 4) containing only local motions was then

constructed and it was within this field that the mitosis

prototypes were sought.

2.3 Defining the local mitosis motion prototype

Visual examination of many local motion fields L(x,y), led

to the concept that the mitosis prototype could be

described mathematically by the vector field equation (Shu

and Jain 1994)

Vðx; yÞ ¼ A
x

y

" #
: ð4Þ

In this equation, (x,y) is a point within the d by e range

of the mitosis prototype. The values of d and e were chosen

to be nominally 0.5 times a typical cell diameter, which

corresponds to approximately 9 pixels in the gastrulation-

stage image set and 21 pixels in the neurulation-stage

image set.

To represent a saddle point (Figure 3) A must be

chosen such that its eigenvalues are real and the product of

the eigenvalues is less than zero (Shu and Jain 1994).

Observations of typical mitoses showed that the saddle

point often involved inward and outward motion

components of similar magnitude, a pattern produced by

the matrix

A1 ¼
21 0

0 1

" #
: ð5Þ

In some image sequences, the inward motion

illustrated by þ in Figure 2 is modest when compared to

the other two motion patterns and a better choice for the A

matrix is

A2 ¼
21 0

0 100

" #
: ð6Þ

The two forms of A used in this study do not represent

all possible saddle points but, because vector directions

and magnitudes were treated separately and suitable cut-

off parameters were used, are sufficient to capture the

mitoses that occur.

2.4 Motion field analysis

The next task was to find all occurrences of the mitosis

prototype in the local image motion field L(x,y). Two

standard approaches to analysing vector fields are critical

point analysis (Rao and Jain 1992; Shu and Jain 1994) and

template matching (Heiberg 2001; Ebling and Scheuer-

mann 2003). In critical point analysis, all zero velocity

points in the local image motion field are identified

because they are candidates for the zero velocity point at

the center of the mitosis prototype. The region surrounding

each such zero velocity point is then analysed mathemat-

ically to determine if a saddle point is present.

The smoothing procedure applied to the optical flow

field gives rise to a substantial number of points that

have essentially zero velocity, making this approach

impractical.

In the template matching approach (Heiberg 2001;

Ebling and Scheuermann 2003), a user-given template

motion field pattern, like the mitosis prototype, is matched

against a larger motion field using only vector orientation

information. It was found that in the present application,

the template matching process is best done as two

separate operations: one that matches motion patterns and

another that ensures the motion amplitudes are of

Computer Methods in Biomechanics and Biomedical Engineering 155
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sufficient magnitude. For the vector matching operation,

all of the vectors in the mitosis prototype field V and

the local image motion field L are normalised to unit

length. This approach works well because cases where

the narrowing and elongation motions have different

magnitudes map onto a single pattern, namely one that

has unit vectors in the narrowing direction and unit

vectors in the widening direction. The motion magnitude

operation verifies that these motions are of cellular

magnitude not just minor local undulations that coin-

cidentally have local directional patterns like those

produced by mitoses.

In the vector field matching step, the normalised

prototype vector is translated so that it is centered on a

location (i,j) in the local motion field. Each of the d by e

points in the prototype field is then dotted with the motion

field vector associated with the closest point in the motion

field, and

Dði; jÞ ¼
1

ð2dþ1Þð2eþ1Þ

Xd
x¼2d

Xe

y¼2e

jLði2 x; j2 yÞTVðx;yÞj;

ð7Þ

the average of these dot products is calculated. The

prototype is then rotated by 58 and a new correlation

measure calculated. Whichever such product for total

rotations up to x ¼ 1758 yields the highest correlation

value is deemed to be the best angular match for the

prototype. In this step, both forms of A are used at each

pixel location and the highest correlation value, denoted as

Dmax(i,j), is the one reported. Close parallels exist between

the vector field correlation function given in Equation (7)

and the template matching function in Equation (1).

Figure 4. Typical local image motion fields L associated with mitoses.

P. Siva et al.156
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When the vector template is aligned with the

coordinate axes (x ¼ 0 or 908), the image field contains

vectors that exactly underlie the template vectors. This

alignment produces a bias compared to cases where the

templates are rotated and the image field does not contain

vectors that directly underlie the template vectors. To

remove this bias, the correlations are multiplied by a factor

BðxÞ ¼ h2 ð1 2 hÞ cos ð4xÞ: ð8Þ

Bias removal was not particularly sensitive to the value of

h and a value of h ¼ 0.55 worked well for both image sets.

In order to accentuate matches, the resulting function

Dmax(i,j), which has a range between 0 and 1 is transformed

using a sigmoid function (Duda et al. 2000) to yield a new

function

POði; jÞ ¼
1

1 þ e2kOðDmaxði;jÞ2bOÞ
: ð9Þ

The values kO ¼ 5 and bO ¼ 0.5, were found experimen-

tally to provide good discrimination between matches and

non-matches, and suitable values do not appear to depend

on the particular image set being analysed. This sequence

of operations completes the vector pattern portion of the

template matching scheme and the function PO(i,j) can be

deemed to represent the probability of a mitosis prototype

match at location (i,j) based on directional characteristics of

the local motions in its vicinity.

To assess whether the magnitudes of the local motion

were consistent with a mitosis, local motion field velocity

magnitude (speed) information was calculated. The angle

between the epithelium normal and the optic axis was

small enough that foreshortening correction was unnecess-

ary. The velocity measure used was the RMS of the image

motion field over an n £ n pixel square centered on pixel

(i,j). The resulting field was then smoothed based on an

area of 1 cell diameter, to produce a velocity measure

kL(i,j)ksmoothed. This function was then transformed using

a sigmoid function to yield

PMði; jÞ ¼
1

1 þ e2kMðkLði; jÞksmoothed2bMÞ
: ð10Þ

This function can be considered a probability of mitosis

measure based on local velocity magnitude. The purpose

of the sigmoidal transformation is to produce a sharp

transition at the velocities characteristic of mitosis

(Figure 5). The mitosis velocity histogram is constructed

by identifying 3–5 mitoses in the image sequence and

plotting the kL(i,j)ksmoothed values for those points. The

value of bM, the velocity for which the histogram has a

value of 0.5, is chosen as the minimum velocity found on

the histogram; this will ensure that most true mitosis

regions are assigned a probability of match of at least 0.5.

The value of kM, which governs the steepness of the

sigmoid transition, is chosen such that PM ¼ 1 at the

maximum velocity found on the histogram; this approach

will ensure that the maximum velocity of the mitosis

region gets a probability of match of 1. For the data shown

in Figure 5, taken from five manually identified mitoses in

the early stage image set, the parameters are assigned

values of kM ¼ 1 and bM ¼ 5, giving the sigmoid curve

shown. The functions PM and PO for the mitosis shown in

Figure 2 are shown in Figure 6.

The motion pattern and magnitude match functions are

then combined to produce a total probability of mitosis

match function

Pmitosisði; jÞ ¼
POði; jÞ þ PMði; jÞ

2
; ð11Þ

for each pixel in the source image.

2.5 Mitosis count and orientation

The final step in the algorithm is to determine those

locations in the total probability of mitosis map where

individual mitoses occur. Two magnitude thresholds Tlow,

Thigh and a spatial size threshold Tsize are used in this

process.

The threshold Tlow is applied to Pmitosis to produce a

binary image P 0
mitosis (Figure 6(c)), where all potential

mitosis locations are indicated by the high (white) pixels.

Then, points associated with each other through an

‘8-connectivity rule’ (Gonzalez et al. 2004) – that is points

that directly border each other horizontally, vertically or

diagonally – are grouped together to form one of a series

Figure 5. The sigmoid weighting function. To determine the
parameters bM and kM, the a velocity magnitude histogram is
drawn. The histogram shown is based on five manually selected
mitoses. The sigmoid parameter bM ¼ 5 is set to the smallest
velocity in the histogram and kM ¼ 1 is chosen, so that the
sigmoid function reaches 1 by the time the maximum histogram
value is reached.
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of objects Ci. A morphological closing operator (Dough-

erty and Lotufo 2003) with a square structuring element of

size N ¼ 7, is performed on P 00
mitosis, to connect any small

gaps in P 00
mitosis as a result of the thresholds. A larger value

of structuring element size causes multiple adjacent

mitoses regions to be erroneously joined. If the group is

larger than Tsize, a mitosis is considered to have occurred

there. A mitosis is also considered to have occurred if one

or more pixels in Ci has a value greater than Thigh.

Mathematically, the probability of a mitosis occurring at a

particular location is deemed to be given by

P 00
mitosisðCiÞ ¼

1 if size ðCiÞ . T size OR

maxðPmitosis [ CiÞ . Thigh

0 otherwise

8><
>: ð12Þ

To avoid multiple detection of the same mitosis in

successive frames, any detected mitoses that are common

between matching regions in consecutive frames are

considered to be the same mitosis.

The mitosis orientation associated with the pixels in a

particular mitosis region Ci will, in general, have different

orientations x. The angle assigned for a particular mitosis

region is the one most common within that region. Care

must be exercised in this calculation because of the

discontinuity produced as angle designations change

suddenly from 0 to 3608.

Suitable values for the parameters Tlow and Thigh

depend on the images and on the sigmoid function para-

meters kO, bO, kM and bM. The allowable ranges of these

parameters are 0.5 # Tlow # 1 and Tlow , Thigh # 1, and

if the sigmoid function parameters are chosen to

sufficiently separate the mitosis pixels from non-mitosis

pixels, then Tlow < 0.5 and Thigh ø 1 work well.

The threshold Tsize is related to cell size and a value of

approximately 0.5 times the number of pixels in a typical

cell was found to work well.

2.6 Algorithm evaluation

Mitoses recognition is an event identification problem, a

class of problem well known in the field of pattern

recognition. Algorithm evaluation requires that mitoses

occurrences, locations and orientation be identified by

hand to establish the ‘ground truth’ for a set of test images.

Then the algorithm is used to process the same image set.

In terms of evaluating mitosis detection, a binary event,

the data available are the number of correctly detected

mitoses (TP, true positive), the number of incorrectly

detected mitoses (FP, false positive) and the number of

mitoses not detected (FN, false negative). If this were a

classification problem, the true number of cells not

undergoing mitosis (TN, true negative) would also be

required, and if the total number of cells N in the images

were known, it could be calculated as the difference

between N and TP.

Two of the standard measures of the performance of

an event identification algorithm are precision (Manning

et al. 2008)

P ¼
TP

TP þ FP
; ð13Þ

and recall (Manning et al. 2008)

R ¼
TP

TP þ FN
: ð14Þ

Algorithm precision describes the fraction of the

mitoses identified by the algorithm that actually are

mitoses. Recall, also called the true positive rate, is the

fraction of mitosis correctly detected by the algorithm out

of the total mitosis present in the test data set. Ideally an

algorithm would yield a precision of 100% and a recall of

100%.

The performance rate or score for a given algorithm is

given by the F-measure (Manning et al. 2008)

Fb ¼
ðb2 þ 1ÞPR

b2Pþ R
; ð15Þ

where the parameter b controls the importance of recall

over precision. In this study both precision and recall are

assumed to be equally important, and b is set to 1. The

performance of an algorithm relative to a parameter in that

algorithm can be studied using the precision-recall curve

(Figure 7), a curve related to the receiver operator curve

(ROC; Davis and Goadrich 2006) commonly used to

evaluate classification algorithms.

Figure 6. (a) Magnitude probability function. (b) Orientation
probability function and (c) threshold of the sum of magnitude
and orientation probability functions. Black corresponds to a
function value of zero, while white corresponds to one.
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3. Results and conclusions

A set of 25 gastrulation-stage images (denoted as sequence

1 in Table 1) were collected at 5-minute intervals from the

area denoted A in Figure 1. Using a different embryo and

apparatus, images of neurulation-stage were collected at

1-minute intervals from the neural plate area. Sequences

2–11 were taken from area B and sequences 12–15 were

from area C. In the first set, there are nominally 400 pixels

per mm, while in the second there are 1400 pixels per mm.

The lenses had sufficient numerical apertures that

resolution was not diffraction limited.

Ground truth was determined by manual study of the

image sets by an experienced observer. Image sequences

were viewed using a custom Matlab interface that allowed

images to be played forward or backward by single frames

or in short sequences at user-defined rates. When single

cells became visible as two cells, a mitosis was deemed to

have occurred, and the time, location and orientation of the

mitosis was registered by drawing a line along the newly

formed cell boundary using the Matlab interface. The

mitosis orientation was deemed to be normal to this line.

In order to determine suitable values for the analysis

parameters Tlow, Thigh and Tsize, precision-recall curves

(Figure 7) were constructed for candidate parameters. The

points near the top of the graph correspond to parameter

choices that produce high precision values, meaning that

most of the detected mitoses are true mitoses. The points

near the right of the graph have high recall, indicating that

most of the true mitoses are detected. Parameters

that produce a point at the top right corner of the graph

would be preferred, but this ideal cannot be achieved.

The missed detections (false negatives) in the late

bastula stage can be attributed to large scale reshaping

during the late bastula stage. This reshaping can alter the

local image motion field L sufficiently that the present

mitosis prototype becomes less effective. In the early

neurulation stage, large scale reshaping was not present,

and high recall rates could be achieved. The low precision

rates (high false positives) found in the neurulation image

set can be attributed to illumination changes between

frames and grainy additive noise in the images. Both of

these factors cause errors in estimation of the local image

motion field L.

The manual study of the images in image sequence 1

revealed 94 mitoses. To tune the parameters, three of these

mitoses were selected manually and used to determine that

kM ¼ 1 and bM ¼ 5 are suitable parameter values. The

parameters Tlow ¼ 0.5, Thigh ¼ 0.65 and Tsize ¼ 200, were

chosen because a parametric search (Figure 7) showed that

they maximised the F-measure, Fb¼1 over the range

0.5 # Tlow # 1, Tlow # Thigh # 1 and 50 # Tsize # 300.

Tlow is in fact, 0.5 as expected, and the relatively low value

of Thigh suggests that the values associated with Pmitosis do

not span the entire range of 0–1.

When these parameters were used in the algorithm, it

successfully identified 58 of the 91 mitoses that occurred.

Figure 7. Precision-recall graphs. The graphs were constructed for various values of the parameters Tlow, Thigh and Tsize. Pairs of
parameters were set to their optimal values while the third was varied. Large scale reshaping motion is present in the gastrulation-stage
image set due to the use of low-magnification images, and high FN rates result. The neurulation-stage image sets use high-magnification
images and the FN rates are lower. However, the high magnification gives rise to illumination changes and noise, thus producing high FP
rates. (a) Gastrulation stage and (b) neurulation stage.

Computer Methods in Biomechanics and Biomedical Engineering 159

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
0
3
:
3
9
 
1
8
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



While this ratio could have been increased to 70 out of 91

by a different choice of parameters, as shown in Figure 7,

the number of false positives would then have been

unacceptably high. Confusion matrices based on the

parameters shown above are presented in Table 2, and the

algorithm performance as determined using the F-measure

is 68%. The detected locations were typically within a few

pixels of the manually-identified mitosis locations.

The algorithm reported mitosis orientation histograms

that were consistent with those found manually (Figure 8).

Differences between the manual and algorithmic angles

reported for individual mitoses were often less than 108

(Figure 9), the width of the histogram class interval and

usually less than 308.

For the images collected every minute from the surface

of a neurulation-stage embryo, a manual analysis

identified a total of 24 mitoses (Table 1). The time lapse

image sequences were then analysed by the algorithm

using the same parameters as for the gastrulation stage

images, except that bM ¼ 7 and Tlow ¼ 0.5, Thigh ¼ 0.95

and Tsize ¼ 400 based on a 100 # Tsize # 500 search. The

algorithm performance was found to be 67%, similar to the

value obtained for the early blastula stage. The algorithm

produced histograms of mitosis orientations consistent

with the ground truth (Figure 8), and error histograms as

shown in Figure 9. That the algorithm gives similar

performance for image sets having different cell sizes and

magnifications demonstrates that it is robust to these factors.

If cell density or other relevant characteristics were to change

significantly within a set of images, the parameters may have

to be adjusted or made functions of time.

Table 2. Detection rates.

Predicted

Early gastrulation Early neurulation

Positive Negative Positive Negative

Actual
Positive 58 33 16 5
Negative 21 n/a 11 n/a

Figure 8. Ground truth and algorithmically-detected mitosis orientation histograms. (a) Gastrulation ground truth, (b) gastrulation
algorithm detection, (c) neurulation ground truth and (d) neurulation algorithm detection.
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From a developmental biology perspective, the

algorithm showns that the rate of cell division reduces

by several orders of magnitude between early gastrulation

and early neurulation. The algorithm also shows that

mitosis orientation patterns change significantly. In the

area studied during gastrulation, mitosis orientations were

widely distributed, whereas during nerulation mitoses

in the subject were quite strongly aligned with the

medio-lateral axis. A number of biological studies have

suggested that the long axes of cells (Jacobson and Gordon

1976) are key determinants of mitosis orientation

(O’Connell and Wang 2000). Other relevant factors may

include cell signalling, biochemical factors, mechanical

stresses and tissue deformation (Brodland and Veldhuis

2002; Gong et al. 2004; Nelson et al. 2005). In turn,

regularly oriented mitosis, regardless of its origin, has

been implicated as a significant driver of tissue motions

(Philip et al. 1992; Brodland and Veldhuis 2002; Gong

et al. 2004).

A computer algorithm was used to determine the cellular

fabric (Iles et al. 2007) in the images used here. It revealed

that a significant average direction of cell elongation did not

exist in the gastrulation-stage images, consistent with

broadly distributed mitosis orientations. In contrast, the

fabric algorithm showed that cells in the neurulation-stage

images had a significantly anisotropic fabric: they were

elongated in the medio-lateral direction (normal to the

embryo midline) by an average factor of k ¼ 1.1 (Brodland

et al. 2006), a degree of anisotropy not generally discernable

by eye. Mitoses were found to be strongly aligned with this

direction, suggesting that an average aspect ratio k of 1.1 is

sufficient to regulate mitosis orientation.

Computer simulations (Brodland 2006; Brodland and

Veldhuis 2006) show that medio-laterally oriented cells

would be expected in the neural plate because of the

lamellipodium-driven convergent extension occurring

there. Whether the mitosis orientations are a direct result

of these cell geometries or are the consequence of

morphogen gradients that trigger lamellipodium action

(Keller et al. 2000; Wallingford and Harland 2002; Keller

2006) is not yet clear.

In terms of tissue reshaping, the monolayer epithelium

that forms the surface of the embryo must expand

dramatically during gastrulation so that tissue can stream

through the blastopore, into the interior of the embryo, where

it later forms various internal structures (Gilbert 2000).

Whether the elevated cell division rates observed in the

present study would facilitate the associated high strain rates

is not clear. Strain rates are low in the cephalic region, where

the neurulation stage images were collected (Veldhuis et al.

2005), suggesting that the strongly oriented but relatively

low rate cell division observed there is not a primary driver of

local tissue reshaping, a result consistent with computer

simulations (Brodland and Veldhuis 2002).

The present study makes available regional data on

mitosis frequency and orientation, factors that computer

simulations have shown are mechanically associated with

tissue deformation rates, cellular fabric and lamellipodium

action (Brodland and Veldhuis 2002; 2006). To the

kinematic data (Brodland et al. 1995), strain maps

(Veldhuis et al. 2005), tensile properties (Wiebe and

Brodland 2005) and in vivo stresses (Benko and Brodland

2007) now available for axolotl embryos, it adds mitosis

data. By filling in one of the few remaining gaps it allows

us to take another step toward construction of an integrated

theory for the mechanics of early embryo development.
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