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A novel similarity measure for registering magnetic resonance (MR) and computed tomography (CT)
images has been designed and built. MR–CT registration methods often rely on the statistical intensity
relationship between the images. The proposed similarity measure instead depends on the statistical
relationship between the complex phase order between the images. By utilizing the complex phase order
likelihood (CPOL) as a similarity measure, structural relationships instead of intensity relationships are
explicitly used. This approach can be advantageous for MR–CT registration, where the intensities of
the CT imagery have highly complex and nonlinear relationships with the intensities of corresponding
MR imagery but simpler linear structural relationships. This new similarity measure has been tested
on real MR–CT 3D volumes and has been evaluated based on fiducial registration error to determine
alignment accuracy. Quantitative results show that CPOL is capable of achieving comparable alignment
accuracy when compared to normalized mutual information, while being more robust to imaging arti-
facts such as noise.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The objective of image registration is to determine the align-
ment between images acquired under differing conditions, such
as time and imaging modality. Image registration has proven to
be a valuable tool in different medical applications ranging from
computer-assisted surgery (Sadowski et al., 2002) to disease anal-
ysis (Walimbe et al., 2006). In particular, multimodal image regis-
tration has garnered significant research interest in the medical
community given the wide variety of medical imaging technolo-
gies that capture different anatomical and functional information
about the human body and the need to combine all this informa-
tion in a meaningful manner.

A wide variety of algorithms has been proposed over the years
to tackle the problem of multimodal image registration, with sev-
eral surveys published summarizing research in the area (Maintz
and Viergever, 1998; Hill et al., 2001; Pluim et al., 2003). A popular
class of multimodal image registration methods are those based on
intensity mutual information (Viola and Wells, 1997, 1999; Maes
et al., 1997), which rely on the statistics of the intensity relation-
ships between images to align the images. Methods based on
intensity mutual information can be generally separated into those
based on the maximization of local mutual information (Maintz
et al., 1998; Likar and Pernus, 2001; Ardizzone et al., 2007), and
ll rights reserved.
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those based on the maximization of global mutual information
(Rueckert et al., 1999; Viola and Wells, 1997; Maes et al., 1997).
One issue faced when utilizing intensity mutual information is that
the intensity relationship between two different imaging modali-
ties, such as MR and CT, can be highly complex and nonlinear. Gi-
ven the under-constrained nature of intensity mutual information,
where no functional correlation is assumed (Roche et al., 1998), the
resulting convergence plane can become highly non-convex and
difficult to optimize. Furthermore, intensity mutual information
does not consider any notion of proximity, which can result in
additional cost non-monotonicity and thus making it difficult to
converge to the correct alignment (Roche et al., 1998). To address
this issue, Mellor and Brady (2004, 2005) proposed the use of
phase mutual information, which utilizes the local phase relation-
ship between the images instead, which implicitly takes into ac-
count spatial information and has been shown to exhibit reduced
relationship complexity and hence allow for better convergence
to the correct alignment.

Another popular class of multimodal registration approaches
are those based on intensity remapping (Roche et al., 1998, 2000;
Guimond et al., 2001; Thirion, 1998; Andronache et al., 2008). Of
particular popularity are those based on the correlation ratio
(Roche et al., 1998; Roche et al., 2000), a regression-based metric
that attempts to find the best functional fit between image inten-
sities and maps the intensities of images to that of the reference
image. This concept has been subsequently extended (Andronache
et al., 2008), where the intensities of the images are mapped to a
ikelihood as a similarity measure for MR–CT registration. Med. Image Anal.
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single intensity space, though not the same as that of the reference
image. However, these assumptions are often not true (Orchard,
2008), particularly in situations characterized by image non-uni-
formities related to the acquisition device (Oghabian et al., 2003),
as well as situations characterized by highly complex and nonlin-
ear intensity relationships such as MR–CT registration.

The main contribution of this paper is a similarity measure
based on complex phase order likelihood (CPOL) for registration
of MR and CT imagery. The similarity measure aims to bypass
the issues associated with utilizing highly complex and nonlinear
intensity relationships by utilizing structural relationships
instead. CPOL is designed to be robust to noise and image arti-
facts by accounting for them both in the complex phase order
representation stage and the likelihood computation stage. While
both the phase mutual information measure proposed by Mellor
and Brady (2004, 2005) and the proposed CPOL measure utilize
complex phase, there are significant differences between the
two measures. The phase mutual information utilizes complex
phase in a direct manner and implicitly accounts for spatial infor-
mation and structural relationships by providing a illumination-
invariant representation. However, similar structural relation-
ships in the direct complex phase representation can have very
different values. On the other hand, CPOL utilizes the complex
phase order across multiple scales and explicitly accounts for spa-
tial information and structural relationships, where similar struc-
tural relationships in the complex phase order representation
have very similar values. While less nonlinear than intensity rela-
tionships, the complex phase relationships between images such
as those produced using MR and CT is significantly more nonlin-
ear when compared to complex phase order relationships, which
are largely linear. As such, the measure proposed by Mellor and
Brady must rely on mutual information to model the complex
phase relationships whereas CPOL can utilize a more constrained
likelihood measure.

2. The CPOL similarity measure

The CPOL similarity measure for MR–CT registration can be de-
scribed as follows. The complex phase for the images being regis-
tered is computed using a complex wavelet transform, as
described in Section 2.1. Based on the complex phase, the complex
phase order likelihood is computed, as described in Section 2.2. The
algorithm for computing CPOL is provided in Section 2.3.

2.1. Complex phase from complex wavelet decomposition

Let f ¼ f ðxÞ and g ¼ gðxÞ denote the images being aligned. The
complex phase /s;hðxÞ at each scale s and orientation h is computed
for each pixel in f and g as follows. First, multi-scale complex wave-
let representations of f and g, denoted as F and G, are constructed
using a complex wavelet transform such as the dual-tree complex
wavelet transform (Selesnick et al., 2005) and Log-Gabor complex
wavelet transform (Fischer et al., 2007), with each of the a scales
and b orientations. While the over-complete Log-Gabor complex
wavelet transform proposed by Fischer et al. (2007) was used for
our implementation of CPOL, where the complex wavelet repre-
sentation at each scale is un-decimated, the dual-tree complex
wavelet transform may also be used as well. For all tests, the
Log-Gabor complex wavelet transform was performed over b ¼ 6
orientations (0�, 30�, 60�, 90�, 120�, and 150�) and a ¼ 4 scales
(wavelengths of 3, 9, 27, and 81 pixels were used to maintain a
bandwidth of two octaves).

In the transform domain, each point x in F and G is represented
by a set of ab complex wavelet responses � s;hðxÞ, where

� s;hðxÞ ¼ As;hðxÞ exp j/s;hðxÞ
� �

; ð1Þ
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where As;hðxÞ and /s;hðxÞ is the complex amplitude and phase,
respectively. Computing As;hðxÞ and /s;hðxÞ directly from Eq. (1) can
lead to unstable results under the presence of image artifacts. To ad-
dress this issue, a stable estimate of As;hðxÞ and /s;hðxÞ can be ob-
tained using an adaptive kernelized approach as

As;hðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ðxÞ � K � Re
s;h

� �2
þ f ðxÞ � K � Ro

s;h

� �2
r

; ð2Þ

and,

/s;hðxÞ ¼ tan�1 f ðxÞ � K � Re
s;h

f ðxÞ � K � Ro
s;h

 !
; ð3Þ

where Re
s;h and Ro

s;h are the even- and odd-symmetric Log-Gabor
quadrature pairs, � denotes a convolution, and K is the adaptive ker-
nel defined as,

K Sð Þ ¼ exp �rðxÞ2 f ðxÞ � f ðSÞð Þ2

nr4
b

 !
; ð4Þ

where S is a sampled set around x, rb is the standard deviation in
the background regions of f, rðxÞ is the local standard deviation
around x, and n ¼ 10 was found to be effective and is used for all
tests. What Eq. (4) does is adapt the degree of regularization based
on the underlying value and statistical characteristics of f to better
preserve structural characteristics while achieving stability under
the presence of image artifacts.

2.2. Complex phase order likelihood

Given the complex phase /s;hðxÞ, the complex phase order qðxÞ,
which can be defined as the degree of complex phase alignment
across all scales, at each pixel must now be computed. Complex
phase order is well suited for capturing structural characteristics
of images explicitly (Morrone and Burr, 1988; Thomson, 1999;
Kovesi, 2000) and is independent of intensity. Morrone and Owens
(1987) proposed that the complex phase order qðxÞ can be quanti-
fied based on the normalized weighted summation of cosine-
weighted complex phase deviations from the mean complex phase
�/hðxÞ across all scales:

qðxÞ ¼
Pb

h¼1

Pa
s¼1As;hðxÞKðxÞPb

h¼1

Pa
s¼1As;hðxÞ

; ð5Þ

where,

KðxÞ ¼ cos /s;hðxÞ � �/hðxÞ
� �

: ð6Þ

This approach to computing complex phase order has been
further extended (Kovesi, 2000) to improve response sensitivity
as well as robustness to noise using a hard thresholding
approach. A limitation to this complex phase order formulation
is that the use of a hard thresholding approach leads to the loss
of potentially important information, resulting in a discontinuous
representation that can affect the structural similarity across im-
age modalities.

To address the hard thresholding limitation, we propose a mod-
ified complex phase order formulation that utilizes a bilateral soft-
thresholding scheme. Motivated by work on wavelet denoising
(Donoho, 1995), the use of a soft thresholding scheme allows for
robustness to image noise while still providing a continuous mea-
sure for phase order. The bilateral soft thresholding scheme can be
described as follows. Let us consider the numerator of Eq. (5), de-
noted as jðxÞ, which corresponds to the summation of complex
phase deviations at point x,

jðxÞ ¼
Xb

h¼1

Xa

s¼1

As;hðxÞKðxÞ: ð7Þ
ikelihood as a similarity measure for MR–CT registration. Med. Image Anal.
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Two general observations can be made with regards to image
noise with respect to complex phase and amplitude relationships.
First, in uniform regions within the image where there are no
structural characteristics, the complex phase deviations across all
scales from the mean phase should be zero. Therefore, non-zero
summations of complex phase deviations in these uniform regions
are entirely due to the influence of noise and should be suppressed
accordingly. Second, the distribution of complex amplitude across
multiple scales is generally narrow and skewed towards high fre-
quencies, whereas for strong structural characteristics the complex
amplitudes are generally high and distributed evenly across scales
(Field and Brady, 1997). Therefore, we can perform soft threshold-
ing by weighting the summation of complex phase deviations
based on the non-zero summations in uniform regions as well as
the distribution of complex amplitude across scales. The bilateral
weighting function W can therefore be expressed as a product of
a weighting function WmðxÞ related to non-zero summations in uni-
form regions and a weighting function WsðxÞ related to the distri-
bution of amplitude across scales:

WðxÞ ¼WmðxÞWsðxÞ; ð8Þ

where WmðxÞ is governed by the median of the summations of phase
deviations �j:

WmðxÞ ¼
1

1þ exp fð�j� jðxÞÞ½ � ; ð9Þ

where f is the Wm gain factor, and WmðxÞ is governed by an estimate
of how evenly distributed complex amplitude is across scales
(Kovesi, 2000),

WsðxÞ ¼
1

1þ exp � c � 1þ Amax;hðxÞ
Pa

s¼1As;hðxÞ
	� �� � : ð10Þ

where c is the frequency where Ws ¼ 0:5 and � is the Ws gain fac-
tor. Based on testing, setting c ¼ 0:4 and � ¼ f ¼ 10 was found to be
effective and is used for all tests. Eqs. (9) and (10) show that the
penalty increases as the summation of complex phase deviations
decreases to the range characterizing the uniform regions, as well
as when the distribution of complex amplitude narrows
respectively.

Integrating the bilateral soft thresholding scheme described in
Eq. (8) into Eq. (5), the complex phase order qðxÞ can be defined as

qðxÞ ¼
Pb

h¼1

Pa
s¼1WhðxÞAs;hðxÞKðxÞPb
h¼1

Pa
s¼1As;hðxÞ

; ð11Þ

where WhðxÞ is the bilateral weighting function for orientation h. An
example of an MR and CT image pair and a visualization of their cor-
responding complex phase order is shown in Fig. 1. While the MR
and CT image volumes exhibit complex, nonlinear intensity rela-
tionships, the corresponding complex phase order exhibit simpler,
linear structural relationships and as such can be compared in a
more straightforward, constrained fashion that is more suitable
for optimization. An example of the complex phase order of a MR
image volume under 10% and 20% Rician noise is shown in Fig. 2.
Despite the high noise levels, the resulting complex phase order re-
mains robust to noise and effectively captures the structural charac-
teristics of the MR image volume.

Given the complex phase order of f and g, denoted as qf and qg

respectively, the residual error between qf ðxÞ and qgðxÞ can be de-
fined as,

eðxÞ ¼ qf ðxÞ � qgðxÞ
� �

: ð12Þ

Let the residual error e be a random variable following a prob-
ability distribution pðe; f ; gÞ. The likelihood function Lðf ; gÞ can
thus be defined as
Please cite this article in press as: Wong, A., et al. CPOL: Complex phase order l
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Lðf ; gÞ ¼
Y

x

pðeðxÞ; f ; gÞ: ð13Þ

Given that the error probability distribution pðe; f ; gÞ is gener-
ally unknown, choosing an error distribution model that provides
a good characterization of the true error distribution is necessary.
To better account for the presence of imaging noise and artifacts
due to imaging modality differences (e.g., MR and CT), the error
distribution model should be heavy-tailed. For CPOL, the follow-
ing error distribution model based on the Geman-McClure func-
tion (Geman and McClure, 1987) is employed and can be
defined as

pðeðxÞ; f ; gÞ ¼ exp � eðxÞ2

v2 þ eðxÞ2

" #
: ð14Þ

Based on testing, setting v ¼ 30 was found to be effective and is
used for all tests. A plot of the error distribution model based on
the Geman-McClure function is shown in Fig. 3. The error distribu-
tion is characterized by a much heavier tail than the Gaussian dis-
tribution, thus taking the influence of outlier data such as noise
and artifacts into account in the error distribution model. The final
complex phase order likelihood Lðf ; gÞ can be defined as

Lðf ; gÞ ¼
Y

x

exp �
ðqf ðxÞ � qgðxÞÞ

2

v2 þ ðqf ðxÞ � qgðxÞÞ
2

" #
: ð15Þ
2.3. Algorithm

Based on the theory described in Section 2.1 and Section 2.2, the
pseudo-code for computing CPOL between two images f and g is
presented in Algorithm 1.
ike
Algorithm 1. Complex phase order likelihood
1 Estimate complex amplitude Af , Ag (2) and phase /f , /g

(3) for f and g.
2 Estimate complex phase order qf , qg from (Af ,/f ) and

(Ag ,/g) (11).
3 Compute complex phase order likelihood L between qf

and qg (15).
3. Experimental results

The CPOL similarity measure was implemented in MATLAB and
evaluated under 3D volume registration scenarios using 9 real pa-
tient MR–CT brain volume data sets from the Whole Brain Atlas
(Johnson and Becker, 2008) (WBA). The MR volumes are acquired
with an axial field of view of 24 cm. The MR volumes are
256� 256� 23 voxels, with a slice thickness of 5 mm. The CT vol-
umes are downsampled from an original resolution of
512� 512� 23 voxels to the same voxel dimensions. A summary
of each test data set is given below.

1. Test 1: MR/PD-CT, 63 year-old male, acute stroke.
2. Test 2: MR/T2-CT, 63 year-old female, acute stroke.
3. Test 3: MR/T2-CT, 45 year-old female, acute stroke.
4. Test 4: MR/T2-CT, 23 year-old female, hypertensive

encephalopathy.
5. Test 5: MR/PD-CT, 42 year-old female, metastatic broncho-

genic carcinoma.
6. Test 6: MR/PD-CT, 75 year-old male, meningioma.
7. Test 7: MR/T2-CT, 22 year-old male, sarcoma.
8. Test 8: MR/T2-CT, 55 year-old male, multiple embolic

infarcts.
9. Test 9: MR/T2-CT, 71 year-old female, fatal stroke.
lihood as a similarity measure for MR–CT registration. Med. Image Anal.
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Fig. 1. A MR volume (a) and its complex phase order (c), and the corresponding CT volume (b) and its complex phase order (d). While the MR and CT image volumes (a)–(b)
exhibit complex, nonlinear intensity relationships, the corresponding complex phase orders (c)–(d) exhibit simpler, linear structural relationships and as such can be
compared in a more straightforward, constrained fashion that is more suitable for optimization.
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Fig. 2. A MR image volume under 10% Rician noise (a) and its complex phase order (b), and the same MR image volume under 20% Rician noise (c) and its complex phase
order (d). Despite the high noise levels for both cases, the resulting complex phase orders (b)–(d) remain robust to noise and effectively captures the structural characteristics
of the underlying MR image volume.
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(2009), doi:10.1016/j.media.2009.10.002
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Fig. 3. Error distribution model based on the Geman-McClure function. The error
distribution is characterized by a much heavier tail than the Gaussian distribution,
thus taking the influence of outlier data such as noise and artifacts into account in
the error distribution model.

Table 1
Fiducial registration errors (FRE) of NMI and CPOL for the nine data sets. A total of 30
random distortions is tested for each data set, for a total of 270 test cases.

Test set FRE (mm)

NMI CPOL

Test 1 3.74 ± 0.56 2.70 ± 0.32
Test 2 3.91 ± 0.50 2.24 ± 0.37
Test 3 2.36 ± 0.63 2.46 ± 0.42
Test 4 3.64 ± 0.49 2.19 ± 0.35
Test 5 3.81 ± 0.30 2.46 ± 0.19
Test 6 3.71 ± 0.47 2.59 ± 0.27
Test 7 2.90 ± 0.53 2.70 ± 0.25
Test 8 3.35 ± 0.55 2.48 ± 0.29
Test 9 3.97 ± 0.61 2.30 ± 0.37
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For testing the similarity measures, the following 3D volume
registration algorithm was used. The problem of registering images
f and g is first formulated as an optimization problem, where the
goal is to determine a transformation T that aligns f to g such that
the similarity measure W is maximized,

bT ðxÞ ¼ arg max
TðxÞ

W f ðTðxÞÞ; gðxÞð Þ½ �: ð16Þ

A sequential quadratic programming approach (Boggs and Tolle,
1995) is then employed to solve the problem in Eq. (16), where
the estimated transformation bT at iteration k can be defined as

bT k ¼ bT k�1 þ ck�1dk�1; ð17Þ

where c is a non-negative step size and d is the step direction cal-
culated by solving a quadratic subprogram involving W (Boggs
and Tolle, 1995).

For evaluation purposes, the normalized mutual information
(NMI) and the proposed CPOL similarity measures were tested.
NMI was implemented using smoothed histograms with 100 inten-
sity bins, with a Gaussian smoothing kernel of with r ¼ 7 bins, as
described in (Mellor and Brady, 2005). Trilinear interpolation was
used in all experiments. All tests were performed on an Intel Core
2 Duo 1.67 GHz PC with 2 GB of RAM.
Fig. 4. Sample registration result from Test 1 using CPOL. For visualization,
corresponding slices from the volumes before and after registration are shown.
Contours extracted from the CT volume are overlayed on the MR volume to
visualize the quality of registration. Visually, the MR volume warped based on CPOL
appears well aligned with the CT volume.
4. Experiment 1: registration accuracy

The first set of tests studies the registration accuracy using NMI
and CPOL under geometric distortion scenarios. Each test data set
was distorted using 30 randomly generated affine transformations,
based on the random perturbation of translation coefficients up to
±30 mm and all other coefficients up to ±0.1, resulting in a total of
270 test cases. Since the test image sets used were previously
aligned, the gold-standard transformations are known for all 270
test cases. Registration accuracy for all methods is evaluated quan-
titatively based on the fiducial registration error (FRE), which in
our case can be defined by the root-mean-square error of 60 fidu-
cial points within the region of interest. The fiducial points were
chosen randomly within the regions of interest in the test images
as not to bias the tests towards any of the tested similarity
measures.
Please cite this article in press as: Wong, A., et al. CPOL: Complex phase order likelihood as a similarity measure for MR–CT registration. Med. Image Anal.
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Fig. 5. Sample registration result from Test 7 using CPOL. For visualization,
corresponding slices from the volumes before and after registration are shown.
Contours extracted from the CT volume are overlayed on the MR volume to
visualize the quality of registration. Visually, the MR volume warped based on CPOL
appears well aligned with the CT volume.

Table 2
Fiducial registration errors (FRE) of NMI and CPOL for Test 1 under different Rician
noise levels for MR volume. A total of 30 random distortions is tested for each noise
level, for a total of 120 test cases.

Rican noise FRE (mm)

5% 10% 15% 20%

NMI 4.02 ± 0.76 6.73 ± 1.03 9.71 ± 1.64 10.86 ± 2.58
CPOL 2.80 ± 0.41 2.76 ± 0.52 2.93 ± 0.66 3.57 ± 0.95

Fig. 6. Sample registration result from Test 1 using CPOL under 10% Rician noise.
For visualization, corresponding slices from the volumes before and after registra-
tion are shown. Contours extracted from the CT volume are overlayed on the MR
volume to visualize the quality of registration. Visually, the MR volume warped
based on CPOL appears well aligned with the CT volume despite noise.
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The registration results for all nine test data sets, totalling 270
test cases, are summarized in Table 1. CPOL was capable of achiev-
ing noticeably lower or comparable FRE when compared to NMI for
all test cases. One contributing factor to this difference in registra-
tion error when compared to NMI is that the intensity relationships
between the tested MR and CT volume data sets are highly com-
plex and nonlinear, making NMI highly non-convex and difficult
to optimize. On the other hand, the structural relationships be-
tween the volume data sets is significantly more straightforward,
making CPOL more straightforward to optimize. Sample registra-
tion results using the CPOL for Tests 1 and 7 are shown in Figs. 4
and 5, respectively. Visually, CPOL is capable of providing accurate
registration results. These experimental results demonstrate the
Please cite this article in press as: Wong, A., et al. CPOL: Complex phase order l
(2009), doi:10.1016/j.media.2009.10.002
effectiveness of the CPOL as a similarity measure for performing
non-rigid multimodal image registration on CT and MR images.
ikelihood as a similarity measure for MR–CT registration. Med. Image Anal.
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5. Experiment 2: noise sensitivity

An important consideration in the design of a similarity mea-
sure for image registration is that the measure should be robust
to noise artifacts that can affect registration accuracy. To study
the effect of noise on the similarity measures, the set of tests con-
ducted in Section 4 for Test 1 were performed with the MR vol-
umes contaminated by 5%, 10%, 15%, and 20% simulated Rician
noise, resulting in a total of 120 tests.

The registration results for the Test 1 under the various noise
levels, totalling 120 test cases, are summarized in Table 2. The
Fig. 7. Sample registration result from Test 1 using CPOL under 20% Rician noise.
Contours extracted from the CT volume are overlayed on the MR volume to
visualize the quality of registration. For visualization, corresponding slices from the
volumes before and after registration are shown. Contours extracted from the CT
volume are overlayed on the MR volume to visualize the quality of registration.
Visually, the MR volume warped based on CPOL appears well aligned with the CT
volume despite noise for the most part, with the exception of a 1.5 mm
misalignment along the y-axis.

Please cite this article in press as: Wong, A., et al. CPOL: Complex phase order l
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FRE achieved using CPOL remained largely consistent at all noise
levels except 20% simulated Rician noise, where there is a notice-
able increase in FRE. This increase in FRE can be contributed to
the significant loss in structural characteristics due to the high le-
vel of noise. On the other hand, the FRE achieved using NMI rose
significantly as noise levels increased. Sample registration results
using the CPOL for 10% and 20% simulated Rician noise are shown
in Figs. 6 and 7, respectively. Visually, CPOL is capable of providing
accurate registration results for the most part, with the exception
of a 1.5 mm misalignment along the y-axis for the 20% simulated
Rician noise scenario. These experimental results demonstrate
the robustness of CPOL to the presence of noise artifacts.
6. Conclusions

In this paper, we introduced a novel similarity measure for MR–
CT image registration. The complex phase order likelihood be-
tween the images was introduced for modality-invariant similarity
measurement that is straightforward and robust to noise. Experi-
mental results using real patient MR and CT volume data sets indi-
cate that state-of-the-art registration accuracy can be achieved
using CPOL when compared to NMI, particularly under high noise
levels. Future work involves investigating more robust techniques
for estimating complex phase order under the presence of imaging
artifacts, as well as alternative distance measures that provide
greater response to common characteristics between images ac-
quired using different imaging modalities.
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