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a b s t r a c t

A novel nonlinear scale space framework is proposed for the purpose of multi-scale image representation.
The scale space decomposition problem is formulated as a general Bayesian least-squares estimation
problem. A quasi-random density estimation approach is introduced for estimating the posterior distri-
bution between consecutive scale space realizations. In addition, the application of the proposed nonlin-
ear scale space framework for edge detection is proposed. Experimental results demonstrate the
effectiveness of the proposed scale space framework for constructing scale space representations with
significantly better structural localization across all scales when compared to state-of-the-art scale space
frameworks such as anisotropic diffusion, regularized nonlinear diffusion, complex nonlinear diffusion,
and iterative bilateral scale space methods, especially under scenarios with high noise levels.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

An interesting phenomenon pertaining to the physical world is
that it is composed of a plethora of objects that are conceptually
meaningful at particular scales. An example of this phenomenon
is that of a house, which is conceptually meaningful when consid-
ered from the meter scale, but not at the centimeter or kilometer
scales. At the centimeter scale, it might be more appropriate to dis-
cuss the bricks that make up the house, likewise at the kilometer
scale the neighborhood in which the house resides. Similarly, when
imaging the physical world, different image structures are mean-
ingful only in the context of certain scales. Therefore, we are moti-
vated to develop multi-scale methods for decomposing images at
different scales for the purposes of modeling, description, and
analysis.

A powerful approach for multi-scale image decomposition is
scale space theory (Witkin, 1983), where image structures at dif-
ferent scales within an image are handled by representing the im-
age as a single-parameter family of images, with a progressive
decrease in fine scale structures between successive scales. Scale
space theory has proven to be useful for a wide variety of image
processing and computer vision applications such as denoising
(Yu et al., 2008; Ling and Bovik, 2002; Gilboa et al., 2004; Gilboa,
2008), edge detection (Lindberg, 1996; Perona and Malik, 1990;
Catte et al., 1992; Yu et al., 2008), color enhancement (Jobson
et al., 1997), segmentation (Maeda et al., 1998; Pathak et al.,
ll rights reserved.
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2000; Manmatha and Rothfeder, 2005; Petrovic et al., 2004;
Wong et al., 2009), and blur estimation (Elder and Zucker, 1996,
1998).

Witkin (1983) and Koenderink and Van Doorn (1984) first pro-
posed the linear scale space framework, where an image is decom-
posed into a family of images, each produced by convolving the
original image with a Gaussian function conditioned by the associ-
ated scale parameter. While computationally efficient, the linear
scale space framework produces scale space representations with
poorly localized image structures and high inter-region structure
smoothing at larger scales. To address these issues associated with
poor structural localization and inter-region structure smoothing,
Perona and Malik (1990) proposed a nonlinear scale space frame-
work based on the generalized diffusion equation as a function of
gradient magnitude. By encouraging diffusion between pixels with
similar structural characteristics, structural localization at coarse
scales is improved. Unfortunately, while noticeably better than
the linear scale space framework, significant structural delocaliza-
tion and inter-region structure smoothing still persists at coarser
scales.

Recent work in scale space frameworks has focused on
improving upon the generalized diffusion approach proposed by
Catte et al. (1992) proposed that the posedness of the problem
formulated by Perona and Malik can be improved by regularizing
the conduction coefficient using Gaussian regularization priors.
Yu et al. (2008) improved upon this regularization scheme
through the use of radial-basis function kernels, which also pro-
vides better structural separability. Black et al. (1998) proposed
that the posedness of the problem can also be improved through
the use of a conduction coefficient based on robust statistics.
Gilboa et al. (2004) extended the generalized diffusion equation
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Fig. 3. Example of an isolated point. Point A is an outlier, because
Lj � Li�1ðsÞ > rLi�1

, which implies the difference of pixel A’s intensity from the
intensities corresponding to the modes of its neighbor distribution are greater than
the image standard deviation rLi�1

.
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used by Perona and Malik into the complex domain by combin-
ing nonlinear diffusion and the free Schrödinger equation to bet-
ter preserve ramp characteristics in images. Unfortunately,
despite such advancements in scale space theory, the issues asso-
ciated with structural localization persists at coarser scales. Fur-
thermore, existing scale space frameworks are highly sensitive
to the presence of noise and as such generally produce unsatis-
factory scale space representations of images characterized by
high noise levels, which will be illustrated in the experimental
results.

The main contribution of this paper is a novel and effective non-
linear scale space framework based on Bayesian estimation theory.
By formulating scale space decomposition using general Bayesian
least squares approach, an efficient solution is provided using a
quasi-random density estimation approach based on a set of objec-
tive functions and criteria designed to promote structural localiza-
tion at all scales. Furthermore, we demonstrate how the proposed
scale space framework can be used for robust edge detection. This
paper is organized as follows. The scale space decomposition prob-
lem is formulated in Section 2. A quasi-random density estimation
scheme is introduced in Section 3. The application of the proposed
framework for edge detection is described in Section 5. Finally,
experimental results are presented in Section 6 and conclusions
are drawn in Section 7.
Fig. 1. In existing scale space representations, left, all samples within a local neighborhoo
only samples with high relevancy from across the representation are used to provide m

Fig. 2. A synthetic image, left, where the green pixel (at center) represents the estima
selected samples for density estimation. The corresponding probability distribution pðLi�

samples, whereas the red (desirable) distribution is taken over the selected samples. (For
to the web version of this article.)
2. Problem formulation

Let S be set of sites in a discrete lattice £ upon which an image is
defined and s 2 S be a site in £. Further, let the measured image
d are used, regardless of relevance. In the proposed scale space representation, right,
ore robust statistical estimates.
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tion site, blue markers represent random samples, and red markers represent the
1ðsÞÞ of the green pixel is shown in (b), where blue (undesirable) PDF is based on all
interpretation of the references to colour in this figure legend, the reader is referred
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Fig. 4. Example estimate of pðLiðsÞjLi�1ðsÞÞ for a site of Barbara image. The green pixel and red squares, left, represent the site s and samples, respectively. Each sample
contributes (red, right) to the overall estimated pðLiðsÞjLi�1ðsÞÞ (black). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. An ideal synthetic image used to explain the physical significance of the
three objective functions (f1, f2, and f3) of (7). The gray pixel inside the dotted red
circle represents the site of interest, for which the weights are shown in Fig. 6. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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I ¼ fIðsÞjs 2 Sg, gradient Gi ¼ fGiðsÞjs 2 Sg, scale space representa-
tion Li ¼ fLiðsÞjs 2 Sg, and residual fine scale structure Ci ¼
fCiðsÞjs 2 Sg be random fields on S. Initializing with L0ðsÞ ¼ IðsÞ,
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Fig. 6. The physical significance of the three objective functions (f1, f2 and
the scale space decomposition relationship can be expressed as a
recursion

Li�1ðsÞ ¼ LiðsÞ þ CiðsÞ; ð1Þ

such that we interpret C as the inter-scale residual. Given (1) one
can view the computation of LiðsÞ as an inverse problem and, as
such, can be solved as an estimation problem. Given the ‘‘measure-
ment” Li�1ðsÞ, and modeling the fine-scale residual CiðsÞ as ‘‘noise”,
we can estimate the state LiðsÞ as the Bayesian least-squares esti-
mate (BLSE):

bLi sð Þ ¼ argbLi
min E bLi sð Þ � Li sð Þ

� �2
� ����Li�1 sð Þ

�� �
: ð2Þ

Minimizing (2) gives

bLi sð Þ ¼
Z

Li sð Þp Li sð ÞjLi�1 sð Þð ÞdLi sð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
E Li sð ÞjLi�1 sð Þð Þ

; ð3Þ

implying that the optimal estimate of scale space representation
LiðsÞ is the mean conditioned on the previous scale space represen-
tation Li�1ðsÞ. Because the conditional mean of bLiðsÞ can be a highly
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f3) of (7) for a particular pixel of the sample image shown in Fig. 5.



Fig. 8. Set of test images.

Fig. 7. Demonstration of the functionality of the three objective functions f1, f2 and f3 on the performance of proposed scale space representation using an example noisy
image ðr ¼ 10%Þ. Columns 2–5 present the scale space representation at the sixth scale using only f1, f2, f3 individually, and then the proposed f1 � f2 � f3 as objective
functions of (7).

Fig. 9. The scale space representations of the ‘‘Scene” image for PM (Perona and Malik, 1990), CA (Catte et al., 1992), GI (Gilboa et al., 2004), BS (Wong et al., 2009), and QS
under additive Gaussian noise with a standard deviation of r ¼ f10%g of the dynamic range of the image. The scale space representations are shown with increasing t from
top to bottom. The corresponding edge strength maps r from (17) are shown in the bottom row.
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complicated and nonlinear function of Li�1ðsÞ, typically simpler
Bayesian linear least-squares estimators (Lee, 1986) and estimators
based on specific parametric posterior distribution models (Lopes
et al., 1993) have been used instead. However, given the complex,
nonlinear nature of images, such estimators provide poor structural
decomposition and hence result in significant loss of structural de-
tail between scale space representations. To address these issues,
we propose instead to employ a quasi-random density estimation
approach to estimate the conditional mean bLiðsÞ. The proposed
method allows for a more robust statistical estimate of bLiðsÞ by
rejecting outlier samples and utilizing only samples from across
Li�1ðsÞ with high relevancy. This approach is fundamentally differ-
ent than that used for existing scale space representations, where
all samples within a local neighborhood are used, as illustrated in
Fig. 1.

3. Quasi-random density estimation

Our goal is to obtain a robust estimate of pðLiðsÞjLi�1ðsÞÞ from the
image intensity, gradient and spatial similarity, using a quasi-ran-
dom density estimation approach, which can be described as fol-
lows. To estimate pðLiðsÞjLi�1ðsÞÞ, we first draw n samples from a
Sobol quasi-random sequence (Sobol, 1997; von Neumann, 1951)
with respect to site s at scale i. A quasi-random sampling approach
is used to allow samples with low discrepancies to be drawn. Let
Fig. 10. The scale space representations of the ‘‘Scene” image, as in Fig. 9, but with a noi
significant noise reduction and good localization of the edge map for the QS method.
Li�1ðsjÞ; j 2 ½1;n� be the intensity of the jth drawn sample of site s
at scale i� 1. To utilize only samples with high relevancy, the dis-
tribution pðLiðsÞÞ is determined to study the distribution of the
samples and identify samples that are realizations of
pðLiðsÞjLi�1ðsÞÞ. An example probability distribution pðLi�1ðsÞÞ at a
particular scale is shown in Fig. 2b .

To form a Gaussian mixture model of pðLi�1ðsÞÞ, the modes of the
distribution are determined in the following manner. The local
maxima of pðLi�1ðsÞÞ are detected, denoted as Lj ¼ Lj1

i�1ðsÞ; L
j2
i�1ðsÞ;



. . . ; Ljk

i�1ðsÞg for jk maxima. The distribution pðLi�1ðsÞÞ can then be
modeled as a Gaussian mixture model, with the means and vari-
ances of the individual Gaussian distributions defined by Lj and
r2

Li�1
(usually the noise variance at scale i), respectively. To deter-

mine the realizable sample set X, we first identify the Gaussian dis-
tribution to which Li�1ðsÞ belongs by finding the highest local
maximum of pðLi�1ðsÞÞ within one standard deviation of Li�1ðsÞ,

Lc ¼ max Ljð Þ; where Li�1ðsÞ � rLi�1
6 Lj

6 Li�1ðsÞ þ rLi�1
: ð4Þ

Based on the identified Gaussian distribution to which Li�1ðsÞ be-
longs, with a mean of Lc and a variance of r2

Li�1
, all samples within

rLi�1
of Lc are accepted as realizations:

X ¼ sj 3 jLi�1ðsjÞ � Lcj < rLi�1


 �
; ð5Þ

restricting the realizable sample set of pðLiðsÞjLi�1ðsÞÞ to those sam-
ples with high statistical relevancy to Li�1ðsÞ.
se standard deviation of r ¼ f40%g of the dynamic range of the image. Observe the
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Now, given the selected sample set X, we wish to define the
estimated posterior distribution p̂ðLiðsÞjLi�1ðsÞÞ,

p̂ LiðsÞjLi�1ðsÞð Þ ¼ p� LiðsÞjLi�1ðsÞð ÞR 1
0 p� LiðsÞjLi�1ðsÞð ÞdLiðsÞ

; ð6Þ

based on some distribution p�, which measures the relevance of
each sample to the estimation of LiðsÞ. We propose

p� LiðsÞjLi�1ðsÞð Þ

¼ 1ffiffiffiffiffiffiffi
2p
p

rLi

X
k¼X

f1 kð Þf2 kð Þf3 kð Þexp �1
2

Li� Li�1ðskÞ
rLi�1

� �2
 !

; Li 2 ½0;1�;

ð7Þ

where f1ðkÞ, f2ðkÞ, and f3ðkÞ are objective functions, assessing sample
relevance, on the basis of intensity, gradient, and spatial offset,
respectively:

f1 kð Þ ¼ exp � 1
qIi�1

Li�1ðsÞ � Li�1ðskÞð Þ2
 !

; ð8Þ

f2 kð Þ ¼ exp � 1
qGi�1

Gi�1ðsÞ � Gi�1ðskÞð Þ2
 !

; ð9Þ

and

f3 kð Þ ¼ exp � 1
qVi�1

Vi�1ðsÞ � Vi�1ðskÞk k2

 !
: ð10Þ
Fig. 11. The scale space representations of the ‘‘Barbara” image, with a r ¼ f10%g noise le
G is the image gradient, computed using a first difference operator,
and V represents the spatial location. The terms qIi�1

, qGi�1
and qVi�1

are regularization constants for scale i� 1, where spatial parameter
qVi�1

is user-specified, and qIi�1
, qGi�1

are calculated as the median
over local standard-deviations computed over a sliding window:

qIi�1
¼ medianðrIi�1

ðj; kÞÞ; ð11Þ
qGi�1

¼ medianðrGi�1
ðj; kÞÞ: ð12Þ

An example of an estimate of pðLiðsÞjLi�1ðsÞÞ for a site in the Barbara
image is shown in Fig. 4.

The physical significance of the three objective functions (f1, f2,
f3) can be explained using an example. Given a pixel of interest,
marked in Fig. 5, the values of the objective functions for the neigh-
boring samples are presented in Fig. 6. The objective function
penalizing intensity deviations, f1, is designed to enforce intensity
similarity. As shown in Fig. 6a, f1 reflects the steep intensity edge of
Fig. 5. The objective function penalizing gradient deviations, f2, is
designed to enforce gradient similarity, which allows for better
preservation of structural boundaries. As shown in Fig. 6b, the val-
ues associated with f2 reflect the local ridge of high gradient which
passes next to the marked pixel in Fig. 5. Finally, the objective
function penalizing spatial deviations, f3, is designed to enforce
spatial locality, which is based on the intuition that spatially neigh-
boring pixels are similar to each other. As shown in Fig. 5c, the val-
ues associated with f3 form a Gaussian function, with a decreasing
weight with increasing spatial separation. The value of the
vel as in Fig. 9. Observe the significant absence of blurring in the QS representations.
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combined objective function (f1 � f2 � f3) is shown in Fig. 6d, where
intensity similarity, gradient similarity, and spatial locality are
simultaneously enforced.

The functionality of the three objective functions f1, f2 and f3 is
demonstrated using an example noisy image in Fig. 7. Using only
the objective function penalizing spatial deviations (f3) results in
significant structural delocalization (Fig. 7d), while using only the
objective function penalizing gradient deviations (f2) results in im-
proved structural localization but poor continuity between struc-
tural boundaries (Fig. 7c). The combination of the three
objectives functions (f1 � f2 � f3) gives the best result by providing
strong structural localization and continuity between structural
boundaries (Fig. 7e).

A special case occurs when (Lj � Li�1ðsÞ > rLi�1
), meaning that

the site s does not fit into the Gaussian mixture model for
pðLiðsÞÞ, implying that all of the neighbors of site s are completely
dissimilar with s. This situation is more frequent for images that
are contaminated with salt and pepper noise, such as the example
in Fig. 3. In this special case the site is considered as an outlier, an
all samples are accepted as realizations, X ¼ fsjg, and p� in (7) be-
comes an unweighted average:

p� LiðsÞjLi�1ðsÞð Þ ¼ 1ffiffiffiffiffiffiffi
2p
p

rLi

X
k¼X

exp � Li � Li�1ðskÞ
2rLi�1

� �2
 !

: ð13Þ
Fig. 12. The scale space representations of the ‘‘Barbara”, as in Fig. 11, but with a higher
outliers between QS and the compared methods.
4. Relation to anisotropic diffusion

There is a relationship between the proposed quasi-random
scale space and the anisotropic diffusion scale space formulation
(Perona and Malik, 1990), where the latter diffusion can be ex-
pressed as

@L s; ið Þ
@i

¼ div g rLk kð ÞrLð Þ; ð14Þ

where krLk is the gradient magnitude and g is an edge stopping
function. The function g is chosen such that gðxÞ ! 0 as x! 0.
The solution to (14) in discrete form can be written as

Li sð Þ ¼ Li�1 sð Þ þ k
Xsj j

X
k2Xs

g Li�1 kð Þ � Li�1 sð Þk k Li�1 kð Þ � Li�1 sð Þð Þð Þ;

ð15Þ

where jXsj is the number of neighboring pixels and the term k is a
user-defined constant. Defining Ci to be the difference in (15),

CiðsÞ ¼ �
k
Xsj j

X
k2Xs

g Li�1 kð Þ � Li�1 sð Þk k Li�1 kð Þ � Li�1 sð Þð Þð Þ; ð16Þ

the scale space decomposition expressed in (1) for the proposed
scale space formulation is seen to share a similar form with that
noise standard deviation of r ¼ f40%g. Observe the presence of blurring and noise
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of anisotropic diffusion. There are two major differences, however,
that greatly affect the resulting scale space realizations. The aniso-
tropic diffusion formulation is a purely local in nature, and as such
can be expressed as a partial differential equation as shown in (14),
whereas the proposed quasi random formulation utilizes a stochas-
tic, non-local paradigm, and as such admits models which cannot be
expressed in the form of (14). Similarly, the behaviour of (14) is
controlled by a single function g, a function of the gradient at a
point, whereas our proposed approach permits a considerably more
flexible set of criteria, controlled by three functions of intensity, gra-
dient, and location. By utilizing relevant samples from across the
image in a stochastic manner, the quasi-random scale space pro-
vides better structural decomposition without significant loss in
structural detail between scales.
5. Application to edge detection

The quasi-random nonlinear scale space framework can be ap-
plied to the problem of edge detection. Construct a map
r ¼ frsjs 2 Sg, where R ¼ fRsjs 2 Sg is a random field on S, with Rs

taking on values representing the edge strength at pixel s. Intui-
tively, edges that exist across multiple scales should be weighted
Fig. 13. The scale space representation of the tested scale space frameworks for a cl
t ¼ f15;35;50g. For GI, the scale space representations are shown for t ¼ f10;15;35g
representations are shown with increasing t from top to bottom. The corresponding edge
QS representations, particularly in the brain regions.
higher than edges that exist only at a few scales. Therefore, a sim-
ple approach to computing the edge strength r at site s is to com-
pute the sum of gradient magnitude across all scales of LiðsÞ,

rðsÞ ¼
X

i

rLiðsÞj j; ð17Þ

where r represents a first order Sobel edge detector operator.
While this multi-scale edge detection scheme applies to all

existing scale space frameworks, based on testing to date it is par-
ticularly effective when used with the quasi-random nonlinear
scale space framework given the structural localization and noise
robustness at all scales. The experimental result for multi-scale
edge strength obtained using (17) is presented in Section 6.
6. Experiments

To study the effectiveness of the quasi-random nonlinear scale
space framework for constructing multi-scale representations with
well localized structures at all scales, two sets of experiments were
performed based on the multi-scale decomposition of a set of four
test images under different scenarios. The set of test images, shown
in Fig. 8, consists of two natural images (Scene and Barbara), a
inical MR image. For PM and CA, the scale space representations are shown for
. For QS, the scale space realizations are shown for t ¼ f2;4;6g. The scale space
strength maps r are shown in the bottom row. Observe the absence of blurring in the
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clinical magnetic resonance (MR) brain image (Brain), and a satel-
lite (RADARSAT-1) synthetic aperture radar (SAR) sea-ice image
(Sea Ice) from the Canadian Ice Service. The nonlinear diffusion
scale space frameworks proposed by Perona and Malik (1990)
(PM), the regularized nonlinear diffusion scale space proposed by
Catte et al. (1992) (CA), the complex nonlinear diffusion scale space
proposed by Gilboa et al. (2004) (GI), and the iterative bilateral
scale space used by Wong et al. (2009) (BS) were evaluated for
comparison purposes, with all parameters used during testing
based on the respective papers. The proposed quasi-random non-
linear scale space framework will be denoted as QS, with the fol-
lowing parameters: n ¼ 100 samples, window size w ¼ 12, and a
spatial deviation regularization constant of qVi�1

¼ 6 pixels. The n
samples were collected from a spatial radius of 18 pixels.
6.1. Experiment 1: noise sensitivity

To study the noise sensitivity of the proposed scale space frame-
work, the ‘‘Scene” and ‘‘Barbara” images were contaminated by
additive Gaussian noise with standard deviations of
r ¼ f10%;40%g of the dynamic range of the images. The noise con-
taminated versions of the test images under the different noise lev-
els are shown in top rows of Figs. 9–12.
Fig. 14. The scale space representation of the tested scale space frameworks for a SAR s
lines) in the QS representations when compared to the other tested representations. This
representations.
The scale space representations of the test images at three differ-
ent scales constructed using each scale space framework, along with
the respective edge strength maps, are shown for the two different
additive Gaussian noise levels. The scales shown for each tested
framework were chosen such that they have similarly scaled struc-
tures: for PM and CA, the scale space representations are shown for
t ¼ 15;35;50, for GI, the scale space representations are shown for
t ¼ 10;15;35, and for BS and QS the shown scales are t ¼ 2;4;6.

While all tested frameworks were able to produce scale space
representations with monotonically decreasing fine scale struc-
tures as scale increased, the scale space representations produced
using QS visually exhibit significantly better structural localization
at all scales when compared to PM, CA, GI, and BS. Furthermore,
based on the results for both noise levels, QS is noticeably less sen-
sitive to the presence of noise across all scales than all four com-
pared methods. This phenomenon is most noticeable in the high
noise scenarios (r ¼ 40%) of Figs. 10 and 12, where no noise arti-
facts are present at the coarser scales in the representations pro-
duced using QS. The low noise sensitivity and high structural
localization of QS is further reinforced by the edge strength maps,
which noticeably fewer noise artifacts and better localized edges
when constructed using QS than those constructed using PM, CA,
GI, and BS.
ea-ice image, as in Fig. 13. Observe the improved preservation of leads (thick dark
preservation is particularly visible in the edge strength map produced using the QS
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6.2. Experiment 2: clinical MR and SAR sea-ice imagery

In the second set of experiments, shown in Fig. 13 and 14, the
scale space representations of real clinical MR and SAR sea-ice
imagery is studied. This set of experiments is designed to investi-
gate the effectiveness of the various scale space frameworks in
decomposing complex real-world structures under real-world
noise scenarios. As with the first set of experiments, the scale space
representations constructed using QS provide noticeably superior
structural localization at all scales. This phenomenon is particu-
larly noticeable in the SAR sea-ice imagery, where the structure
of the leads and ridges are better localized and preserved at all
scales when compared to the other tested frameworks.

7. Conclusions and future work

In this paper, a novel scale space framework based on Bayesian
estimation theory was introduced. The formulation of the scale
space decomposition problem as a general Bayesian least-squares
estimation problem was presented. The limitations associated with
existing scale space frameworks pertaining to structural localiza-
tion and noise were addressed by solving the estimation problem
using a quasi-random density estimation approach based on objec-
tive functions that promote structural localization. The application
of the proposed scale space framework for the purpose of edge
detection was described. Finally, experimental results demon-
strated the proposed scale space framework’s ability to produce
scale space representations with superior structural localization
when compared to state-of-the-art scale space frameworks, even
under high noise levels.
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