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In a typical surveillance installation, a human operator has to constantly
monitor a large array of video feeds for suspicious behaviour. As the num-
ber of cameras increases, information overload makes manual surveillance
increasingly difficult, adding to other confounding factors such as human
fatigue and boredom. The objective of an intelligent vision-based surveil-
lance system is to automate the monitoring and event detection compo-
nents of surveillance, alerting the operator only when unusual behaviour
or other events of interest are detected. While most traditional methods for
trajectory-based unusual behaviour detection rely on low-level trajectory fea-
tures such as flow vectors or control points, this paper builds upon a recently
introduced approach that makes use of higher-level features of intentional-
ity. Individuals in the scene are modelled as intentional agents, and unusual
behaviour is detected by evaluating the explicability of the agent’s trajec-
tory with respect to known spatial goals. The proposed method extends the
original goal-based approach in three ways: first, the spatial scene structure
is learned in a training phase; second, a region transition model is learned
to describe normal movement patterns between spatial regions; and third,
classification of trajectories in progress is performed in a probabilistic frame-
work using particle filtering. Experimental validation on three published
third-party datasets demonstrates the validity of the proposed approach.
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analysis, anomaly detection

1. Introduction

Intelligent surveillance is an application of computer vision that has at-
tracted much research interest in recent years. Video surveillance systems
have played an increasing role as tools for preventing and investigating crime,
protecting public safety, and safeguarding national security. However, the
operation of these systems presents significant challenges.

In a typical surveillance setting, a human operator has to constantly
monitor a large array of video feeds for suspicious behaviour. In many cases,
there are more cameras than screens, requiring the cameras to be cycled
through the screens. As the number of security cameras increases, informa-
tion overload makes the task of detecting occurrences of suspicious behaviour
increasingly difficult, adding to other confounding factors such as human fa-
tigue and boredom [1, 2]. These conditions make surveillance challenging in
large installations such as airports.

The objective of an intelligent surveillance system is to minimize the in-
volvement required of the human operator. The system should automate the
monitoring and event detection components of video surveillance, alerting
the operator only when unusual behaviour or other events of interest are
detected. The general framework of intelligent surveillance comprises sev-
eral stages: environment modeling, motion detection, object classification,
tracking, behaviour understanding and description, and possibly personal
identification [3]. An alternative formulation identifies the similar stages of
low-level image processing, tracking, and high-level scene and/or behaviour
analysis [1]. This work is concerned with the stage of high-level scene and be-
haviour analysis (i.e., behaviour understanding and description in the former
framework), and more specifically, with the detection of suspicious behaviour
given trajectory data from the tracking stage.

As described in Section 2, there are several methods in the literature
for detecting unusual behaviour based on trajectories. However, most of
these methods use low-level features such as flow vectors (vectors containing
position and velocity data) or control points (e.g., for a spline), and ignore the
fact that the trajectories are generated by humans with specific intentions
and objectives. Recently, a novel approach that makes use of higher-level
features of intentionality was proposed by Dee and Hogg [4, 5, 6]. Dee and



Hogg introduced the idea of modelling individuals in the scene as intelligent
agents instead of simply “objects”. Detection of unusual behaviour then
becomes a task of evaluating the goal-directedness of an agent’s behaviour -
in other words, the explicability of the trajectory with respect to the known
spatial goals in the scene.

This paper builds upon Dee and Hogg’s goal-based paradigm and extends
it in three ways: first, the spatial scene structure is learned in a training
phase; second, a transition model that describes normal agent movement
between spatial regions is learned; and third, trajectories in progress are
classified in a probabilistic framework using particle filtering. Both Dee and
Hogg’s method and the proposed method naturally evaluate trajectories in
progress (i.e., partial trajectories), allowing unusual behaviour to be detected
as it is occurring instead of only after it has completed.

The rest of this paper is organized as follows. Section 2 provides an
overview of related work in trajectory-based unusual behaviour detection.
Section 3 describes the proposed method. Section 4 reports the results of
experiments conducted on three published third-party datasets. Discussion
and limitations are presented in Section 5. Finally, conclusions and directions
for future research are outlined in Section 6.

2. Related work

This paper focuses on the high-level scene and behaviour analysis stage in
the intelligent video surveillance framework, which takes as input the results
of the object tracking stage [1, 3]. Object tracking is a challenging problem,
especially in the presence of occlusion, noise, camera motion, and changes in
illumination [7]; however, tracking issues are beyond the scope of this work.
The interested reader is referred to the review by Yilmaz et al. [7] for a
comprehensive treatment of the state-of-the-art in object tracking.

Several researchers have proposed trajectory-based methods for recogniz-
ing unusual behaviour patterns in a surveillance context. In most surveillance
scenarios, to learn explicit models for all forms of suspicious behaviour is im-
practical. The more realistic approach, and the approach adopted by the
methods described in this section, involves learning what constitutes normal
behaviour in a particular scene, and then classifying new observed behaviours
based on how novel they are with respect to the learned model. The meth-
ods described in this section perform online behaviour analysis, instead of
identifying instances of unusual behaviour given an entire video sequence.



Algorithms of the latter type [8] may be useful for post-event offline analysis;
however, they are not suitable for real-time surveillance.

Johnson and Hogg developed one of the earliest works in trajectory-based
detection of unusual behaviour [9]. Johnson and Hogg represented an object’s
trajectory using a sequence of flow vectors, which consist of the object’s in-
stantaneous position and velocity in the image plane. Clustering is performed
on training flow vectors using a competitive neural network. The output of
this network is input to a layer of leaky neurons. The leaky neurons retain a
short-term memory of activation, allowing partial trajectory information to
be encoded. The partial trajectories, as represented by the outputs of the
leaky neuron layer, are then clustered using a second competitive neural net-
work. In this way, clusters of normal instantaneous movements and partial
trajectories are learned.

Owens and Hunter proposed a method for detecting unusual trajecto-
ries in greyscale surveillance video [10]. The authors build on the flow vec-
tor representation, adding second order information and applying temporal
smoothing to encode a short-term history of motion. A self-organizing map
neural network is used to learn normal trajectories. To classify the novelty of
an observed feature vector, the Euclidean distance is calculated between the
observed vector and the prototype vector of the winning neuron when the
observed vector is input to the self-organizing map. If the distance is above
a threshold, then the observed vector is classified as unusual.

Stauffer and Grimson performed online k-means clustering on flow vec-
tors augmented with object size information [11]. The joint co-occurrence
statistics of the prototypes are used to learn a hierarchical classifier of trajec-
tories. The novelty of a trajectory is determined based on the novelty of the
constituent augmented flow vectors and the overall co-occurrence statistics.

Hu et al. developed a combined tracking and behaviour understanding
system [12]. Trajectories are represented by sequences of “point feature vec-
tors”: flow vectors augmented with size information. Training trajectories
are clustered using fuzzy k-means clustering in a two-stage approach. The
first stage clusters trajectories based on only spatial information. Trajecto-
ries are resampled and linearly interpolated to obtain the fixed-length vectors
needed for clustering. The number of clusters k is determined by finding a
local optimum of the Tightness and Separation Criterion [13]; however, if
the number of samples in a cluster falls below a fixed threshold, the cluster
is merged with its closest neighbour in the feature space. The second stage
adds temporal information (velocities in the point feature vector) to further
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cluster the trajectories within the clusters found by the first stage. The
output of this two-step clustering is cluster prototypes that are represented
using “motion patterns”. Each motion pattern is a sequence of Gaussian
distributions. To learn these Gaussian distributions, each trajectory belong-
ing to the cluster is uniformly partitioned using a common width, and point
feature vectors falling into each partition are used to learn a Gaussian dis-
tribution corresponding to that partition. The probability of a point feature
vector given a Gaussian distribution is then defined as a function of its Ma-
halanobis distance to the distribution. During system operation, a trajectory
in progress is classified as normal or unusual by finding the motion pattern
with maximum posterior probability, and then calculating the probability of
the current point feature vector given this motion pattern. If this probabil-
ity remains low enough for several frames, then the trajectory is flagged as
unusual.

Makris and Ellis proposed an algorithm in which normal trajectories are
learned by presenting training trajectories in sequence and comparing them
to the current prototype trajectories, or “routes” [14]. A route is modelled
using a pair of entry and exit points, a central axis consisting of control points,
and an envelope describing deviation from the axis. A training trajectory is
assigned to the closest route according to a maximum separation distance
measure, and the parameters of the matched route are updated based on the
trajectory. If no route is sufficiently close, a new route is created. As training
progresses, routes may be merged or split according to maximum separation
distances. In later work, the authors improved the learning and modelling
of entry and exit regions using 2-D Gaussian mixture models, and detected
unusual trajectories using hidden Markov models (HMMSs) [2].

Fernyhough et al. represented an object’s trajectory using the convex hull
of the object over time, partitioned according to the object’s position sampled
at regular time intervals [15]. Like Makris and Ellis [2, 14], prototype paths
are learned by presenting training trajectories in sequence and updating the
parameters of the matching prototype. Trajectories are then used to learn
qualitative event sequences, where an event refers to a spatial interaction
between two objects as defined by relative position and direction of motion
(e.g., “following” or “travelling alongside left”) [15].

Piciarelli and Foresti [16] took a similar approach to Makris and Ellis [2,
14] and proposed an online clustering algorithm for trajectories in which
cluster prototypes consist of a sequence of points and local variances from
those points. The distance from a trajectory to a cluster is defined as the
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mean normalized Euclidean distance between a point in the trajectory and
the nearest point in the prototype within a sliding window. Clusters are
organized in a tree structure and continually updated, split, and merged as
tracking observations arrive. Accumulated frequency information is used to
calculate the likelihood of an observed trajectory and decide whether it is
normal or unusual.

In a later work, Piciarelli et al. proposed using a single-class support
vector machine (SVM) to detect unusual trajectories [17]. Trajectories are
subsampled into fixed-length vectors for training and classification. Outliers
are detected and removed from the SVM training set based on the change
in the hypervolume in SVM feature space containing the training samples as
samples are removed: the hypervolume should shrink more markedly when
removing outliers than normal trajectories.

Junejo et al. clustered raw trajectories using a min-cut graph algo-
rithm [18]. Nodes in a fully connected weighted graph correspond to trajecto-
ries, and edges are weighted by the Hausdorff distance between trajectories.
Each cluster is represented by a prototype trajectory and an envelope based
on the maximum spatial deviation from the prototype. In addition, represen-
tative velocities and curvatures are modelled by fitting Gaussian distributions
to the instantaneous velocities and curvature measures in the cluster’s tra-
jectories. An observed trajectory is classified as unusual if, for every learned
cluster, the observed trajectory is sufficiently different in terms of spatial
extent, velocity, or curvature.

Naftel and Khalid represented trajectories using function approximations,
including least square polynomial, Cheybyshev polynomial, and Discrete
Fourier Transform [19]. Trajectories are compared using their Euclidean
distance in the coefficient feature space. Training trajectories are clustered
using a self-organizing map neural network followed by an agglomerative hi-
erarchical clustering step. An observed trajectory is classified as unusual if
its Mahalanobis distance to the nearest cluster is sufficiently large according
to a T? statistic test.

Sillito and Fisher proposed a semi-supervised method for learning normal
trajectories and detecting unusual behaviour [20]. A trajectory is represented
by the control points of an approximating cubic spline, plus the elapsed time.
During the training phase, a one-class classifier based on a Gaussian mixture
model is incrementally learned. The incremental learning is semi-supervised:
when a training trajectory is classified as unusual by the mixture model
learned so far, the human operator is prompted to decide whether or not the
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trajectory is normal. Training trajectories that are classified as normal by
the model learned so far do not trigger human intervention. A trajectory is
classified as unusual if its Mahalanobis distance to the closest component of
the Gaussian mixture model exceeds a threshold conditioned on the number
of samples used to train the mixture model.

Most of the previous approaches to trajectory-based detection of unusual
behaviour rely on low-level trajectory features such as flow vectors or control
points. As a result, they ignore the fact that the trajectories are generated
by humans with specific goals and intentions. No attempt is made to model
the higher-level psychology of the individuals in the scene, which could be
instrumental in the task of detecting unusual behaviour. In contrast, Dee
and Hogg’s recent goal-based approach makes use of higher-level features of
intentionality [4, 5, 6]. Individuals in the scene are modelled as intelligent
agents instead of simply “objects” [4, 5, 6], and trajectories are evaluated
based on their explicability with respect to known spatial goals. The greater
the goal-directedness of a trajectory, the more likely it represents normal
behaviour. In [4], the goal-directedness of a trajectory is determined by
the degree to which its constituent flow vectors are geometrically oriented
towards spatial goals and subgoals, taking manually specified obstacles into
account. Dee and Hogg later extended this work to incorporate two human
navigational strategies: shortest path and simplest path [5]. The shortest
path to a goal is the one that minimizes total travel distance; the simplest
path minimizes the total number of subgoals, or changes in direction. An
observed trajectory is compared with the shortest and simplest paths to all
possible spatial goals. A monotonic Hausdorff distance measure is used to
determine the closest simplest or shortest path, and the goal-directedness of
the observed trajectory is determined by the angular disparity between the
observed trajectory and this ideal path. In a later work [6], a weighted sum
of Euclidean distance and angular disparity is used as the distance measure,
with point correspondences found using dynamic programming.

3. Proposed method

This work builds upon the goal-based framework of Dee and Hogg [4, 5, 6]
in three main ways.

First, as described in Section 3.1, the proposed method learns a spatial
scene model in a training phase. Dee and Hogg’s scene model comprises
goals, which correspond to exit regions, and subgoals, which correspond to



intermediate turning regions induced by the obstacles in the scene. Dee and
Hogg’s obstacles are manually specified using a polygon model, and subgoals
are recursively calculated based on tangential obstacle vertices assuming lin-
ear travel from one subgoal to the next. An advantage of their approach is
that learning subgoals requires no training. However, the manual annota-
tion of polygonal obstacle models for every scene is time-consuming from a
usability perspective and may be subject to bias. The proposed method’s
automatic learning of spatial regions in the scene reduces the human involve-
ment required in training the system, at the cost of losing the ground-truth
accuracy of a manually specified obstacle map.

Second, as described in Section 3.2, the proposed method learns a transi-
tion model that describes normal agent movement between spatial regions. In
particular, the relative frequency of region transitions and the normal speeds
of travel between regions are encoded. These additions incorporate richer
semantic information about the scene and extend the scope of the types of
unusual behaviour that the system can detect. For example, an agent us-
ing a common spatial route but moving at an unusually high speed may be
identified as behaving unusually.

Third, as described in Section 3.3, the proposed method classifies tra-
jectories in progress in a probabilistic framework using particle filtering.
The probabilistic approach is novel with respect to the original goal-based
method. Particle filtering is a well-established method for probabilistic rea-
soning over time. The framework allows the proposed method to efficiently
maintain multiple hypotheses about the goals of the agents in the scene over
time, and offers a natural way to integrate the learned transition model.

3.1. Learning the scene structure

The proposed method models the spatial scene structure using three sep-
arate Gaussian mixture models (GMMs) learned from the training trajecto-
ries: one GMM each for the sets of all entry points, all turning points, and all
exit points. The entry, turning, and exit points are 2-D coordinates, so each
mixture component is a 2-D Gaussian distribution. The GMMs are fit to
the training data using the Expectation Maximization (EM) algorithm [21].
Learning of the scene structure is performed in an offline training phase and
is not updated online during system operation.

Modelling entry and exit regions using GMMs has precedent in the works
of Makris and Ellis [2, 14] as well as Dee and Hogg [4, 5, 6]. In addition,
McKenna and Nait Charif proposed modelling entry, exit, and inactivity
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regions using GMMs for the detection of unusual inactivity in a supportive
home environment for seniors [22]. Falls in the home are inferred by prolonged
inactivity in an area that is not a normal inactivity region. In the context of
tracking people in crowded scenes, Ali and Shah modelled regions of interest
using floor fields from evacuation dynamics [23]. Attractive regions, such as
exit regions and densely travelled paths, are captured in a static floor field;
repulsive regions, such as walls and opposing crowd flows, are captured in a
boundary floor field.

Entry and exit points are straightforward: these are simply the first and
last points in the trajectories. Turning points refer to locations at which
agents make significant changes in direction, such as at road bends or inter-
sections. To robustly detect turning points at varying scales, the proposed
method adapts an existing algorithm from the image processing literature.
Many image processing researchers have worked on the problem of detecting
corners in curves, which in the context of the proposed method corresponds to
detecting turning points in trajectories. Curvature scale space (CSS) [24, 25]
is one popular tool for detecting corners at varying scales. CSS methods find
candidate corner points by smoothing the curve at different scales, typically
by convolving the curve with Gaussians of different standard deviations, and
finding local maxima of curvature. The curvature x at a point P is defined
as the differential change in the angle 1) with respect to arclength s at that
point [25]:

dip
k= (1)
where 9 is the angle subtended by the tangent at P with the x-axis. Given
a curve in the spatial plane, denoted in parametric form (x(s),y(s)), the
curvature can be calculated by [25]

2(s)i(s) — i(s)y(s)
= 2
@G ) 2
where #(s) and (s) denote the first derivatives of z and y, and #(s) and

j(s) denote the second derivatives. The curvature of a curve smoothed by a
Gaussian with standard deviation o can be calculated by [24, 25]

i‘S(S,U)ys(S,U) B j5(870-)95(370-) (3)
(#3(s,0) +92(s,0))?

After finding the candidate corner points, different CSS methods use varying

techniques for identifying and removing false corners.

K(s,0) =
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The proposed method adapts He and Yung’s CSS corner detector [26],
which removes false corners based on an adaptive threshold and a dynamic
region of support. He and Yung’s CSS corner detector normally removes
wide, or “rounded”, corners from consideration by using an adaptive local
threshold. However, in the case of the proposed method, wide turns are valid
and should be kept. This modification is easily achieved by setting He and
Yung’s constant C' to 1 (as pointed out in Section 3.1 of [26]). The rest of
He and Yung’s CSS corner detector is unmodified.

For Makris and Ellis [2, 14] as well as Dee and Hogg [4, 5, 6], the number
of entry and exit regions, and hence the number of mixture components in
the GMMs, is manually specified. The proposed method reduces the human
involvement required to train the system by automatically determining an
appropriate number of mixture components using the Bayesian Information
Criterion (BIC) [27]. The automatic estimation of an appropriate number
of mixture components is especially important for fitting the turning region
GMM, as this information would be difficult to obtain a priori in most prac-
tical settings.

BIC is a penalized likelihood criterion used for model selection. In gen-
eral, when fitting a model to training data, the likelihood of the training
data can be increased by increasing the model’s complexity in terms of the
number of model parameters. However, as the number of parameters in the
model increases, so does the risk of over-fitting the data. The purpose of a
penalized likelihood criterion is to penalize model complexity (large numbers
of parameters) [28].

BIC can be applied to determine an appropriate number of components
for a GMM. The BIC value is evaluated for candidate models with varying
number of mixture components, and the model corresponding to the maxi-
mum BIC value is selected. In the case of the proposed method, GMMs are
fit to the data (entry points, turning points, or exit points) with incremen-
tally increasing number of mixture components, and the model corresponding
to the first local maximum BIC value is selected. GMM selection based on
the maximum BIC value has been previously used in the pattern recognition
literature with success [29].

Figure 1 illustrates the overall scene modelling approach on sample train-
ing sets from Piciarelli et al.’s synthetic dataset [17], Dee and Hogg’s carpark
dataset [4, 5, 6], and Naftel and Khalid’s laboratory dataset [19]. The train-
ing trajectories are overlaid in gray. Entry, turning, and exit points are
indicated by blue, green, and red points respectively. The asterisks denote

12



1600
1400
1200
1000}
800f
600
4001

200} ¢

-200 0 200 400 600 800 50 100 150 200 250 300
X X

(c) (d)

Figure 1: Sample learned scene models for training sets from (a, b) Piciarelli
et al.’s synthetic dataset [17]; (c¢) Dee and Hogg’s carpark dataset [4, 5, 6];
(d) Naftel and Khalid’s laboratory dataset [19]. Entry, turning, and exit
points are indicated by blue, green, and red points respectively. Asterisks
denote the component means of the entry, turning, and exit GMMs.
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the mixture component means of the entry, turning, and exit GMMs.

In the current implementation, all training trajectories are assumed to
correspond to normal behaviour. However, in future work, investigating ways
to automatically detect and remove outlier trajectories from the training set
will be valuable.

3.2. Learning a region transition model

To encode information about travel patterns between entry, turning, and
exit regions, a transition model is learned in terms of region-to-region seg-
ments, which will be referred to as path segments. For example, if an agent
enters the scene at entry region 1, proceeds to turning region 5, continues
to turning region 7, and finally exits at exit region 10, then the agent tra-
verses the path segments 1-5, 5-7, and 7-10. The transition model is used to
predict the next path segment that the agent will choose upon arriving at
his/her current destination region. As will be discussed in Section 3.3, this
prediction does not have to be made deterministically: it can be made proba-
bilistically in a particle filtering framework, which allows multiple hypotheses
to be efficiently maintained and evaluated.

To keep the prediction tractable, the Markov assumption is made: the
current state depends on a finite history of previous states [21]. The pro-
posed method adopts the transition model for a simple second-order Markov
process. In other words, the probability of an agent choosing a particular
path segment depends only on the current and the previous path segments.

The path segment transition probabilities are estimated by performing
frequency counting on the training trajectories. As an extremely simple
example, suppose there are five training trajectories. A training trajectory
contains an entry point, an exit point, and zero or more turning points, each
of which can be associated with one of the learned regions in the scene model
as described in Section 3.1. Call the sequence of regions corresponding to
these significant points the region sequence of the trajectory. Recalling the
previous example of an agent traversing regions 1, 5, 7, and 10, the region
sequence of that trajectory would be 1-5-7-10. Suppose the five training
trajectories have region sequences of 1-5-7-10, 1-5-7-10, 1-5-7-9, 1-3-7-10,
and 1-3-7-9. The resulting transition model would estimate the conditional
probability of an agent choosing to take path segment 7-10 to be ?/3 given
that the current path segment is 5-7 and the previous path segment is 1-5;
or to be '/, given that the current segment is 3-7 and the previous path
segment is 1-3. A null region is used as necessary if there is no previous or
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current path segment: for example, the conditional probability of an agent
choosing to take path segment 1-5 is 3 /5 given that the previous and current
path segments are both null.

The mean and standard deviation of agent speeds are also calculated for
travel within each path segment. To reduce the effect of noisy outliers due
to tracking errors, the top and bottom 5% of speeds are removed before cal-
culating the mean and standard deviation measures. This speed information
is used in the inference engine described in the following section, and will be
referred to as the speed model. The purpose of calculating speed statistics
on a per path segment basis instead of globally is to allow for the possibility
of different speed expectations in different parts of the scene; that is, normal
speed behaviour may be non-stationary in the scene.

3.3. Classifying trajectories in progress

Particle filtering is a well-established and efficient algorithm for proba-
bilistic reasoning over time. We review it briefly here; the interested reader
is referred to more complete treatments of the topic in [21] and [30], from
which most of the following discussion is based.

The objective of a probabilistic filtering algorithm is to compute the belief
distribution: the posterior probability distribution over the current state,
conditioned on all observations so far: bel(z;) = p(x¢|z1.4). The particle
filtering algorithm approximates the belief distribution using a finite number
of samples, referred to as particles, drawn from the belief distribution. Each
particle encapsulates an instantiation of the state. A particle can also be
interpreted as a hypothesis about the true state [30]. This sample-based
representation of the belief gives the particle filtering algorithm the flexibility
to approximate arbitrary, multi-modal belief distributions, as well as handle
complex, non-linear state transitions over time.

The particle filtering algorithm is summarized in Table 1. Two steps are
involved in each iteration: a prediction step and a correction step. In the
prediction step, the particles are propagated forwards according to the state
transition model p(x¢|z;—1). In addition, a weight or importance factor is
computed for each particle. The weight of a particle is given by its obser-
vation likelihood p(z|x;). Next, in the correction step, the observation is
incorporated by resampling the particles based on the computed weights: a
new particle set is created by drawing particles with replacement, in which
the probability of a particle being drawn is proportional to its weight. The
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Table 1: An iteration of the particle filtering algorithm [21, 30]

Inputs: particle set X; 1, observation z; (¢ is the time index)
Denote the number of particles in the particle set as M.
for each particle z!_, € X; ; do
Sample @ ~ p(z¢|z,—1) '
Calculate particle weight w' = p(z|;)
end for
Create X; by drawing (with replacement) M particles, in which the prob-
ability of drawing particle 7 is proportional to w!
return X,

new particle set contains the same number of particles as the original particle
set and is not weighted.

The particle filtering algorithm and its variants have been applied suc-
cessfully in a variety of computer vision domains, including in object track-
ing [31, 32, 33], as well as in robotics for simultaneous localization and map-
ping [34, 35].

In the proposed method, the state x; at time t consists of the agent’s
position s;, speed v;, current path segment el, current path segment end
position d;, and previous path segment e}:

T
Ty = (St7 Ut etla dt7 62) <4>

Recall that a path segment is defined by a start region and an end region. The
specific role of the current path segment end position d; is discussed later in
the description of the state transition model, but intuitively it represents the
location within the current path segment’s end region to which the agent is
predicted to be heading. Agent velocity is implicit given the speed: following
Dee and Hogg’s goal-based paradigm, the agent is assumed to travel linearly
between regions. This linearity assumption might seem restrictive at first
glance, but at least three reasons can be given for its validity. First, the
turning points by definition capture significant changes in direction; hence,
travel between pairs of entry, turning, or exit points should be reasonably
linear. Second, transportation research suggests that shortest distance and
fewest turns are among the top path planning strategies for humans [5, 6].
Third, the incorporation of a process noise covariance in the state transition
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model accounts for small deviations from linear travel.

The state transition model p(z;|z;—1) is defined as follows; a summary in
flowchart form can be found in Figure 2. If the distance to the path segment
end position d;_; is greater than the speed v, ; (in distance per time step),
the new position s; is calculated by projecting the particle a distance of
vi—1 towards d;_;. Otherwise, the current path segment is completed and
the next path segment is sampled according to the path segment transition
model, conditioned on the current and previous path segments e; ; and e}_;.
Note that this sampling involves selecting both a path segment and a path
segment end position. The end position is sampled based on the GMM
component of the selected path segment’s end region. Hence, €}, ¢}, and d;
are all updated. Any remaining speed is then used to project the particle
towards d;. When updating the position s; in either case, random zero-mean
Gaussian noise based on a process noise covariance R is added to s;, to
account for deviations from the linear travel assumption.

The speed v; is sampled from the learned speed model conditioned on the
current path segment e}. Recall that the speed model specifies the mean and
standard deviation of travel speed for each path segment. The speed is sam-
pled from the Gaussian distribution with this mean and standard deviation.

Any state variables that are not explicitly changed as indicated above
remain unmodified by the state transition.

The particle weights are assigned according to the observation likelihood
function p(z|s¢) = N(0,Q), where @ is the measurement noise covariance. In
the current implementation, the measurement noise covariance is set empir-
ically. The notation N(u,X) refers to the Gaussian probability distribution
with mean p and covariance .

An observed trajectory in progress is classified as unusual if the maximum
observation likelihood (or particle weight) in the particle set falls below a
threshold. This threshold can be adjusted to shift the balance between false
negatives and false positives, and is varied in the experiments to generate the
Receiver Operator Characteristic (ROC) curves. To select an appropriate
threshold in practice, the human operator can generate an ROC curve by
running experiments similar to the ones described in Section 4 before system
operation. The threshold corresponding to the desired performance measure
(e.g. 95% detection rate) can then be used. An interesting direction for
future study would be the online adaptation of the threshold based on human
operator feedback during system operation; such a mechanism would require
less human involvement in setting up the system.
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The state variables are initialized to
the previous values (time t-1)

Distance to path segment
end position d;.; greater than

Project particle to d;.;

v

Sample next path segment elt
according to path segment transition
model (Section 3.2)

!

Sample next path segment end region

d; based on elt and scene model
(Section 3.1)

I

Project particle towards d;
with remaining speed

Project particle a distance of
vi.1 towards di.q

Sample next speed v;
according to speed model
(Section 3.2)

End

Figure 2: Summary flowchart of the state transition model p(z¢|z;—1). The
state transition model governs the forward propagation of particles in the
prediction step of particle filtering.
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The inference is initialized as follows. The starting point of the trajectory
is classified into one of the entry regions according to the learned entry model.
Specifically, a Maximum a Posteriori (MAP) classification is performed on
the starting point to determine the appropriate mixture component in the
entry GMM. A MAP classifier selects the most likely class (in this case, a
component of the entry GMM) given a data point. More formally, the MAP
classification rule can be stated as follows:

Assign data point x to class C; iff

P(Cilz) > P(Cjlx) Vj,i# ()
Using Bayes’ rule, this condition is equivalent to
p(x[C) P(C;) > p(x|Ci)P(C)) Vji# ] (6)

which can be readily evaluated according to the learned GMM.

To enforce the spatial constraints of the entry regions, a trajectory is
immediately flagged as unusual if the Mahalanobis distance between the
starting point and the MAP-classified entry region exceeds 4 (intuitively,
the entry point is more than 40 from the mean of the entry region Gaus-
sian). Otherwise, the particle set is created and uniformly initialized to
el = (null, i), e’ = (null,null),d = (entry point), s = (entry point),v = € (where
€ is a very small positive value). This initialization causes the particle fil-
ter to sample the path segments starting from the entry region in the first
iteration.

If the trajectory is still classified as normal by its conclusion, then the
exit point is also checked for consistency with the spatial constraints of the
exit regions. If the exit point is not within a Mahalanobis distance of 4 of an
exit region represented in the particle set, then the trajectory classification
is changed to unusual.

3.4. Summary

In summary, the proposed method learns context-specific patterns of nor-
mal behaviour from training trajectories. A spatial scene model consisting
of three GMMs is created: one each for all entry, all turning, and all exit
regions. BIC is used to determine an appropriate number of Gaussian com-
ponents in each GMM. Turning points are detected using a curvature scale
space corner detector. A transition model is learned to encode statistics of
travel between regions. During system operation, a probabilistic inference
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method using particle filtering is used to efficiently maintain multiple hy-
potheses about the goals of the agents in the scene. This framework is used
to classify trajectories in progress, allowing unusual behaviour to be detected
as it is occurring instead of only after it has completed.

4. Experimental results

The experimental validation of the proposed method aims to resolve two
main questions. First, can the proposed learning approach achieve the same
classification accuracy as the original approach that uses a manually specified
obstacle map? Second, can the goal-based method provide good classifica-
tion performance in comparison to traditional methods based on low-level
trajectory features?

The first question is addressed by validating the proposed method using
Dee and Hogg’s carpark dataset and comparing to prior results [6]. The
second question is addressed through experiments with Piciarelli et al.’s syn-
thetic dataset [17] and Naftel and Khalid’s real-world laboratory dataset [19].
Hence, all three datasets used in these experiments are published by third-
party researchers working on trajectory-based unusual behaviour detection.

In intelligent surveillance, the cost of missing a suspiciously behaving in-
dividual may be different from the cost of unnecessarily drawing the attention
of the human operator. Therefore, characterization of the trade-off between
false negatives and false positives is appropriate. Receiver Operating Charac-
teristic (ROC) curves, which plot the probability of detection (true positive)
Pp against the probability of false alarm (false positive) Pg, are used in the
reporting of experimental results for all three datasets.

4.1. Piciarelli et al.’s synthetic dataset [17]

Since instances of suspicious behaviour are uncommon in real-world data,
synthetic trajectory data are a good starting point for validation. Experi-
ments were conducted using the synthetic dataset published by Piciarelli et
al. in their work applying single-class SVM to detect unusual trajectories [17].

Piciarelli et al.’s synthetic dataset contains training and testing sets for
various combinations of the number of normal trajectory clusters (1 though
10) and the number of unusual trajectories (1 through 10). Figure 1 previ-
ously showed two sample training sets. The proposed algorithm is tested on
10 combinations, in which the number of normal trajectory clusters is var-
ied from 1 to 10 and the number of unusual trajectories is kept fixed at the
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Table 2: False alarm rates for 95% detection rate on Piciarelli et al.’s syn-
thetic dataset [17]

# normal trajectory clusters 1 2 3 4 )
False alarm rate for 95% detection | 0% | 0.2% | 0.1% | 1.5% | 0.3%
# normal trajectory clusters 6 7 8 9 10
False alarm rate for 95% detection | 0.1% | 0.7% | 0.3% | 0.2% | 1.8%

maximum 10. Since each combination is represented by 10 separate training
and testing sets in the synthetic dataset, the proposed method is tested on
a total of 100 training and testing sets.

Figures 3 and 4 shows the ROC curves for the ten combinations. A direct
comparison with Piciarelli et al.’s reported results is not strictly possible, as
their single-class SVM method includes a mechanism to detect and remove
unusual trajectories from the training set, whereas in these experiments only
the normal trajectories are used in training. Nevertheless, to provide a gen-
eral benchmark for performance, the experimental result reported by Picia-
relli et al. is indicated by an asterisk in the ROC plots. As of the time of
writing, no other papers appear to have used this dataset for validation.

Overall, the proposed method produces very encouraging classification
results. Table 2 lists the false alarm rates for a detection rate of 95%, for 1
to 10 normal trajectory clusters.

4.2. Naftel and Khalid’s laboratory dataset [19]

Further validation of the proposed method was performed using the real-
world dataset developed by Naftel and Khalid [19]. The trajectories in Naftel
and Khalid’s dataset are derived from video of people walking around their
laboratory. The dataset consists of 152 normal trajectories falling into four
pre-planned underlying classes and eight unusual trajectories.

The leave-one-out (or jack-knifing) technique [36] is applied to validate
this dataset. Only the normal trajectories are used in the training phase:
as mentioned in Section 3.1, all training trajectories are assumed to reflect
normal behaviours. Trajectories are pre-processed using a Kalman filter to
reduce the effects of tracker noise. On average, six entry regions, seven
turning regions, and five exit regions are learned in the scene model.

Figure 5 shows the ROC curve for this dataset. The proposed method
detects all unusual trajectories with eight false positives (5% probability of
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Figure 3: ROC curves for Piciarelli et al.’s synthetic dataset [17], varying
the number of normal trajectory clusters from 1 to 6 (a-f, respectively). The
experimental result reported by Piciarelli et al. is indicated by an asterisk.
For visual clarity, the axes have been zoomed in.
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Figure 4: ROC curves for Piciarelli et al.’s synthetic dataset [17], varying the
number of normal trajectory clusters from 7 to 10 (a-d, respectively). The
experimental result reported by Piciarelli et al. is indicated by an asterisk.
For visual clarity, the axes have been zoomed in.
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Figure 5: ROC curve for Naftel and Khalid’s laboratory dataset [19].

false alarm). In comparison, Piciarelli et al. also validated their method on
this dataset and reported detecting all unusual trajectories with only two
false positives [17]. Naftel and Khalid do not explicitly report the number
of false positives. Therefore, in comparison, the proposed method has a
higher tendency to issue false alarms on this dataset. However, the proposed
method can offer at least two advantages. Firstly, the proposed method is
able to evaluate trajectories in progress, enabling suspicious behaviour to
be detected as it is occurring instead of only after it has completed: both
Piciarelli et al.’s method and Naftel and Khalid’s method operate on complete
trajectories. Secondly, the proposed method’s goal-based approach allows
for more intuitive natural language description of observed behaviours (as
discussed later in Section 5). For example, an individual in the scene might
be described as “walking from the main entrance towards the work station”.

4.3. Dee and Hogg’s carpark dataset [4, 5, 6]

Since the proposed method is built on the foundation works of Dee and
Hogg, validation using the carpark dataset used by Dee and Hogg in their
experiments is appropriate. The carpark dataset is a challenging real-world
dataset in which, in contrast to Naftel and Khalid’s laboratory dataset, the
normal trajectories are completely unscripted. The dataset consists of 262
normal trajectories from surveillance video captured over an hour and six tra-
jectories of volunteers instructed to “behave in a suspicious fashion” though
without any knowledge of Dee and Hogg’s goal-based method of analysis [6].
Ground plane coordinates are used.
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Figure 6: ROC curve for Dee and Hogg’s carpark dataset [4, 5, 6].

The trajectories are subsampled at 3 frames per second and as in Dee and
Hogg’s experiments, smoothed using a Kalman filter to reduce the effects
of noise. Manual editing of trajectories to correct tracking errors was not
performed as in [4, 5, 6], reducing the human involvement required to train
the system. Similar to the Naftel and Khalid dataset, the leave-one-out
technique is applied and only the normal trajectories are used in the training
phase. On average, seven entry regions, nine turning regions, and eight exit
regions are learned in the scene model.

Figure 6 shows the ROC curve for this dataset. Besides Dee and Hogg,
the carpark dataset has also been used for experimental validation by Sillito
and Fisher [20]. Sillito and Fisher’s work was described earlier in Section 2.
The proposed method detects all unusual trajectories with 22% probability
of false alarm, which is comparable to both Dee and Hogg’s method [6] and
Sillito and Fisher’s method [20] (approximately 25% and 24%, respectively).

5. Discussion and limitations

The results of the carpark experiments indicate that the performance of
the classifier depends on the completeness of the training set. In many cases,
the false positives correspond to trajectories that do appear novel with re-
spect to the rest of the carpark dataset. If the training samples are not
sufficiently representative of the types of behaviour that should be consid-
ered normal, then the system is likely to issue false alarms. This limitation

25



pertains to any machine learning or pattern recognition algorithm that uses
exemplar-based learning.

One of the limitations of any trajectory-based method for unusual be-
haviour detection is that some forms of suspicious behaviour cannot be de-
tected using trajectory features alone. Events of surveillance interest such
as theft or abandoned baggage may not be accompanied by overall unusual
trajectories. Detecting these events or actions may require other techniques,
ranging from simple background subtraction [11] to specialized human action
recognition methods [37]. Trajectory analysis can still contribute in many
cases. For example, a common pattern seen with theft is that the perpe-
trator will approach the target, circle or examine it, and then retreat before
striking [1]. A robust intelligent surveillance system will likely require the
fusion of both trajectory and action analyses.

Developing and extending the goal-based paradigm has the potential to
open promising new avenues in intelligent surveillance research. For example,
researchers have recently started to focus on natural language description
of surveillance events [3]. The aim of this branch of research is to take the
results of the behaviour analysis and translate them into a form that a human
can readily understand. Traditional methods relying on low-level trajectory
features such as flow vectors or control points risk producing black-box results
that are not easy to interpret by human surveillance operators. On the other
hand, describing behaviour in terms of spatial goals is natural and intuitive
for humans. For instance, a human readily understands a statement such as
“The individual is walking from the main entrance towards the elevators.”
In contrast, to interpret an individual’s trajectory following a spline, set of
control points, or flow vectors is not easy.

The semantic-rich description of behaviour using goals is also useful for
content-based surveillance video retrieval [3]. A surveillance operator may
need to retrieve all instances of individuals entering a restricted zone or
leaving at a particular exit, for example.

Goal-based trajectory analysis has applications beyond intelligent surveil-
lance. Liao et al.’s work [38, 39] demonstrates the broader applicability of
this research in such areas as geomatics and intelligent transportation sys-
tems. Liao et al. applied a geographic goal-based approach to analyze user
trajectories at the city scale. Agent location is estimated using portable
GPS and motion is constrained to the streets in a street map. Probabilistic
inference is performed using Rao-Blackwellized particle filtering. The au-
thors envision their work to be applied in personal guidance systems and
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just-in-time transportation information services.

Goal-based trajectory analysis can also potentially be applied in the
evaluation of a designed space. Architectural assessment typically involves
analysing the paths people take with respect to design elements in the en-
vironment (e.g., fountains, walkways, steps). The task has traditionally re-
quired manual observation and annotation, but recently a system that incor-
porates simple computer vision tracking techniques has been proposed [40].

6. Conclusion and future work

Many traditional methods for trajectory-based unusual behaviour detec-
tion rely on low-level features such as flow vectors or control points. In con-
trast, Dee and Hogg’s goal-based approach models individuals in the scene as
intelligent agents with intentionality, and detects unusual behaviour by evalu-
ating the explicability of the agent’s trajectory with respect to known spatial
goals. The proposed method advances the goal-based framework in three
main ways: the spatial scene model is learned in a training phase; a region
transition model is learned to incorporate statistics of movement between
spatial regions; and trajectories in progress are classified in a probabilistic
framework using particle filtering. Experimental results on three datasets
published by third-party researchers in trajectory-based unusual behaviour
detection demonstrate the validity of the proposed approach.

In the present implementation, training trajectories are assumed to cor-
respond to normal behaviour. As future work, investigating methods to au-
tomatically detect and remove outlier trajectories from the training set will
be valuable. The incorporation of stopping regions in the scene model can
also be investigated: in many surveillance settings, constructing a map of
normal or expected stopping regions can provide useful scene knowledge [2].
For instance, in an outdoor courtyard individuals may be expected to loiter
at a fountain or on benches. Finally, the fusion of trajectory and action
recognition analyses is an important research direction in the long term for
robust behaviour analysis in intelligent surveillance systems.
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