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Abstract— A novel energy functional for automatic registration
of remote sensing imagery based on quasi-random scale space
structural correlation is presented. The structural correlation
energy functional takes advantage of the fact that for many types
of remote sensing imagery, there exists common structures at
different scales even if the acquired images have very different
intensity characteristics. The proposed energy functional also
takes advantage of the noise robustness and feature localization
properties of quasi-random scale space theory. An efficient
globally exhaustive optimization strategy in the frequency domain
is developed for registering remote sensing imagery based on the
proposed energy functional. Promising test results on interband,
intraband, and intermodal remote sensing image sets show that
the proposed method has the advantages of being robust to
differing sensing conditions and large misalignments.

Index Terms— registration, energy functional, quasi-random
scale space, structural correlation.

I. INTRODUCTION

Remote sensing image registration can involve images taken
at different times and/or captured using different sensors
and/or using different bands. Registration is of significant
value in remote sensing applications such as building extrac-
tion, environmental modeling, and change detection. Given a
pair of remote sensing images f and g, the underlying goal is
to determine the transformation T that brings f into alignment
with g such that the energy functional C is maximized

T ∗ = arg max
T

[
C
(
T [f ], g

)]
. (1)

To handle the different intensity characteristics of image
pairs acquired under different conditions, a class of algo-
rithms [1], [2] have been developed based on mutual infor-
mation (MI) [3], [4]. However, due to the presence of many
local optima on the convergence plane [5], converging to
the global optima using iterative optimization methods such
as conjugate gradient [6] and Nelder-Mead simplex [7] can
be difficult to achieve with a MI-based energy functional.
In response to these difficulties, energy functionals based on
intensity remapping such as correlation ratio [5] have been
proposed but are still sensitive to large initial misalignments.

Globally exhaustive search methods, on the other hand, are
not sensitive to local optima or to large initial misalignments,
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and a class of efficient frequency domain algorithms have been
proposed [8], [9], [10], [11], [12]. However, since most of
these methods are based on the conventional cross-correlation
as the energy functional, they are not well-suited to registering
remote sensing images acquired using different sensors and/or
different bands because such images may have very different
intensity characteristics.

To overcome this limitation of globally exhaustive search
methods, we propose a novel energy functional that fuses
structural correlation with quasi-random scale space the-
ory [13], which allows for robust registration of remote sensing
imagery acquired under different sensing conditions. The pro-
posed energy functional attempts to overcome the difficulties
faced when using cross-correlation by taking advantage of the
presence of common structures at different scales between
images that may have very different intensity characteristics.
Note that the proposed energy functional is designed to
take advantage of common structural characteristics between
images and may not be suitable for situations where little to no
common structures are captured between the acquired images.

Based on this energy functional, a globally exhaustive
optimization framework in the frequency domain is developed.
Although the optimization framework discussed in this paper
assumes rigid transformations (rotations and translations only),
the proposed energy functional can be applied in optimization
frameworks dealing with non-rigid transformations. Further-
more, achieving an accurate rigid registration between the
images under evaluation is an important first step in aiding
the subsequent non-rigid registration process [14], [15] to
converge to the correct solution.

To the best of the authors’ knowledge, this approach to
registration for remote sensing imagery has not been proposed
before, and presents a significant advancement in the capabil-
ities of efficient globally exhaustive search algorithms, since
other energy functionals such as correlation ratio and mutual
information cannot be performed exhaustively for all possible
rotations and translations in an efficient manner.

II. QUASI-RANDOM SCALE SPACE STRUCTURAL
CORRELATION ENERGY FUNCTIONAL

Remote sensing images taken under different sensing condi-
tions such as different sensors and different bands often have
very different intensity characteristics. An example of this is
shown in Fig. 1, where an optical/LIDAR image pair is shown.
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Fig. 1. In this example, the optical image (left) has very different intensity
characteristics than the LIDAR image (right) of the same area. As such,
a conventional cross-correlation approach would fail to register such an
image. However, the two images share a large number of common structures
at different scales, thus motivating the use of energy functionals that take
structural characteristics into account.

The underlying intensity characteristics of the optical image
differs significantly from that of the LIDAR image, making
the use of conventional cross-correlation ill-suited. However,
the image pair shares a large number of common structures
at different scales. Hence, we are motivated to design an
energy functional that captures the structural information as
the basis of registering the images so that we can take common
structural characteristics into account.

In most remote sensing imagery, the important structural
characteristics exist at a variety of different scales [16]. Thus,
an effective approach to capturing structural information would
be to decompose the image into the scale space domain, the
most popular form of which is the Gaussian scale-space [17].
However, the Gaussian scale space is limited by its sensitivity
to noise and poor structural localization [18], therefore to
overcome these limitations, Mishra et al. proposed a quasi-
random scale space theory [13], which is obtained as follows.

In scale space theory, an image I(s) is represented as a fam-
ily of M scale space representations L0(s), L1(s), . . . , LM (s)
representing image detail at different scales. As the scale
increases, more and more of the details contained within the
image becomes removed. Therefore, at lowest scale i = 0,
the scale space representation L0(s) is just the original image
I(s) and as such contains all of the fine details, while at
the highest scale i = M , the scale space representation
LM (s) consists of mainly the coarse, large scale details of the
original scene. This separation of detail amongst the family
of scale space representations allows us to identify structural
details that exist at the finer, smaller scales as well as at the
coarser, larger scales within the image, which is very important
for emphasizing common structures that exists between the
images under alignment. Unlike conventional multi-resolution
approaches where the resolution changes at each level, the
resolution is maintained at each level of the scale space
decomposition. Based on testing, a total of M = 5 scales
was used as it was found to provide the best results.

Let us now study the concept of scale space decomposition
from a mathematically perspective. Let L be a discrete lattice
with a set of sites S. Let the original scene I(s), the scale
space representation Li(s), and the residual fine scale structure

Ci(s) be random fields on s ∈ S, where the index i =
0, . . . ,M denotes the scale. Since more and more fine scale
structures are removed at each increasing scale, the scale space
decomposition is expressed in the recursion relation

Li−1(s) = Li(s) + Ci(s) for i = 1, . . . ,M. (2)

Starting with L0 = I(s), we formulate the computation of
each coarser scale Li as an inverse problem, where Li−1(s),
Li(s), and Ci(s) are the measurement, state, and noise respec-
tively. The Bayesian least-squares estimate for this problem is
given by

L̂i(s) = E[Li(s)|Li−1(s)] (3)

=

∫ ∞
0

p
(
Li(s)

)
p
(
Li(s)|Li−1(s)

)
dLi(s) . (4)

Since computing the posterior distribution p
(
Li(s)|Li−1(s)

)
is analytically intractable, a quasi-random estimation approach
is employed. In this approach, n quasi-random samples from
a Sobol sequence [19] are drawn with respect to site s at
scale i. A Gaussian mixture model is fitted to p(Li−1(s))
and those samples which fall within one standard deviation
of the nearest local maximum of p

(
Li−1(s)

)
are selected as

a realizable sample of p
(
Li(s)|Li−1(s)

)
. From the set Ω of

selected samples, the posterior distribution is estimated as

p̂(Li(s)|Li−1(s))

=
1

G
√
2πσLi

∑
k∈Ω

f1(k)f2(k)f3(k) exp

(
−

1

2

(
Li(s)− Li−1(sk)

σLi−1

)2)
,

(5)

where G is a normalization factor, and where f1(k), f2(k),
f3(k) are objective functions of sample relevance assessed by
intensity, gradient, and spatial offset respectively [13]. This
completes the computation of the scale-space estimates via
the method of Mishra et al. [13].

Next, given the scale space estimates Li(s), we suppress
the modality-specific intensity information and capture the
structural characteristics by computing the discrete derivative
magnitude of |∇i|2(s) at each scale,

|∇i|2(s) =

(
∂Li
∂x

)2

+

(
∂Li
∂y

)2

. (6)

Taking advantage of the fact that salient structural features
have strong responses across multiple scales [20], the quasi-
random scale space structural representation of the image is
given by

Q(s) =

[
M∑
i=1

αi|∇i|2(s)

] 1
2

, (7)

where the response at each scale is weighted by αi to
emphasize coarser scales as a way to suppress noise. Based
on testing, α = 2 was found to provide the best results.

After computing the quasi-random scale space structural
representations, Qf and Qg for the image pair f and g, the
quasi-random scale space structural correlation (QRSC) energy
functional C can be defined as

C(T [f ], g) =
∑
τ

Qf (T [τ ])Qg(τ). (8)
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A. Efficient Globally Exhaustive Optimization in the Fre-
quency Domain

In this section, we now develop an efficient globally ex-
haustive optimization framework in the frequency domain
based on the QRSC energy functional C introduced in Eq. 8.
Suppose we wish to find the rigid transformation that, when
applied to Qf , maximizes the energy functional in Eq. 8,
according to Eq. 1. The cross-correlation energy functional
can be efficiently maximized using the Fast Fourier Transform
(FFT) [8], [9], hence making this approach a good direction
to follow for the proposed optimization framework. Given two
images f and g, their quasi-random scale space structural
correlation energy functional at all integer shifts ∆x is found
by

Cf,g(x) =
∑
τ

Qf (τ −∆x)Qg(τ) (9)

= F−1
(
F{Qf}F{Qg}

)
, (10)

where F is the FFT operation and F{Q} denotes the complex
conjugate. Hence, for the space of possible rigid transforma-
tions, we can determine the maximum quasi-random scale
space structural correlation as a function of rotation θ, and
translation ∆x = [x, y] by decoupling the the rotational and
translational components.

First, let F and G be the Fourier coefficients of Qf and
Qg respectively. Since a rotation in the spatial domain is
equivalent to the same rotation in the frequency domain, we
would like to find the rotation θ∗ that, when applied to F ,
gives the greatest correlation with G.

To do this, we transform F and G into polar coordinates,
expressed as Fpol(θ, r) and Gpol(θ, r). To find the optimal
shift in the θ axis, we maximize the correlation between the
magnitudes |Fpol| and |Gpol| according to

{θ∗, r∗} = arg max
θ,r

{C|Fpol|,|Gpol|(r, θ)} , (11)

where C|Fpol|,|Gpol|(r, θ) can be computed for all possible
values of θ and r in a simultaneous manner according to
Eq. 10. Note that while both θ∗ and r∗ are found, only θ∗

is important for our purposes as the goal is to determine
the optimal rotation that brings the images into alignment.
Furthermore, due to the conjugate symmetry of the FFTs of
real-valued images Qf and Qg , both θ∗ and θ∗ + 180◦ are
possible maxima.

Next, we rotate Qf by θ∗ to obtain Q′f . Now, we compute
the optimal translation that brings Q′f into alignment with Qg
by maximizing the cross correlation

{x∗, y∗} = arg max
x∗,y∗

{CQ′f ,Qg
(x, y)}. (12)

Again, the quasi-random scale space structural correlation
energy functional CQ′f ,Qg

(x, y) can be computed globally
for all possible translations in a simultaneous manner using
Eq. 10. To deal with the fact that both θ∗ and θ∗ + 180◦

are possible maxima, this process is repeated for the case of
θ∗ + 180◦, and the rotation-translation combination that gives
the highest maximum value is chosen.

RS1: Interband test image pair: Band 3 and Band 5

RS2: Intraband test image pair: 2002/7/26 and 2002/7/17

RS3: Intermodal test image pair: LIDAR and optical

Fig. 2. Remote sensing test image pairs

III. RESULTS

To evaluate the performance of the proposed QRSC ap-
proach, automatic registration was performed on both inter-
band and intraband remote sensing image sets from the United
States Geological Survey (USGS), as well as optical-LIDAR
image sets from Intermap Technologies Inc. The first test pair,
RS1, consists of two images taken using different sensors on
different bands. The second test pair, RS2, consists of two
images taken by the same sensor on the same band on different
dates. The third test pair, RS3, consists of an aerial optical
image and a LIDAR image, and as such are acquired using
different sensing technologies:

1) RS1: Interband, Landsat-7 ETM+ Band 3 (GSD: 240m)
and Landsat 5 TM Band 5 (GSD: 240m), different dates.

2) RS2: Intraband, Landsat-7 ETM+ Band 3 (GSD: 240m),
taken on 2002/7/26 and 2002/7/17.
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3) RS3: Intermodal, aerial passive optical (GSD: 1m) and
LIDAR (GSD: 1m)

The images in RS1 and RS2 measure 740× 740 pixels while
the optical and LIDAR images in RS3 measure 902 × 1131
and 449 × 567 respectively, and are shown in Fig. 2. Each
image was distorted with 30 random rigid transformations,
with translations up to 50 pixels for RS1 and RS2, translations
up to 200 pixels for RS3, and rotations between 0◦ and 360◦

for all cases, giving us a total of 90 randomized tests. Since the
images are initially aligned, the gold standard transformations
are known for all tests.

For comparison, we also performed registration with GO-
EDGE [9], a state-of-the-art multimodal globally-optimal FFT-
based approach that was shown to provide superior perfor-
mance when compared to correlation ratio based methods
for large misalignments [9], and with normalized mutual
information [4] maximized with the Nelder-Mead simplex
method [7] as described in [2]. For QRSC, a total of M = 5
scales was used to represent the structural characteristics of
the images. The registration accuracy is determined by the
fiducial registration error (FRE), defined as the root mean
square distance between the fiducial points.

Since the images were originally aligned and the gold
standard transformations are known for all tests, a set of
60 fiducial points were randomly placed by the computer to
allow for a fair evaluation amongst different techniques, since
human placement of fiducial points could be prone to error in
this particular case and tend to be biased towards structured
landmarks such as road intersections and buildings and as such
may give an advantage to techniques that make use of structure
information. The choice of 60 fiducial points was considered
sufficient as they are based on unbiased computer placement
and are well spread out throughout the images.

Table I summarizes the results for the remote sensing test
pairs. In all three cases, QRSC has the greatest success rate,
resulting in the lowest average registration errors. Sample
results using QRSC are illustrated in Fig. 3 with the structural
representation of the left images overlaid on the transformed
images. Given the large number of randomized tests con-
ducted, a discussion of the dependence on the amount of
misalignment is important. The effect of different levels of
misalignment (defined here in terms of pixel displacement
from the true alignment) on the average FRE across all test
pairs was studied, as shown in Fig. 4. The FRE obtained using
the QRSC approach remained relatively stable as the amount
of misalignment increased, while the FRE obtained using
the other approaches increased significantly as the amount
of misalignment increased. This weak dependence of FRE
on the amount of misalignment is due to the fact that the
proposed approach employs an efficient globally exhaustive
optimization framework in the frequency domain based on
the QRSC energy functional, which is highly robust to the
presence of local optima that can have a tremendous effect on
registration performance for situations characterized by large
misalignments between the images.

Before registration After registration

RS1: Interband test image pair

RS2: Intraband test image pair

RS3: Intermodal test image pair

Fig. 3. Example of QRSC registration result for remote sensing image pairs.
The overlay shows the structural representation of the Band 3 image in the
(top row), the 2002/7/26 image in the (middle row), and the LIDAR image in
the (bottom row). Only a zoomed-in section of the results for RS3 is shown
for illustrative purposes to improve clarity.

TABLE I
FIDUCIAL REGISTRATION ERRORS (FRE) FOR REMOTE SENSING TEST

PAIRS. A TOTAL 30 RANDOMIZED TESTS WERE PERFORMED FOR EACH

TEST CASE.

Test FRE in pixels [mean / stddev]
QRSC GO-EDGE NMI

RS1 6.26/1.22 442/321 495/277
RS2 1.35/0.87 405/272 464/179
RS3 4.98/1.72 342/114 459/125
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Fig. 4. The effect of different amounts of misalignment on the average FRE
across all test pairs. The FRE obtained using the QRSC approach remained
relatively stable as the amount of misalignment increased.

IV. CONCLUSION

In this paper, we presented a novel quasi-random scale space
structural correlation energy functional for registering remote
sensing images acquired under different sensing conditions.
An efficient globally exhaustive optimization framework in the
frequency domain was also introduced based on the proposed
energy functional. It offers advantages in being suitable for
registering remote sensing images acquired at different times,
using different sensors, and/or at different bands, particularly
under large misalignments. Based on the results, this approach
shows great promise in allowing the use of efficient globally
exhaustive optimization methods for robust registration of
remote sensing imagery. Future work involves investigating the
design and incorporation of a non-rigid registration component
to the existing framework based on this energy functional.
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