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An automated registration system named AISIR (Automated inter-sensor/inter-band satellite image
registration) has been designed and implemented for the purpose of registering satellite images acquired
using different sensors and spectral bands. Sensor and environmental noise, contrast non-uniformities,
and inter-sensor and inter-band intensity mapping differences are addressed in the AISIR system. First,
a novel modified Geman–McClure M-estimation scheme using a robust phase-adaptive complex wavelet
feature representation is introduced for robust control point matching. Second, an iterative refinement
scheme is introduced in the AISIR system for improved control point pair localization. Finally, the AISIR
system introduces a robust mapping function estimation scheme based on the proposed modified
Geman–McClure M-estimation scheme. The AISIR system was tested using various multi-spectral optical,
LIDAR, and SAR images and was shown to achieve better registration accuracy than state-of-the-art
M-SSD and ARRSI registration algorithms for all of the test sets.

� 2009 Published by Elsevier B.V.
1. Introduction

An open problem in remote sensing is image registration, where
remote sensing images taken under different conditions (e.g., time,
perspective, sensor technology, spectral band) are aligned. Image
registration is important in a number of different remote sensing
image analysis applications such as building extraction
(Rottensteiner and Jansa, 2002), map rectification, canopy model-
ing (Chen et al., 2005), and change detection. Image registration
of remote sensing images is traditionally performed by human ex-
perts by manually selecting ground control point pairs between
the images and then estimating the mapping function that aligns
the images together. This process of manually selecting ground
control point pairs is not only very time consuming, particularly
given the large quantity of remote sensing images acquired on a
regular basis, but also prone to human bias. As such, automated
image registration methods are highly desired to both reduce pro-
cessing time and improve registration accuracy.

Of particular challenge in automated remote sensing image reg-
istration is that of inter-band and inter-sensor image registration,
where images acquired from different spectral bands or different
sensors (e.g., optical, SAR, LIDAR) are aligned with each other. Dif-
ferent spectral bands and sensing technologies provide insight on
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different characteristics of the same scene. As such, the same im-
age content within the scene is represented by different intensity
values, thus to perform similarity evaluation using pixel intensities
directly is very difficult.

The paper is organized as follows. Given the extensive research
literature on inter-band and inter-sensor remote sensing image
registration, a summary of background literature in this field is
presented in Section 2. The main contributions of the proposed im-
age registration system are outlined in Section 3. The underlying
details of the proposed image registration system are presented
in Section 4. Experimental results are presented in Section 5 and
conclusions are drawn in Section 6.
2. Background

A number of different methods have been proposed to tackle
the problem of registering inter-band and inter-sensor remote
sensing images, and can be generally divided into one of the fol-
lowing three techniques:

1. Intensity Remapping-based (Orchard, 2005, 2007): Intensity
remapping-based techniques attempt to estimate an intensity
mapping function that transforms the intensity values from
an image to that of another image in such a way that the same
image content in both images share the same intensity values.
These methods assume that the relationship between the
intensity values of the images being registered can in fact be
ensor/inter-band satellite image registration using robust complex wavelet
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represented by a fixed mapping function (e.g., affine and poly-
nomial functions), which is often not true and can lead to poor
registration results (Orchard, 2008).

2. Entropy-based (Chen et al., 2003; Cole-Rhodes et al., 2003):
Entropy-based techniques, in particular those based on mutual
information, are popular multimodal image registration meth-
ods that attempt to determine the alignment between the
images being registered by minimizing the joint intensity
entropy between the images. There are several drawbacks to
entropy-based methods. First, entropy-based methods are
highly under-constrained as they make no assumptions about
the intensity relationships between the images. As such, the
convergence planes associated with entropy-based methods
are typically highly non-monotonic and possess many local
optima (Roche et al., 2000). Second, spatial consistency is gen-
erally not maintained in entropy-based methods, which is
important in distinguishing similar looking characteristics
within remote sensing images. Third, entropy-based methods
are computationally expensive due to the need to compute
marginal and joint entropies.

3. Feature-based (Xiaolong and Khorram, 1999; Ali and Clausi,
2002; Eugenio et al., 2002; Wong and Clausi, 2007; Fan et al.,
2007; Yasein and Agathoklis, 2008): Feature-based techniques
utilize features extracted from the images in a common feature
space being registered to estimate the mapping function that
align the images together. Such features include invariant
moments (Xiaolong and Khorram, 1999), shape characteristics
(Ali and Clausi, 2002), contours (Eugenio et al., 2002), local fre-
quency information (Wong and Clausi, 2007), and intensity gra-
dients (Fan et al., 2007). Feature-based techniques share some
important benefits when compared to the intensity remap-
ping-based methods and entropy-based methods. Since the fea-
tures extracted from the images exist in a common feature
space, more constrained similarity metrics can be used to com-
pare the images. This results in convergence planes with
reduced non-monotonicity and thus fewer local optima. Fur-
thermore, more efficient similarity metrics can be used to com-
pare the images since the extracted features can be compared in
a direct manner.

Of the aforementioned methods, feature-based image registra-
tion methods have been shown to be particularly promising for
the purpose of registering inter-band and inter-sensor images
and have been the focus of considerable recent research efforts
in this field (Wong and Clausi, 2007; Fan et al., 2007; Yasein and
Agathoklis, 2008). Unfortunately, current feature-based methods
suffer from several drawbacks:

a. Noise sensitivity: Sensor and environmental noise can have a
significant effect on the accuracy of the control point detec-
tion and matching processes. Despite attempts made to
reduce the effect of noise on the control point detection
and matching processes (Wong and Clausi, 2007), the effec-
tiveness of current techniques degrade significantly in the
presence of high levels of noise.

b. Contrast sensitivity: Remote sensing images are frequently
characterized by global and local contrast non-uniformities
due to various imaging and environment conditions. This
results in the same image content being represented by dif-
fering pixel intensities in the images being registered. While
techniques have been proposed to handle contrast non-uni-
formities (Wong and Clausi, 2007), the effectiveness of such
techniques drop significantly in situations characterized by
high levels of noise.

c. Control point location inaccuracies: Current feature-based
methods are based on the assumption that the locations of
Please cite this article in press as: Wong, A., Clausi, D.A. AISIR: Automated inter-s
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matched control points between the images are exactly the
same with respect to geographic coordinates. Unfortunately,
this is often not true due to the inaccuracies associated with
the automated control point detection process. Geographic
coordinate differences in the location of the matched control
points can lead to poor estimates of the mapping function,
thus negatively affecting the registration accuracy of such
methods.
3. Contributions

The main contribution of this paper is AISIR (Automated Inter-
sensor/Inter-band Satellite Image Registration), an automated reg-
istration system designed to address the drawbacks associated
with the existing feature-based inter-sensor and inter-band regis-
tration methods. The AISIR system can be broken into the following
five steps:

I. A robust phase-adaptive complex wavelet feature represen-
tation is computed from the images being registered.

II. Control point detection and matching is performed on the
feature representations in a robust manner using a novel
modified Geman–McClure M-estimation scheme (Geman
and McClure, 1987).

III. The locations of control points are adjusted using an itera-
tive refinement scheme.

IV. Mismatched control points are removed using Maximum
Distance Sample Consensus (MDSAC) (Wong and Clausi,
2007).

V. The mapping function that aligns the images is estimated in
a robust manner using the modified Geman–McClure M-
estimation scheme.

Details of these five steps are found in Section 4.
The AISIR system extends significantly upon our preliminary

work on inter-sensor and inter-band registration (Wong and
Clausi, 2008) in three important ways:

� The AISIR system incorporates novel control point matching and
mapping function estimation schemes based on a novel modi-
fied Geman–McClure M-estimation scheme to further improve
robustness to outliers such as noise and poorly matched control
point pairs that were not pruned by the MDSAC algorithm.

� The AISIR system incorporates a novel iterative refinement
scheme based on the modified Geman–McClure objective func-
tion to further improve the localization accuracy of control point
pairs.

� The AISIR system takes geometric distortions into account dur-
ing the control point matching and control point refinement
processes.

The registration accuracy improvements of the AISIR system
over our preliminary work will be further demonstrated in the
experimental results discussed in Section 5.
4. The AISIR image registration system

The underlying details of the AISIR image registration system is
described in this section.

4.1. Problem formulation

Given sensed image f ðxÞ and a reference image gðxÞ acquired
under differing spectral bands or sensor technologies, where
x ¼ ðx; yÞ, the goal of inter-sensor and inter-band image registra-
ensor/inter-band satellite image registration using robust complex wavelet
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tion is to determine a mapping function TðxÞ that aligns f ðxÞ to gðxÞ
such thatbT ðxÞ ¼ arg min

TðxÞ
W f T xð Þð Þ; g xð Þð Þ½ � ð1Þ

where Wð:Þ is the similarity objective function. In the AISIR system,
TðxÞ may be represented using either a projective transformation
model or high-order polynomial transformation model for situa-
tions where the images exhibit more complex geometric distortions
relative to each other.

4.2. Control point detection using robust complex wavelet feature
representations

The first step in the AISIR image registration system is the auto-
matic identification of control points in both the sensed image and
the reference image. This process of extracting control points in an
automated manner is very challenging when dealing with situa-
tions involving inter-sensor and inter-band images for several rea-
sons. Images acquired using differing sensor technologies or under
differing spectrum bands represent similar image content within a
scene using different intensity values. Hence, to automatically ex-
tract corresponding control points from both images is difficult.
Furthermore, remote sensing images are often characterized by
contrast and illumination non-uniformities, making automatic
identification of distinctive control points based solely on intensi-
ties difficult.

One approach that has proven to be effective for automatically
extracting control points in inter-sensor and inter-band images is
that proposed by Wong and Clausi (2007), where the locations of
controls points are identified based on complex wavelet phase mo-
ment representations of the images. This approach is highly robust
to contrast and illumination non-uniformities, as well as invariant
to intensity mapping differences between the images. Unfortu-
nately, the robustness of the method to contrast non-uniformities
drops significantly in the presence of sensor and environmental
noise. To achieve invariance to intensity mapping differences be-
tween inter-sensor and inter-band images while maintaining high
robustness to contrast non-uniformities and noise, the AISIR sys-
tem introduces an automated control point detection scheme
based on robust complex wavelet feature representations of the
images constructed using iterative phase-adaptive bilateral esti-
mation (Wong, 2008).

The control point detection scheme in AISIR is described as fol-
lows. A Log-Gabor Complex Wavelet Transform (Field, 1987) is
used to decompose f ðxÞ into an n-scale over-complete decomposi-
tion. Each point x at each scale s and orientation h consists of a set
of complex wavelet responses !s;h, as defined by

!s;h ¼ As;hðxÞej/s;hðxÞ: ð2Þ

The amplitude As;hðxÞ and phase /s;h for a complex wavelet re-
sponse !s;h is defined as

As;hðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ðxÞ � Re
s;hðxÞ

� �2
þ f ðxÞ � Ro

s;hðxÞ
� �2

r
; ð3Þ

and,

/s;hðxÞ ¼ tan�1 f ðxÞ � Re
s;hðxÞ

f ðxÞ � Ro
s;hðxÞ

 !
; ð4Þ

where Re
s;hðxÞ and Ro

s;hðxÞ are the even- and odd-symmetric
Log-Gabor quadrature pairs, and � denotes a convolution.

In AISIR, the complex wavelet feature representation is based on
the concept of phase coherence, which has been demonstrated to
be effective at capturing structural characteristics within an image
Please cite this article in press as: Wong, A., Clausi, D.A. AISIR: Automated inter-s
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(Wong, 2008; Morrone and Burr, 1988; Kovesi, 2003). The compu-
tation of local phase coherence relies primarily on the phase infor-
mation of an image, and as such is highly robust to illumination
and contrast non-uniformities, as well as intensity mapping differ-
ences between images. An estimate of phase coherence q at orien-
tation h can be computed as the normalized weighted summation
of complex phase deviations (Kovesi, 2003),

qhðxÞ ¼
P

nWhðxÞ An;hðxÞDUn;hðxÞ � T
� �P
n

An;hðxÞ þ e
; ð5Þ

where W is a weighting factor that favors phase coherence across a
wider frequency spread, T is a noise threshold, e is a small constant
used to avoid division by zero, and DUn;hðxÞ is the complex phase
deviation,

DUn;hðxÞ ¼ cos /n;h xð Þ � �/h xð Þ
� �

� sin /n;h xð Þ � �/h xð Þ
� �		 		; ð6Þ

where �/n is the mean phase. A high value of q signifies strong struc-
tural characteristics. The details and the parameters used to esti-
mate the phase coherence are described in (Kovesi, 2003). The
minimum and maximum complex wavelet phase coherence mo-
ments u and t are determined based on q,

uðxÞ ¼ 1
2

X
h

qhðxÞ
2 �K ð7Þ

tðxÞ ¼ 1
2

X
h

qhðxÞ
2 þK ð8Þ

where,

K ¼ 1
2

4
X

h

qhðxÞ sinðhÞð Þ qhðxÞ cosðhÞð Þ
 !2

24
þ
X

h

qhðxÞ cosðhÞð Þ2 � qhðxÞ sinðhÞð Þ2
h i !2

351
2

: ð9Þ

A bilateral phase-adaptive image estimate f 0 is then computed
based on t (Wong, 2008):

f 0ðxÞ ¼
P

1w x; 1; tðxÞð Þf 1ð ÞP
1w x; 1; tðxÞð Þ ; ð10Þ

where the estimation weighting function w is defined as the prod-
uct of a phase-adaptive spatial weighting function wa and an phase-
adaptive amplitudinal weighting function wb over a neighborhood 1
around x,

w x; 1; tkðxÞð Þ ¼ wb x; 1; tðxÞð Þwa x; 1; tðxÞð Þ; ð11Þ

wa x; 1; tðxÞð Þ ¼ exp �1
2

x� 1k k
ra tðxÞð Þ


 �2
" #

; ð12Þ

wb x; 1; tðxÞð Þ ¼ exp �1
2

f ðxÞ � f ð1Þk k
rb tðxÞð Þ


 �2
" #

: ð13Þ

The estimated image f 0ðxÞ is then used to estimate the local
phase coherence q during the next iteration. The robust complex
wavelet feature representations used by AISIR is composed of the
maximum and minimum complex wavelet phase coherence mo-
ment estimates computed after m iterations of the estimation pro-
cess has been completed to achieve convergence,

f ¼ fum; tmg: ð14Þ

The pseudo-code for the iterative complex wavelet representa-
tion estimation is presented in Algorithm 1.
ensor/inter-band satellite image registration using robust complex wavelet
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Algorithm 1. Iterative Representation Estimation

1: for i ¼ 1 to m do
2: Compute amplitude A (3) and phase / (4) from f ðxÞ.
3: Compute phase coherence q from A and / (5).
4: Compute complex wavelet moments u (7) and t (8).
5: Compute image estimate f 0ðxÞ (10) from f ðxÞ and t.
6: Set f ðxÞ ¼ f 0ðxÞ.
7: end for
8: return f ¼ fu; tg.
To identify a set of control points pf ;0; pf ;1; . . . ; pf ;r for f ðxÞ, a non-
maximum suppression scheme is applied to the minimum com-
plex wavelet phase coherence moments um of each image and
the n strongest local maxima of um are chosen as control points.
The minimum complex wavelet phase coherence moment t was
used to identify control points as high values of t represent strong
structural characteristics across multiple directions, and thus such
points are more likely to be structural distinct when compared to
other points. A quadratic estimation scheme is then performed
based on the neighboring pixels of each control point to refine
the position of the control points at a sub-pixel level. The control
point extraction process is repeated for gðxÞ to determine a set of
control points pg;0; pg;1; . . . ; pg;q.

4.3. Modified Geman–McClure control point matching

After control points have been identified, the second step in the
AISIR system is to match the control points from the sensed image
to that of the reference image. Similar to control point detection,
the process of matching control points in an automated manner
is very challenging for inter-sensor and inter-band images due to
a number of issues. Since images acquired using differing sensor
technologies or under differing spectrum bands represent the same
image content within a scene using different intensity values, sim-
ilarity objective functions that utilize intensity values in a direct
manner are ill-suited. Furthermore, remote sensing images are of-
ten characterized by sensor and environmental noise and contrast
non-uniformities, which results in poor intensity similarity be-
tween the same image content captured in the inter-sensor and in-
ter-band images.

The AISIR system attempts to address the issues associated with
inter-band and inter-sensor intensity mapping differences, contrast
non-uniformities, and noise using two steps. In the first step, rather
than performing similarity evaluation based on intensity values,
which is ill-suited due to intensity mapping differences, the AISIR
system evaluates the similarity between control points based on
the robust phase-adaptive complex wavelet feature representa-
tions constructed during the control point detection process. Since
the feature representation is highly robust to contrast non-unifor-
mities and intensity mapping differences, it allows the control
points to be evaluated using well-constrained similarity objective
functions based on their corresponding complex wavelet features.

In the second step, the AISIR system introduces a control point
similarity evaluation process based on a modified Geman–McClure
M-estimation scheme (Geman and McClure, 1987). Remote sens-
ing images are often characterized by sensor and environmental
noise, as well as other sensor related-artifacts. Popular quadratic
(least-squares) and correlation-based schemes perform poorly
under these situations since the error distribution is often heavy-
tailed due to noise and artifacts. One effective approach to improv-
ing robustness to outlier error is to utilize an M-estimation
approach (Huber, 1981). Given a neighborhood 1 centered at xi in
f ðxÞ, the generalized M-estimation method for finding the location
of the matching control point at xi þ di in gðxÞ can be defined as,
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d̂i ¼ arg min
ðdÞ

X
1ðxiÞ

W tf
m Hxð Þ; tg

m xþ dð Þ
� �24 35; ð15Þ

where W is the similarity objective function and tf
m and tg

m are the
estimated maximum complex wavelet phase coherence moments
of f ðxÞ and gðxÞrespectively, and H is the rotation on 1 that mini-
mizes W. Since the primary objective in the design of the control
point matching scheme is to improve outlier error robustness, the
AISIR system introduces the following modified Geman–McClure
similarity objective function,

W tf
m xð Þ; tg

m xþ dð Þ
� �

¼
tf

mðxÞ � tg
mðxþ dÞ

� �4

1þ tf
mðxÞ � tg

mðxþ dÞ
� �4 : ð16Þ

The advantage of the proposed similarity objective function
over commonly used quadratic and correlation based similarity
objective functions is that it is an effective soft-redescending error
norm where the influence of outlier error is bounded and tends to
zero asymptotically. The influence of outlier error on an objective
function can be illustrated by studying its derivative (Black and
Rangarajan, 1994). Fig. 1 shows the influence of outlier error on
the quadratic and the proposed modified Geman–McClure objec-
tive function. The influence of outliers using a quadratic function
increases linearly and without bound, while the influence of outlier
error using the proposed objective function is bounded and tends
to zero asymptotically. As such, the proposed objective function
is highly robust to outlier error and well-suited for control point
matching for inter-sensor and inter-band registration.

Since evaluating all possible point locations in gðxÞ is not
computationally tractable, only the set of control points pg;0;

pg;1; . . . ; pg;q in gðxÞ determined by the control point detection
scheme are evaluated to find the best match for each of control
point pf ;0; pf ;1; . . . ; pf ;r in f ðxÞ,

pg;i ¼ arg min
ðpg Þ

X
1ðpf ;iÞ

W tf
m Hxð Þ; tg

m xþ pg � pf ;i

� �� �� �24 35: ð17Þ
4.4. Iterative control point pair refinement and mapping function
estimation

After identifying matching control point pairs, the mapping
function that aligns the sensed image and the reference image to-
gether must be estimated. A typical approach to estimating the
mapping function is through the use of least squares solvers such
as the normalized direct linear transformation (DLT) algorithm
(Hartley and Zisserman, 2001). Two main factors contribute heav-
ily to the effectiveness of the mapping function estimation process:
(i) control point matching accuracy, and (ii) control point pair
localization accuracy. While much effort has been focused on
addressing the problem of control point matching accuracy
through the use of outlier rejection schemes such as the Random
Sample Consensus (RANSAC) algorithm (Fischler and Bolles,
1981) and the Maximum Distance Sample Consensus (MDSAC)
algorithm (Wong and Clausi, 2007), little attention has been paid
to the problem of control point pair localization accuracy. To ad-
dress the issues associated with control point matching accuracy
as well as control point matching pair localization accuracy, the AI-
SIR system introduces a three-stage approach consisting of: (i) a
control point rejection stage, (ii) an iterative control point pair con-
trol point refinement stage, and (iii) a robust mapping function
estimation stage.

� Stage 1: The Maximum Distance Sample Consensus (MDSAC)
algorithm (Wong and Clausi, 2007) is applied to the set of con-
ensor/inter-band satellite image registration using robust complex wavelet
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Fig. 1. Objective functions (left) and the corresponding influence of outliers on the
objective function (right) for (a) quadratic objective function, and (b) proposed
modified Geman–McClure objective function.
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trol point pairs identified during the control point matching
stage in an attempt to reject erroneous control point pairs. The
objective of this stage is to reduce the influence of the control
point matching accuracy problem on the estimated mapping
function.

� Stage 2: The locations of the remaining c control points in the
sensed image are refined in an iterative manner to minimize
the modified Geman–McClure objective function between the
maximum complex wavelet phase coherence moments around
the control point in the sensed image pf and the control point
in the reference image pg . The control point refinement problem
can be formulated as an optimization problem, where the
refined location of the control point in the sensed image p̂

f
is

estimated as

p̂
f ;i
¼ pg;i � d̂; ð18Þ

where,

d̂ ¼ arg min
ðdÞ

X
1ðpg;iÞ

W tg
m Xxð Þ; tf

m xþ dð Þ
� �24 35: ð19Þ

where X is the transformation on 1 that minimizes W. In AISIR, X
is defined by rotation and scale. The current location of the con-
trol point in the sensed image is used as the initial estimate for
p̂

f
and is re-estimated iteratively on a sub-pixel basis using a

iterative sequential quadratic programming (SQP) solver (Boggs
and Tolle, 1995) until convergence is reached. The objective of
this stage is to reduce the influence of the control point pair
localization problem on the estimated mapping function.

� Stage 3: The mapping function that aligns the sensed image with
the reference image is estimated based on the refined set of c
control point pairs. To improve the robustness of the mapping
function estimation process to the control point mismatches
and localization errors that were not dealt with by the previous
two stages, AISIR introduces a mapping function estimation
scheme based on the proposed modified Geman–McClure M-
estimation scheme,

bT ðxÞ ¼ arg minTðxÞ
Xc

i¼1

T pf ;i

� �
� pg;i

� �4

1þ T pf ;i

� �
� pg;i

� �4

264
375: ð20Þ
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where T is the mapping function as defined in Eq. (1). The AISIR
system supports a projective transformation model or a high-or-
der polynomial transformation model for the mapping function
for situations where the images exhibit more complex geometric
distortions relative to each other.
5. Experiments

The effectiveness of the AISIR system was evaluated using six
sets of satellite images provided by US Geological Survey (USGS),
and one set of satellite image from the Spaceborne Imaging Ra-
dar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) project. All
test images are 8-bit grayscale images and each set of test images
consists of a reference image and a sensed image. For all test cases,
the number of initial control points extracted by the control point
detection process was set to a maximum of 300. To demonstrate
the effectiveness of the AISIR system when no additional informa-
tion is available, the images in each test set are registered without
the aid of georeferencing data. The registration accuracy of the AI-
SIR system is evaluated by computing the root mean squared error
(RMSE) between 30 manually selected ground-truth control point
pairs chosen by a trained expert between the reference image
and the sensed image on a pixel basis for each set of test images.
RMSE is computed as the average of five test trials given the ran-
domness in the registration process. For comparison purposes,
the state-of-the-art M-SSD method proposed by Orchard (2007),
ARRSI method proposed by Wong and Clausi (2007), and our pre-
liminary work with robust complex wavelet feature representa-
tions (Wong and Clausi, 2008) (RCWF) were also evaluated. The
M-SSD method formulates the registration problem as an affine
least squares problem and solves the problem in an efficient man-
ner in the frequency domain, while the ARRSI method provides
efficient least squares registration based on a phase congruency
model. The M-SSD and ARRSI methods are both state-of-the-art
methods and have already been shown to provide improved regis-
tration accuracy for registering remote sensing images when com-
pared to other methods such as cross-correlation (Capel and
Zisserman, 1998), mutual information (Viola and Wells, 1997),
and correlation ratio (Roche et al., 1998). Finally, a perspective
transformation model was used for all of the tested methods.

5.1. Test sets

A description of each of the inter-band (IB) and inter-sensor (IS)
test sets is presented in Table 1. There are two main challenges
associated with the inter-band test sets. First, the reference and
sensed images in each test set are acquired within different spec-
tral bands (0.63–0.69 lm for Band 3 and 1.55–1.75 lm for Band
5). As such, corresponding intensities between the images are very
different and cannot be compared directly. Second, the reference
and sensed images in each test set are acquired at different times.
Therefore, the environmental conditions under which the images
are captured can be very different, with varying illumination and
contrast non-uniformities. In addition to these two challenges, an
additional challenge associated with the inter-sensor test sets is
that the image characteristics captured in the reference and sensed
images can differ significantly due to the characteristics of the
underlying sensing technologies.

5.2. Experiment 1

The first set of experiments investigates the effectiveness of the
AISIR system in registering images acquired under different spec-
tral bands and different sensor technologies under typical condi-
tions where the resolution is known. The registration accuracy
ensor/inter-band satellite image registration using robust complex wavelet
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Table 1
Summary of inter-band (IB) and inter-sensor (IS) test image pairs.

Test Reference Sensed

Name Source Lat/Long Sensor Res Date Sensor Res Date

IB1 USGS 46.0/�83.8 Landsat 7 ETM+, Band: 3 240 m 2003/4/12 Landsat 4–5 TM, Band: 5 240 m 2006/6/15
IB2 USGS 69.6/�92.7 Landsat 7 ETM+, Band: 5 240 m 2000/7/24 Landsat 4–5 TM, Band: 3 240 m 1999/7/6
IB3 USGS 46.0/�113.1 Landsat 7 ETM+, Band: 5 240 m 2001/8/17 Landsat 4–5 TM, Band: 3 240 m 2006/2/12
IB4 USGS 48.9/�68.8 Landsat 7 ETM+, Band: 5 240 m 1999/12/14 Landsat 4–5 TM, Band: 3 240 m 2005/10/13
IS1 JPL 48.9/�68.8 Landsat 7 ETM+, Band: 3 240 m 1999/12/14 SIR-C/X-SAR, Band: C 200 m 1994/04/15
IS2 USGS 29.0�590/�90�010 Orthorectified air-photo � � LIDAR � �
IS3 USGS 29.0�570/�90�020 Orthorectified air-photo � � LIDAR � �
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results are shown in Table 2. The AISIR system outperforms the
other registration methods under evaluation in terms of RMSE
for all sets of test images. An example of the inter-band registration
achieved using the AISIR system is shown in Fig. 2. By visual
inspection, the registration results produced by the AISIR system
are accurate for the set of inter-band images. Successful registra-
tion was achieved between the images despite the presence of
cloud cover in the Band 3 image, as well as significant intensity dif-
ferences between the two images. These results demonstrate the
effectiveness of the AISIR system in registering inter-band images.
Similar to the inter-band registration results, the AISIR system
noticeably outperforms the other registration methods under eval-
uation in terms of RMSE for all sets of test images. An example of
the inter-sensor registration achieved using the AISIR system is
shown in Fig. 3. By visual inspection, the registration results pro-
duced by the AISIR system are accurate for the set of inter-sensor
images. Successful registration was achieved between the images
despite the image detail and intensity differences between the
two images. These results demonstrate the effectiveness of the AI-
SIR system in registering inter-sensor images.

5.3. Experiment 2

The second set of experiments investigates the robustness of
the AISIR system under conditions where the resolution and the
Table 2
Registration accuracy for inter-band and inter-sensor images. ‘‘�” indicates the failure
to register images within RMSE < 100.

Test RMSE (pixels)

M-SSD ARRSI RCWF AISIR

IB1 55.6633 3.7815 2.6837 2.2653
IB2 2.3664 1.6426 1.2880 1.0169
IB3 6.5345 1.2184 1.2013 0.9158
IB4 3.7815 2.7906 1.9380 1.6980
IS1 – 8.5854 3.7326 3.2164
IS2 21.168 4.4519 4.0136 3.8791
IS3 8.962 – 4.6428 4.2677

Fig. 2. Image registration from IB2: (a) Landsat 7 ETM+, Band
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relative orientation between the images are unknown and rela-
tively large compared to typical conditions. This was accomplished
by systematically distorting the test image sets to relatively large
scales and orientations. These distortions serve to provide a good
test of robustness under uncertainty for the AISIR system.

The AISIR system and the other tested methods were used to
register the distorted test image sets without information pertain-
ing to scale or orientation, and the registration accuracy was eval-
uated in terms of RMSE. Tests were also performed in situations
where the images were distorted by translations of {20%, 40%,
80%} of the reference image, but since the tested methods are lar-
gely translation-invariant, the registration accuracy results for all
methods are within 1% to those shown in Table 2. Similarly, tests
were performed in situations where the images were distorted
by a set of orientations {5�,10�,15�,20�}, but the registration accu-
racy results for all methods are within 3% to those shown in Table
2. Of greater interest are the registration accuracy results for large
: 5; (b) Landsat 4–5 TM, Band: 3; (c) registration result.

Fig. 3. Image registration from IS2: (a) air-photo; (b) LIDAR; (c) registration result.

ensor/inter-band satellite image registration using robust complex wavelet
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Table 4
Registration accuracy for inter-band and inter-sensor images under relative scale
distortions of 1.3. ‘‘�” indicates the failure to register images within RMSE < 100.

Test RMSE (pixels)

M-SSD ARRSI RCWF AISIR

IB1 – 4.5693 3.2926 2.3724
IB2 – 3.0296 2.1472 1.1804
IB3 – 2.8631 2.1598 1.0574
IB4 – 4.3173 3.172 1.8228
IS1 – 9.2167 4.1143 3.4338
IS2 – 6.3286 5.2391 3.9469
IS3 – – 5.8894 4.3816

Fig. 4. Image registration from IS1 under orientation distortion of 45

Fig. 5. Image registration from IS3 under scale distortion o

Table 3
Registration accuracy for inter-band and inter-sensor images under orientation
distortions of 45�. ‘‘�” indicates the failure to register images within RMSE < 100.

Test RMSE (pixels)

M-SSD ARRSI RCWF AISIR

IB1 56.0928 – – 2.3841
IB2 2.5717 – – 1.1966
IB3 7.0157 – – 1.0966
IB4 3.6923 – – 1.7712
IS1 – – – 3.3872
IS2 21.6405 – – 3.9867
IS3 9.1520 – – 4.4079
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orientation distortions of 45� and scale distortions of 1.3, which are
shown in Tables 3 and 4, respectively.

The AISIR system outperforms the other registration methods in
terms of RMSE for all sets of test images. The registration accuracy
of the AISIR and M-SSD methods remain comparable to the regis-
tration accuracy shown in Table 2 under large orientation distor-
tions, while the other methods fail to produce reasonable
registration results as shown in Table 3. An image example of in-
ter-sensor registration achieved using the AISIR system under large
orientation distortion is shown in Fig. 4. Successful registration
was achieved between the images despite large orientation distor-
tions in the SAR image, as well as significant differences in the
intensities between the two images.

The registration accuracy of the AISIR method remain compara-
ble to the registration accuracy shown in Table 2 under scale dis-
tortions, while the ARSSI and RCWF methods both showed a
noticeable reduction in registration accuracy and the M-SSD meth-
od failed to produce reasonable registration results as shown in Ta-
ble 4. An image example of inter-sensor registration achieved using
the AISIR system under scale distortions is shown in Fig. 5. Success-
ful registration was achieved between the images despite large
scale distortions in the LIDAR image, as well as significant differ-
ences in the intensities between the two images. The higher regis-
tration accuracy of the AISIR system compared to the other tested
methods under both test scenarios is largely due to the fact that
both scale and rotation considerations are taken into account
during the control point matching and control point refinement
�: (a) Landsat 7 ETM+, Band: 3; (b) SAR; (c) registration result.

f 1.3: (a) air-photo; (b) LIDAR; (c) registration result.

ensor/inter-band satellite image registration using robust complex wavelet
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processes of the AISIR system. The experimental results demon-
strate the robustness of the proposed AISIR system to large distor-
tions of scale and orientation.

6. Conclusions

A novel automated system name AISIR was introduced for the
registration of inter-band and inter-sensor remote sensing images.
A novel modified Geman–McClure control point matching scheme
based on robust complex wavelet feature representations was used
to address issues associated with contrast non-uniformities, noise,
and inter-sensor and inter-band intensity mapping differences. An
iterative control point pair refinement method was introduced for
improving control point pair localization. Finally, a robust mapping
function estimation scheme was introduced to further improve
robustness to outlier data. Experimental results indicate that AISIR
is capable of outperforming the state-of-the-art M-SSD and ARRSI
registration methods for both inter-band and inter-sensor images.
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