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Abstract—The use of magnetic resonance imaging (MRI) for
early breast examination and screening of asymptomatic women
has become increasing popular, given its ability to provide
detailed tissue characteristics that cannot be obtained using
other imaging modalities such as mammography and ultrasound.
Recent application-oriented developments in compressed sensing
theory have shown that certain types of magnetic resonance
images are inherently sparse in particular transform domains,
and as such can be reconstructed with a high level of accuracy
from highly undersampled k-space data below Nyquist sampling
rates using homotopic L0 minimization schemes, which holds
great potential for significantly reducing acquisition time. An
important consideration in the use of such homotopic L0 mini-
mization schemes is the choice of sparsifying transform. In this
work, a regional differential sparsifying transform is investigated
for use within a homotopic L0 minimization framework for re-
constructing breast MRI. By taking local regional characteristics
into account, the regional differential sparsifying transform can
better account for signal variations and fine details that are
characteristic of breast MRI than the popular finite differen-
tial transform, while still maintaining strong structure fidelity.
Experimental results show that good breast MRI reconstruction
accuracy can be achieved compared to existing methods.

Index Terms—MRI, magnetic resonance imaging, reconstruc-
tion, minimization, regional differential transform, breast

I. INTRODUCTION

Based on statistics collected by the World Health Organi-
zation International Agency for Research on Cancer, breast
cancer has become the most frequently occurring form of
cancer found in women worldwide, with an estimated 636,000
incidents in developed countries and 514,000 incidents in
developing countries in 2002 [1]. Of greater concern is the
related fact that breast cancer has also become the most
prominent cause of cancer-related deaths in women in many
countries, with an estimated 519,000 deaths worldwide in
2004 [2], due partly to the increased risk of developing a
second primary cancer along with the breast cancer [3]. To
date, the most effective way to reduce the breast cancer related
mortality is through early breast screening of asymptomatic
women to identify possible signs of breast abnormalities. Early
detection of breast cancer can allow for early-stage treatments
that can significantly improve breast cancer survival rates
while reducing treatment complications [4].

The most widely used imaging technology for breast screen-
ing in the past four decades is mammography, where breast
X-ray images are acquired to aid in the detection of breast
tissue abnormalities such as masses and microcalcifications.

While the use of mammography for breast cancer screening
is widely available and has been shown be allow for reli-
able identification and detection of calcifications, there are
a number of limitations. First, the mammography procedure
requires the compression of breast tissue for proper imaging,
leading to both patient anxiety and discomfort. This discomfort
is amplified by the fact that the breast must be repositioned
to allow for different views to be acquired. Second, due
to the way x-ray imaging functions, abnormalities in dense
breast tissue can be more difficult to detect using mam-
mography. This is particularly problematic when screening
young women, who usually have denser breasts than older
women. Third, the mammography procedure requires exposure
to harmful ionizing radiation, which can lead to potential
harm to the patient. In recent years, the use of magnetic
resonance imaging (MRI) for early breast examination and
screening of asymptomatic women has become increasingly
established as a complementary tool to mammography for
studying breast cancer, where abnormalities identified using
mammography are studied in detail using breast MRI. There
are a number of important advantages to the use of breast
MRI for breast cancer screening. First, due to the higher tissue
sensitivity in MRI when compared to mammography, breast
MRI allows for easier identification and detection of fine-
scale signs of breast tissue abnormalities, particularly in dense
breast tissue. Second, no compression of the breast tissue
is required, and both breasts are imaged simultaneously to
create volumetric breast tissue data, hence potentially reducing
some of the patient discomfort associated with mammography.
Third, unlike mammography, MRI does not expose patients to
ionizing radiation.

Despite the advantages associated with MRI for breast
cancer screening, a main limitation with this approach is
the long acquisition time, which can contribute to patient
discomfort, as well as limiting the number of screenings
that can be done. For example, in the case of fast dynamic
contrast-enhanced breast MRI [5], [6], within a session, a
pre-contrast acquisition is followed by multiple post-contrast
acquisitions after contrast injection. This type of breast MRI
acquisition allows for the observation of contrast uptake over
time, which can be potentially used to differentiate between
malignant tumors and benign lesions. In the case of 2.0mm
slice thickness and 18cm range of coverage and a 0.5mm gap,
and a total of 1 pre-contrast and 5 post-contrast acquisitions
at 1 minute increments within the session, the total of number
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slices acquired is approximately 432 slices. Given a time of
repetition (TR) of 4.6ms and 420 TRs per slice, could have an
approximate acquisition time of 14.5 minutes. Early attempts
at reducing acquisition times such as echo-planar imaging [7]
come at the cost of high hardware complexity and low signal-
to-noise ratios, as well as the presence of distortions due
to factors such as eddy currents and off-resonance effects.
Additionally, breast MRI data are often acquired using a coil
array, which can also be used for accelerated acquisition.
To address the issue associated with long acquisition times
without increasing hardware complexity or sacrificing signifi-
cant signal-to-noise ratios, recent developments in compressed
sensing theory [8], [9] with respect to medical imaging have
shown that certain types of magnetic resonance (MR) images
can be reconstructed with a high level of accuracy from highly
undersampled k-space data below Nyquist sampling rates,
hence significantly reducing acquisition time [10].

Given the significant benefits that can be gained, a wide
variety of reconstruction approaches have been proposed for
the purpose of MRI reconstruction [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [34]. In particular,
a homotopic L0 minimization approach [20] was shown to
provide superior reconstruction for spine and wrist MRI from
significantly undersampled k-space data when compared to
state-of-the-art methods [21]. The ability to achieve highly
accurate reconstructions from highly undersampled k-space
data is very important in reducing acquisition time, since the
acquisition time is proportional to the number of k-space lines
acquired [10]. However, the effectiveness of such an approach
for breast MRI reconstruction has not been explored, and may
not be well-suited given its use of the finite differential trans-
form, which is poorly suited for handling the fine details and
variations found in breast MRI. More recently, Liang et al. [14]
explored the use of the non-local total variation regularization
framework [22], [23] for MRI reconstruction, where regional
characteristics between non-local sites from throughout the
data is used as a penalty constraint, and found that such an
approach allowed for improved handling of fine details and
variations. However, once again, the effectiveness of such an
approach for breast MRI reconstruction, particularly within a
homotopic L0 minimization framework, has not been explored
in previous literature. Furthermore, by considering non-local
sites in the optimization process, the computational complexity
for reconstruction can be relatively high. As such, exploring
a graceful compromise between the local finite differential
transform and the non-local total variation approach is desired.

In this work, the concept of a regional differential sparsify-
ing transform is investigated for use within a homotopic L0

minimization framework for improving the reconstruction of
breast MRI. By extending the finite differential transform to
take local regional characteristics into account, the regional
differential sparsifying transform can better account for signal
variations and fine details that are characteristic of breast
MRI like the non-local total variation approach than the
popular finite differential transform, while still maintaining
strong structure fidelity. Furthermore, by remaining a local
transform like the finite differential transform, the computa-
tional complexity for reconstruction is lower than the non-local

total variation approach. Interestingly, the proposed regional
differential sparsifying transform can be viewed as a special
case of the non-local total variation approach.

The proposed work makes two main contributions. First, to
the best of the authors’ knowledge, this is the first time where
different sparsifying transforms are explored for the suitability
of sparse breast MRI reconstruction. Second, this is the first
time such a regional differential sparsifying approach has been
investigated for sparse breast MRI reconstruction. The theory
behind homotopic L0 minimization using a regional differ-
ential sparsifying transform for breast MRI reconstruction is
introduced in Section II. Experimental results are presented
and discussed in Section III. Finally, conclusions are drawn
and future work is discussed in Section IV.

II. THEORY

A. Lp minimization for sparse reconstruction

Let S be set of sites in a discrete lattice L upon which an
MRI image is defined in the spatial domain and s ∈ S be a
site in L. Let K be a set of sites in a discrete spectral lattice
F upon which the same MRI image is defined in k-space and
k ∈ K be a site in F. Given that all measurements are made
in k-space for MRI, the relationship between the signal F (k)
in k-space and the equivalent signal f(s) in the spatial domain
can be expressed as,

f(s) = F−1ΦF (k), (1)

where F−1 is the inverse Fourier operator and Φ is a mea-
surement operator defining which sites in K are measured
(Φ assigns zeroes to non-measured k-space indices). As such,
the reconstruction of f(s) from F (k) is essentially an inverse
problem. In the case where Φ is not the identity matrix, such
as when fewer measurements are made to reduce acquisition
time, not all sites in K are measured, making the inverse
problem underdetermined with multiple solutions. Tradition-
ally, this inverse problem is solved via a constrained L2

minimization in the spatial domain, as expressed by,

f̂(s) = arg min
f(s)

‖f(s)‖2 s.t. ΦF̂ (k) = ΦF (k). (2)

where f̂(s) and F̂ (k) are estimated signals in the spatial and k-
space domains. However, solving the problem in this manner
results in significant artifacts such as aliasing and temporal
blurring in practical situations [21].

Recently, scientists realized that many signals, such as
MR images, possess inherent sparsity in some sparsifying
transform Ψ, and that a significantly better estimate of f(s)
can be obtained by maximizing sparsity in Ψ while enforcing
data fidelity in K. As a result, this can be formulated as a
constrained L0 minimization problem in Ψ, subject to data
fidelity constraints in K,

f̂(s) = arg min
f(s)

‖Ψf(s)‖0 s.t. ΦF̂ (k) = ΦF (k). (3)

Unfortunately, solving the constrained L0 minimization prob-
lem in Ψ is non-deterministic polynomial-time hard (NP-hard)
and intractable in practical situations. To work around this
computational complexity problem, the breakthrough work by
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Fig. 1. Sample reconstructions using the tested breast MRI reconstruction methods (83% undersampling). Note that the reconstructions have been cropped
for display purposes, resulting in non-square dimensions.
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Candés et al. [8], as well as work by Donoho [9], showed that
the use of L1 norm can still yield perfect reconstructions at
the cost of increased measurements,

f̂(s) = arg min
f(s)

‖Ψf(s)‖1 s.t. ΦF̂ (k) = ΦF (k). (4)

The constrained L1 minimization problem is convex and
tractable in practical situations, and as such has become the
basis for much of the work on sparse reconstruction since that
seminal work, some of which include [8], [9], [10], [11], [12],
[15]. However, from a theoretical perspective, the constrained
L1 minimization problem may require a drastic increase in the
number of measurements needed to achieve the same results
as the constrained L0 minimization problem, based on the
theoretical L0 requirements.

To get closer to the theoretical capabilities of the constrained
L0 minimization problem, Trzasko and Manduca [21] intro-
duced a new reconstruction paradigm called homotopic L0

minimization, where an increasingly stronger approximation of
the L0 minimization problem is used to iteratively reconstruct
f(s) [21],

f̂(s) = lim
σ→0

arg min
f(s)

∑
S

ρ (|Ψf(s)|, σ) s.t. ΦF̂ (k) = ΦF (k).

(5)
where ρ is a homotopic approximate of the L0 norm that
moves closer to the true L0 norm as the approximate L0

relaxation term σ ∈ < approaches 0. In many cases, quasi-
convex functions such as the Geman-McClure [25] functions
are chosen for the homotopic approximate of the L0 norm. The
advantage of this approach is many-fold, as it is able to identify
the local minima of the cost function with roughly the same
complexity as the L1 minimization approach, while better
approaching the theoretical capabilities of the constrained L0

minimization approach. To account for noise in the measured
values, the data fidelity constraint is typically replaced by an
L2 norm constraint, leading to the final formulation

f̂(s) = limσ→0 arg min
f(s)

∑
S ρ (|Ψf(s)|, σ)

s.t.
∥∥∥ΦF̂ (k)− ΦF (k)

∥∥∥
2
< ε,

(6)

where ε is an error bound.

B. Regional differential sparsifying transform for breast MRI
reconstruction

An important issue that is worth investigating with regards
to the homotopic L0 minimization approach is the choice of
sparsifying transform domain Ψ. The choice of Ψ is critical
in obtaining good reconstructions, as the underlying premise
is that the signal is highly sparse in the sparsifying transform
domain. Two popular choices for sparsifying transforms are
the finite differential transform and the wavelet transform [10].
The finite differential transform is a popular choice partic-
ularly in reconstruction strategies based on total variational
models [26], such as that used in the original homotopic
L0 minimization approach. The finite differential transform
is highly sparse for piece-wise constant scenarios, but con-
siderably less sparse in more complex scenarios characterized

by fine details and non-uniform signal variations. Since breast
MRI is characterized by fine details and signal variations due
to the underlying tissue characteristics, particularly pertaining
to suspicious tissue anomalies such as masses and microcal-
cifications, the finite differential transform is not well-suited
for reconstructing such data. Furthermore, a common artifact
in reconstructions using finite differential transform is the
staircase effect, which has the potential to degrade the quality
of clinical diagnosis using such reconstructions. The wavelet
transform can better handle fine details and signal variations
but at the cost of reduced structure fidelity [21], which is
important for morphological studies of suspicious cancer-
related abnormalities such as masses and microcalcifications.

To tackle the issue associated with handling fine detail and
signal variations faced by the finite differential transform while
maintaining strong structure fidelity, we investigate the con-
cept of the regional differential sparsifying transform, where
local regional characteristics are taken into account in the
differential formulation. Let a neighboring site of s, denoted
as sj , be a site that is within a common fifth-order Markov
connectivity with s. Let the regional differential sparsifying
transform between a site s and a neighboring site sj be defined
by

ΨR(s, sj) =
∑
l∈R

|f(s+ l)− f(sj + l)| (7)

where l is the set of indices defining an equal-sized region
around each site. By taking local regional characteristics into
account, the regional differential transform can better account
for signal variations and fine details, which are important
for breast MRI reconstruction, while still maintaining strong
structure fidelity such as the finite differential transform.

Based on Eq. 7, the homotopic L0 norm for the sparse
representation in the regional differential sparsifying transform
domain can be defined as

‖ΨRf(s)‖0 = lim
σ→0

∑
s∈S

∑
n∈Ω

ρ (ΨR(s, s+ n), σ) (8)

where Ω denotes the set of all sites within a fifth-order Markov
connectivity around s. The proposed regional differential
sparsifying transform shares similarities with the non-local
total variation regularization framework [22], [23] that was
employed by Liang et al. [14] for MRI reconstruction, which
takes advantage of regional characteristics between non-local
sites from throughout the data for regularization purposes.
However, the proposed regional differential sparsifying trans-
form differs from the non-local total variation approach in that,
like the finite differential sparsifying transform it is extending
upon, only close neighboring sites are used in computing the
transform and hence is a local transform. As such, the pro-
posed regional differential sparsifying transform can be viewed
as a special case of the non-local total variation approach
where only close neighboring sites are used with a uniform
weighting scheme. This type of approach can be viewed as
a “semi-local” approach [24]. Therefore, the computational
complexity of the regional differential sparsifying transform
is reduced when compared to the standard non-local total
variation approach yet still reaping the benefits of using local
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Fig. 2. Inverted zoomed-in regions from the sample reconstructions using
the tested breast MRI reconstruction methods.

regional characteristics, hence providing a graceful compro-
mise between the finite differential sparsifying transform and
the non-local total variation approach.

Based on Eq. 6 and Eq. 8, the final homotopic L0 min-
imization in the regional differential sparsifying domain can
thus be expressed by

f̂(s) = limσ→0 arg min
f(s)

∑
S ρ (|ΨRf(s)|, σ)

s.t.
∥∥∥ΦF̂ (k)− ΦF (k)

∥∥∥
2
< ε.

(9)

Given the problem formulation shown in Eq. 9, an objective
function Υ can be defined as

Υ
(
f̂(s), σ, λ

)
=
∑
S

ρ
(∣∣∣ΨRf̂(s)

∣∣∣ , σ)+λ
∥∥∥ΦF̂ (k)− ΦF (k)

∥∥∥
2
,

(10)
where λ is a data fidelity relaxation constant that controls the
contribution of the data fidelity constraint compared to the
approximate L0 sparsity constraint. Since MRI data is complex
in nature, Eq. 10 can be modified to penalize sparsity for both

Fig. 4. Inverted zoomed-in regions from the second set of sample recon-
structions using the tested breast MRI reconstruction methods.

the real and imaginary components of the data,

Υ
(
f̂(s), σ, λ

)
=

∑
S

ρ
(∣∣∣ΨR<{f̂(s)}

∣∣∣ , σ)
+
∑
S

ρ
(∣∣∣ΨR={f̂(s)}

∣∣∣ , σ)
+λ
∥∥∥ΦF̂ (k)− ΦF (k)

∥∥∥
2
.

(11)

III. EXPERIMENTAL RESULTS

The proposed approach was evaluated using T1-weighted
breast MRI data acquired at St. John’s Mercy to investigate
its potential for sparse breast MRI reconstructions from highly
undersampled k-space data below Nyquist sampling rates. The
MRI machine used to acquire the breast MRI was a GE Signa
HDx 1.5T MRI system with SMI high performance variable
geometry coils, set to a repetition time (TR) of 4.60ms and an
echo time (TE) of 2.20ms. The three sets of tested breast MRI
data sets consist of 512×512 16-bit data with a displayed field
of view (DFOV) of 30.0cm×30.0cm and 2.0mm thickness.
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Fig. 3. Second set of sample reconstructions using the tested breast MRI reconstruction methods (83% undersampling). Note that the reconstructions have
been cropped for display purposes, resulting in non-square dimensions.
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Although the available data is real-valued, there are a number
of ways to deal with the issue of phase in complex-valued
data that have been thoroughly explored in related work.
For example, if the data is dominantly real, phase correction
approaches such as homodyne detection [35] can be employed
during reconstruction process [10]. Furthermore, the study by
Trzasko and Manduca [21] showed that, despite the typical
scenario of smoothly varying phase, accurate reconstructions
can be achieved even at significant k-space undersampling
for data where phase information is less dominant, such
as breast MRI where phase also seldom provide diagnostic
information [27].

To test the effectiveness of the proposed reconstruction
approach, breast MRI reconstructions were produced based
on radial k-space sampling trajectories at 83% k-space un-
dersampling. The use of radial k-space sampling trajectories
have become increasingly popular in practice for breast MRI,
given its lower susceptibility to motion artifacts than standard
Cartesian k-space sampling trajectories [29], and has been
shown for other types of MRI data to allow for significant k-
space undersampling [30]. Therefore, the use of radial k-space
sampling trajectories is well-suited for our tests. Note that, for
simulation purposes, Cartesian approximations of the radial
k-space sampling trajectories were used given the available
data. In more real-world situations using actual radial data,
re-gridding approaches such as the well-known Kaiser-Bessel
gridding approach [31] and non-uniform fast Fourier transform
(NUFFT)-based gridding approaches [32] can be incorporated
into the proposed approach to interpolate radial data onto a
Cartesian coordinate system for subsequent reconstruction.

For comparison purposes, the proposed approach is com-
pared to three other published techniques: the baseline L2

energy minimization approach, the classic L1 minimization
approach proposed by Lustig et al. [10] that simultaneously
promotes transform domain sparsity and penalizes total vari-
ation norm, and the homotopic L0 minimization approach
proposed by Trzasko and Manduca [21] based on finite dif-
ferential sparsifying transform. These methods are configured
as presented in the respective research literature, as such
configurations provided the best results based on testing. Note
that the classic L1 minimization approach and the homotopic
L0 minimization approach used for comparison purposes are
effective at producing accurate reconstructions at higher k-
space sampling rates. However, the goal here is to illustrate
whether the proposed reconstruction approach is capable of
producing more accurate reconstructions at sampling rates
lower than existing approaches, thus facilitating lower breast
MRI acquisition times. For example, since the acquisition time
is proportional to the number of k-space lines acquired, a 83%
k-space undersampling results in almost a 6:1 acquisition time
acceleration. Given our previous example of approximately
14.5 minutes to acquire a sequence of 432 slices, given a
time of repetition (TR) of 4.6ms and 420 TRs per slice, the
reduced acquisition time would be approximately 2.4 minutes.
This is by no means an exhaustive study of sparse MRI
reconstruction methods, but does examine the performance
of the proposed approach compared to a baseline method
(L2 minimization), a classic method (L1 minimization with

total variation norm), and the method we wish to improve
upon (homotopic L0 minimization based on finite differential
sparsifying transform).

Given that the proposed regional differential sparsifying
transform can be considered a special case of the non-
local total variation regularization framework where only
close neighboring sites are used, we had also investigated
the reconstruction accuracy of the non-local total variation
approach using a searching window with width of 11 and
patch size of 5×5 as specified in [14] under the homotopic L0

framework. Note that the use of non-local total variation within
the homotopic L0 framework has not been previously explored
in previous literature and can be considered a contribution of
this work. Testing showed that the resulting reconstructions
using both the regional differential sparsifying transform and
the non-local total variation approach were very similar (with
a SNR deviation of under 0.15 dB), which makes sense since
the proposed regional differential sparsifying transform can
be considered a special case of the non-local total variation
approach. Since little performance gain was obtained by
employing the non-local total variation framework over the
proposed transform, both visually and quantitatively, only
the results of the proposed regional differential sparsifying
transform have been included.

For the L1 minimization approach with total variation norm,
homotopic L0 minimization approach proposed by Trzasko
and Manduca [21] based on finite differential sparsifying
transform and the proposed approach, an iterative nonlinear
diagonal normalized steepest descent solver [28] is used to
compute the reconstructions, as employed in the homotopic L0

framework proposed in [21]. While many different numerical
optimization strategies [33], [34], [36], [37] can be used to
solve for f̂(s), this fixed point iterative solver is simple to
implement, has high computational efficiency, and provides
accurate reconstructions based on testing as well as in previous
literature [21]. A full description and implementation details of
the solver can be found in [21]. For the sake of consistency, the
parameters (e.g., λ, maximum number of iterations nmax, etc.)
pertaining to the solver used for all tested approaches are set
to be the same as that presented in [21], with the exception of
the maximum number of iterations for the proposed approach
being set to nmax = 30.

There are two important aspects that needs to be discussed
when implementing the proposed approach: i) the objective
function gradient used in the solver, and ii) the handling of
boundary conditions. Given the objective function Υ presented
in Eq. (11), the objective function gradient ∂Υ/∂f̂(s) can be
derived as follows. Let ΦF be the combined measurement-
Fourier operator defined as

ΦF = ΦF , (12)

For the real-value objective function defined in Eq. (10), the
objective function gradient ∂Υ/∂f̂ can be defined as

∂Υ

∂ f̂
=
[
Ψ∗RJf̂ΨR + λΦ∗FΦF

]
f̂ − λΦ∗FΦFf, (13)

with Jf̂ defined as
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Fig. 5. Error maps for the first set of sample reconstructions using the tested breast MRI reconstruction methods.

Jf̂ = In×n ⊗ JΓ
f̂
, (14)

where ⊗ denotes the Kronecker product operator, In×n is an
n× n identity matrix, n is the number of sites within a fifth-
order Markov connectivity around a central site, and JΓ

f̂
is a

diagonal matrix with its diagonal elements given by

JΓ
f̂
(s, s) =

ρ′
(∣∣∣ΨRf̂(s)

∣∣∣ , σ)∣∣∣ΨRf̂(s)
∣∣∣ . (15)

However, since we are dealing with complex-valued data,
we wish to determine the objective function gradient for
Eq. (11), which penalizes sparsity for both the real and imagi-
nary components. Differentiating Υ as defined in Eq. (11) with
respect to f̂ to obtain the objective function gradient yields the
following Cauchy-Riemann system,

[
Ψ∗RJ<{f̂}ΨR + λΦ∗FΦF

]
<
{

f̂
}

+i
(
λΦ∗FΦF f̂

)
−λΦ∗FΦFf = 0,

(16)

and

λΦ∗FΦF f̂+i
([

Ψ∗RJ={f̂}ΨR + λΦ∗FΦF

]
=
{

f̂
})
−λΦ∗FΦFf= 0.

(17)
Given that the system defined by Eqs. (16) and (17) is under-
determined, we instead compute the least squares estimate of
the objective function gradient, which is defined by

∂Υ
∂ f̂

=
[
Ψ∗RJ<{f̂}ΨR + λΦ∗FΦF

]
<
{

f̂
}

+i
([

Ψ∗RJ={f̂}ΨR + λΦ∗FΦF

]
=
{

f̂
})

+λΦ∗FΦF f̂ − 2λΦ∗FΦFf.

(18)

When employing the proposed sparsifying transform, the
boundary conditions are handled in the following manner.
First, for a site s under consideration, the regional difference
with all neighbors that lie entirely outside the boundaries are
treated as having a zero-value. Second, in the case where a
region around the site s under consideration is entirely inside
the boundaries but whose neighbors may lie partially outside
the boundaries, the regional difference with all neighbors
that lie partially outside of the boundaries is computed such
that the sites within the neighbor’s region falling outside the
boundaries are treated as having a zero-value. Third, in the
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case where the region around s itself lies partially outside the
boundaries, then the sites within the region around s falling
outside the boundaries are treated as having a zero-value.

The tested approaches were implemented in MATLAB and
tested on an Intel Pentium 4 3.0 GHz machine with 1 GB
of RAM. Each breast MRI slice took approximately 1 min
to reconstruct using both the proposed approach and the
homotopic L0 minimization approach based on finite differ-
ential sparsifying transform (each iteration of the proposed
approach took longer to compute, but the proposed approach
required less iterations), 50 seconds for the L1 minimization
with total variation norm, and 17 minutes using the non-local
total variation approach, which is not optimal for widespread
clinical deployment but can be improved significantly through
optimized code (since MATLAB is not well-suited for clinical
deployment) and parallel processing paradigms. For the re-
gional differential sparsifying transform, R is defined as 5×5
regions, as testing using breast MRI has shown little improve-
ment in reconstruction accuracy when using regions larger than
5×5. Finally, as with [21], the homotopic approximate of the
L0 norm was chosen as the Geman-McClure function [25],

ρ (|ΨRf(s)|, σ) =
|ΨRf(s)|
|ΨRf(s)|+ σ

. (19)

Two techniques were used to compare the different meth-
ods. To maintain consistency with other MRI reconstruction
literature [10], [21], a visual assessment of the tested MRI
reconstruction methods for sparse breast MRI reconstructions
is performed. Furthermore, to investigate the reconstruction
accuracy with respect to the number of samples used, the
average signal to noise ratio (SNR) across the tested sets
of breast MRI data was computed for various levels of
undersampling. The SNR measured was computed according
to the formula [38],

SNR
(
f̂
)

= 10 log10

(
V ar(f)

V ar(f̂ − f)

)
, (20)

where V ar(f) is the variance of the reference data, and
V ar(f̂ − f) is the error variance. The SNR measure indicates
in a quantitative manner the reconstruction accuracy compared
to the reference data, where a high SNR value indicates higher
reconstruction accuracy.

The average SNR of the proposed approach compared to
the other published methods as a function of percentage
undersampling is demonstrated in Fig. 6. The average SNR
decreases as the undersampling percentage increases for all
tested methods. However, the proposed approach produces
reconstructions with higher average SNR when compared
to the other tested methods for all levels of undersampling
percentage. An important insight that can be drawn from
average SNR as a function of percentage undersampling is
that the proposed approach is capable of producing accurate
reconstructions using fewer samples than the other tested
methods, which will reduce acquisition time and increase
the total number of screenings that can be done as well as
potentially reducing patient discomfort.

Fig. 6. Parametric test to illustrate the effect of percentage undersampling
on average signal to noise ratio (SNR)

Sample reconstructions for two slices of the breast MRI
data are shown in Figs. 1 and 3, with zoomed-in regions
shown in Figs. 2 and 4. Note that the reconstructions shown
in Figs. 1 and 3 are cropped versions of the reconstructions
(which are square), and as such have non-square dimensions.
The reconstruction produced by the L2 energy minimization
approach is contaminated by significant artifacts and possesses
a blurred appearance. While the L1 minimization approach
performs well at significantly reducing such artifacts, the
produced reconstruction still exhibits noticeable blurring in
most areas. The homotopic L0 minimization approach based
on finite differential sparsifying transform produced recon-
structions with minimal artifacts, and appears significantly
sharper and higher contrast than the L2 approach. However, the
produced reconstruction exhibits noticeable staircase effects,
which is particularly noticeable in the vessels in Fig. 2 and the
circular mass and outer breast boundary in Fig. 4, producing
a “cartoon”-like appearance with some loss of the finer details
and signal variations.

Finally, the proposed approach is able to produce sharp
and high contrast reconstructions that have minimal artifacts,
good preservation of fine details and signal variations, as
well as without any of the staircase artifacts exhibited by
the homotopic L0 minimization approach based on finite
differential sparsifying transform. An error map for the first
set of sample reconstructions is shown in Fig. 4. The recon-
struction proposed by the proposed reconstruction approach
exhibits noticeably lower reconstruction errors, particularly
in the structured regions, when compared to the other tested
methods.

IV. CONCLUSIONS

A novel approach for sparse reconstruction of a breast
MR image using homotopic L0 minimization based on the
regional differential sparsifying domain was proposed and im-
plemented. The effectiveness of the proposed approach in pro-
ducing high contrast and sharp reconstructions that preserves
finer structures characteristic of breast MRI while alleviating
artifacts compared to other published methods is demonstrated.
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Future work involve performing a comprehensive analysis of
the performance of the proposed approach using more realistic
cases with actual radial acquisitions, as well as for other types
of medical imagery.
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