
INTRODUCTION

Neurulation, one of the earliest of developmental processes,
has intrigued observers for millennia. The forces that drive
the seemingly simple shape changes that are necessary for
successful neural tube closure have been a subject of
intensive investigation during approximately the last one
hundred years (His, 1874; Roux, 1888; Lewis, 1947; Burt,
1943; Jacobson, 1978; Lee and Nagele, 1988; Koehl, 1990;
Schoenwolf and Smith, 1990). The general pattern of neural
plate shape change has been established (Jacobson, 1962;
Burnside and Jacobson, 1968; Jacobson and Löfberg, 1969).
Much is also now known about the morphology (Fig. 1A)
and mechanical nature of the cytoskeleton and other force-
producing structures that affect the neural plate (Burnside,
1973; Gordon and Brodland, 1987; Gordon and Essner,
1987). That neural tube defects are among the most common
of human birth defects has, no doubt, provided much of the

motivation for this work (Campbell et al., 1986; Copp et al.,
1990). 

An understanding of neurulation that is consistent with
the plethora of experimental evidence has, however,
continued to elude researchers (Trinkaus, 1984). The impor-
tance to neural tube morphogenesis of the notochord (Youn
and Malacinski, 1981; Jacobson, 1984), other extrinsic
forces (Lee and Nagele, 1988; Smith and Schoenwolf, 1991)
and even microfilaments (Burnside, 1973; Nagele and Lee,
1980; Schoenwolf et al., 1988) remain disputed. Novel
theories have arisen to account for intriguing aspects of
neural tube closure, such as cell skewing at the junction
between the neural plate and neural ridge (Jacobson et al.,
1986), and the appearance of ‘hinges’ during neural tube
closure (Smith and Schoenwolf, 1991). 

To investigate the mechanics of neurulation, one might
construct a physical machine, like Lewis (1947). Gears,
levers, springs, shock absorbers and blocks of viscoelastic
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Current theories about the forces that drive neurulation
shape changes are evaluated using computer simula-
tions. Custom, three-dimensional, finite element-based
computer software is used. The software draws on
current engineering concepts and makes it possible to
construct a ‘virtual’ embryo with any user-specified
mechanical properties. To test a specific hypothesis
about the forces that drive neurulation, the whole virtual
embryo or any selected part of it is ascribed with the
force generators specified in the hypothesis. The shape
changes that are produced by these forces are then
observed and compared with experimental data. 

The simulations demonstrate that, when uniform,
isotropic circumferential microfilament bundle (CMB)
constriction and cephalocaudal (axial) elongation act
together on a circular virtual neural plate, it becomes
keyhole shaped. When these forces act on a spherical
(amphibian) embryo, dorsal surface flattening occurs.
Simulations of transverse sections further show that CMB
constriction, acting with or without axial elongation, can
produce numerous salient transverse features of neurula-

tion. These features include the sequential formation of
distinct neural ridges, narrowing and thickening of the
neural plate, skewing just medial to the ridges, ‘hinge’
formation and neural tube closure. No region-specific
‘programs’ or non-mechanical cell-cell communications
are used. The increase in complexity results entirely from
mechanical interactions. The transverse simulations show
how changes to the driving forces would affect the
patterns of shape change produced. 

Hypotheses regarding force generation by micro-
tubules, intercellular adhesions and forces extrinsic to
the neural plate are also evaluated. The simulations show
that these force-generating mechanisms do not, by them-
selves, produce shape changes that are consistent with
normal development. The simulations support the
concept of cooperation of forces and suggest that neuru-
lation is robust because redundant force generating
mechanisms exist. 
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materials might be used to model the behaviour of the
passive cytoplasmic components and motors or servo-con-
trolled hydraulic cylinders used to produce any forces
exerted by microfilaments and microtubules (Fig. 1B). In
addition, a small-scale crawler tractor track system might be
used between the model cells to exert any forces produced
by intercellular adhesion forces or cortical tractoring. To
model the neural plate properly, the machine would have to
contain many hundreds of modules arranged in a three-
dimensional array so as to correspond geometrically to an
early stage neural plate. The machine could be used to test
various specific hypotheses about the forces that produce
neurulation. For example, when a particular set of force gen-
erators is activated and the machine is run, it would undergo
a sequence of shape changes that corresponds to the shape
changes that an embryo with those properties would undergo
under the action of those forces.

A computer simulation is a ‘virtual’ machine, which can
be given all of the properties and features of the mechani-

cal contrivance described above. Many of the drawbacks of
the physical machine, such as construction cost, friction and
self-weight can be eliminated. More sophisticated control
systems can be specified and changes can be implemented
more easily. Indeed, one might consider a computer simu-
lation to be a ‘virtual’ embryo, on which hypothetical or real
mechanical, biochemical or electrical properties can be
imposed and the consequent behaviour ascertained. 

Computer simulations play an important role in
advancing our understanding of neurulation and other devel-
opmental processes (Jacobson and Gordon, 1976; Odell et
al., 1981; Hilfer and Hilfer, 1983; Jacobson et al., 1986;
Weliky and Oster, 1990; Clausi, 1991; Brodland, 1993;
Brodland and Clausi, 1993). In particular, they provide a
means to test our intuitive understandings of developmental
processes. ‘Without such computer simulations, we are only
engaging in handwaving and wishful thinking about the per-
formance of our models [hypotheses]’ (Gordon, 1985). A
formulation that can test the spectrum of current hypotheses
about the forces that drive neurulation was required
(Jacobson, 1980; Koehl, 1990). 

Here, we use a finite element-based computer simulation
to investigate a number of hypotheses about the forces that
drive neurulation. The kinds of driving forces specified in
each of a number of different theories are applied in turn
and the patterns of shape change that they produce in a
virtual embryo are observed. Different driving forces are
found to produce significantly different patterns of shape
change. The simulations support aspects of the traditional
view and aspects of the modern concepts of cooperation of
forces and regional differences (Brun and Garson, 1984;
Schoenwolf and Smith, 1990). The simulations also suggest
the existence of redundant forces and a mechanical reason
that embryogenesis is robust. In addition, the simulations
make it possible to predict how normal patterns of shape
change would be affected if specific force generators are
i m p a i r e d .

FORMULATION

The finite element method (FEM) is a powerful and well-estab-
lished methodology for modelling physical systems (Abel et al.,
1981; Zienkiewicz and Taylor, 1989, 1991). It has been recognized
that computer simulations that use the FEM and related numerical
methods have potential to elucidate features of developmental
processes (Jacobson, 1980; Gordon, 1985; Cheng, 1987a,b; Koehl,
1990; Brodland, 1993; Brodland and Clausi, 1993). 

A number of technical challenges arise when the FEM is used
to model the mechanics of developmental processes. These arise
because large deflections, large strains and cell-cell neighbour
changes occur (Brodland, 1993). In addition, cells and their com-
ponents can exhibit nonlinear material properties and can be
incompressible (Brodland and Clausi, 1993).

A continuum-based finite element formulation specifically
designed to meet these technical challenges and to model the
mechanical behaviour of assemblages of cells, including cell
sheets, was recently developed by Brodland and Clausi (1993). The
formulation is truly three-dimensional, satisfies the technical
requirements outlined by Gordon (1985) and the authors (Brodland
and Clausi, 1993), and allows simulation time steps to be compared
directly to the biological time course. Large deflection, large strain
and material nonlinearity are accommodated by using an iterative,
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Fig. 1. (A) A schematic of part of an epithelial cell sheet.
Cytoskeletal components and some other possible sources of force
generation are shown. (B) A corresponding machine. Hydraulic
cylinders, for example, act to produce the transverse forces which
paraxial microtubules would exert. (These cylinders would act
against unbending apical and basal plates which are not shown.)
The forces generated by apical microfilaments and microtubules
could be generated in the analogous machine by servo-mechanical
actuators. A tractoring device serves to drive relative intercellular
motions.
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updated Lagrangian formulation. Numerical difficulties which can
arise when incompressible materials are modelled are circum-
vented using single-point quadrature and anti-hourglassing proce-
dures (Brodland and Clausi, 1993). The particular formulation used
here has been validated by comparison with analytical and
numerical solutions (Clausi, 1991) and its efficacy to model devel-
opmental processes demonstrated (Brodland and Clausi, 1993). To
ensure accuracy, small time steps are used and relevant mechani-
cal features such as constancy of element volumes are checked.
Also, a sufficiently fine finite element mesh is used that the results
are not mesh dependent. 

A neural plate can consist of thousands or tens of thousands of
cells, depending on its species and stage of development. To model
each cell individually like Weliky and Oster (1990) is impractical
due to current computer hardware limitations. The mechanical effect
of cell-cell rearrangements and of cytoplasmic deformations is
modelled by an effective isotropic viscosity (Phillips and Steinberg,
1978) and an equivalent stress in the direction of the rearrangement
(Brodland and Clausi, 1993). The formulation does not explicitly
model sliding between cells. However, since the displacement fie l d s
are generally smooth and highly similar from embryo to embryo
(Burnside and Jacobson, 1968), it is possible to approximate the real
behaviour by a bulk or continuum phenomenon. 

Here, we model small patches of cells using volume finite
elements. Since each region of the neural plate maintains its
volume during neurulation (Burnside and Jacobson, 1968; Keeton
and Gould, 1986), constant-volume finite elements of effective
viscosity, µ, are used. Circumferential microfilament bundles
(CMBs) inscribe the apex of neural plate cells (Burnside, 1971;
Gordon and Essner, 1987). Apical and paraxial microtubules are
also present. Subjacent to the epithelium are mesoderm and
endoderm which together are approximately the same thickness as
the overlying pseudostratified neural plate (Burnside and Jacobson,
1968; Burnside, 1971). 

Microfilaments have a number of characteristic mechanical
properties. The stress, σ, in a microfilament bundle apparently
remains constant as it deforms (Rappaport, 1977; Gordon and
Brodland, 1987). Also, as a microfilament bundle changes length,
its cross-sectional area changes so as to maintain its volume
(Burnside, 1971). Thus, the force, FMF produced by a particular
segment of a microfilament bundle is assumed to be given by

LoFMF = σA = σAo——, (1)
L

where A is the current cross-sectional area of the segment of CMB,
Lo is its original length, Ao is its original cross-sectional area and
L is its current length. Note, that as a microfilament bundle
shortens, the force it exerts increases. It is not physically reason-
able that this force increases without bound. Thus, when any micro-
filament shortens to 15 percent of its original length (Burnside,
1971), it is made stiff. In one of the simulations, microfilament
bundles are assumed to exert a force that is independent of their
length and which is given by

FMF = σΑο. (2)

Appropriately oriented, two-noded truss elements are used to
model the forces exerted by microtubules and microfilament
bundles. We note also that, while CMBs cause apical constriction
forces, apical microtubules would cause apical expansion forces if
they grew longer and pushed against the cell boundaries. It is the
difference between these forces that we assume drives cell apical
constriction (Gordon and Brodland, 1987). 

In order to simulate a wide range of different behaviours using
relatively few simulations, we make use of dimensionless parame-
ters FA and FT to describe ‘apical’ and ‘transverse’ forces. The

ratio, FA, of net apical force to effective viscosity is defined using
the formula

NMF FMF−NAMT FMT
FA = ————————— , (3)

µwhθ

where NMF and NAMT are the mechanically equivalent number of
microfilament bundles and apical microtubules, respectively,
acting in the direction of the force being calculated. The variables
h and w are the initial cell sheet thickness and the initial width of
the cross-section of the sheet over which NMF microfilaments and
NAMT microtubules act. This width may be chosen to correspond
to either a single cell or a patch of cells. In the strip simulations
shown below, w corresponds to the width of the strip. A time
parameter, θ, with units of time−1 makes the parameter, FA, dimen-
sionless. Dimensionless time, τ, is related to real developmental
time, t, by

τt = —. (4)
θ

Brodland and Clausi (1993) have noted that the forces produced
by paraxial microtubules, intercellular adhesion forces and several
other force generators are mechanically equivalent. Here, we define
an equivalent transverse force, FT, given by 

ηd + NPMT FMT
FT = ———————, (5)

µwdθ

where η is the adhesion force per unit length of element boundary,
d is the current length of this boundary and NPMT is the mechani-
cally equivalent number of paraxial microtubules acting in the
direction of the force being calculated.

SIMULATIONS

In each of the simulations described here, a particular,
hypothesized combination of driving forces is applied to a
whole or partial virtual embryo. In order to provide accurate
simulations while keeping computer run times reasonable,
neural plate shaping and transverse section shape changes
are treated separately. All of the simulation results shown
are computer-generated drawings of the actual deformed
finite element mesh geometries. 

When apical constrictions act, they are assumed to be
isotropic and to act with an initial force of FA= 0.10 at all
points over the dorsal surface. This value is conservative,
for if estimates such as σ=1.3×10−3 dynes/µm2 (Gordon and
Brodland, 1987), Αο=2.26×10−2 µm2 (Burnside, 1971) and
µ=2.77×10−10 dyne·hour/µm2 (Hiramoto, 1969) are used,
although they are for different species (the viscosity mea-
surement is from a different phylum), a parameter as high
as FA=80 can result. In most of the simulations, some form
of axial elongation also occurs.

Shaping of the neural plate
Shaping of the initially circular neural plate into a keyhole
shape is one of the earliest features of neurulation. To
investigate this process, we follow the approach of
Jacobson and Gordon (1976) and study this process using
a flat plate. Fig. 2 shows a simulation of the left half of the
flat dorsal surface of an Ambystoma mexicanum ( a x o l o t l )
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embryo as it develops from approximately stage 14 to stage
16 (Bordzilovskaya et al., 1989). Volume finite elements
represent patches of cells, which are initially 80 µm by 80
µm by 120 µm thick. To provide appropriate boundary
conditions, the mesh extends to a radius of 1600 µm, the
approximate half-circumference of an axolotl embryo.
Truss elements (identified with thicker lines in Fig. 2A-C)
model the forces produced by CMBs and act only at the
apices of the elements which represent patches of neural

plate cells. In addition, the region identified in Fig. 2C is
elongated at a rate of 100 µm/hour. This region falls inside
the physical location of the notochord as identified by
Youn et al. (1980) and approximately matches the
narrower width of active elongation region identified by
Jacobson and Gordon (1976). 

Corresponding time-lapse photographs of the dorsal
surface of axolotl embryos taken in our laboratory are shown
in Fig. 2D-F. A regular grid was placed on the first figure
and deformed manually to match subsequent cell motions.
Parts A, B and C of the figure correspond in development
to parts D, E and F, respectively. Since shape changes occur
in the virtual embryo at a rate that matches the time scale of
real embryo development, this suggests that the ratio of
microfilament force to viscosity that occurs in axolotl neural
plate cells is such that FA≅0.10. 

Fig. 2 pairs (A,D, B,E and C,F) match, respectively, the
in-plane Taricha torosa neural plate shape changes reported
in parts A,C and D of figure 2 of Burnside and Jacobson
(1968). Substantial agreement exists between the three sets
of data, both in terms of gross shape changes and details of
the shape changes. The patterns of neural plate thickening
and thinning produced in the virtual embryo also match the
experimental results of Burnside and Jacobson (1968) in that
moderate thinning occurs in the dorsal region during shaping
and significant thickening occurs in the cephalic region. Fur-
thermore, the regions of thinning and thickening are clearly
demarcated at the cephalic end of the actively elongating
region in both cases. 

The rate of neural plate shaping in A. mexicanum is sub-
stantially higher than that in T. torosa although the patterns
of shape change are similar. The parameter, θ, can therefore
be used to make the dimensionless time course of the sim-
ulation match the real time course of the development of
either species. If, for example, θ is set to 0.5 hour−1, real
time is (2τ) hour and the simulation approximately matches
the development of T. torosa, instead. 

This simulation makes use of slightly more than 5000
degrees of freedom, requires approximately 20 minutes per
time step on a Sun SPARC 1+ computer workstation, for a
total run time of approximately five hours.

Do notochord elongation and isotropic microfil a m e n t
forces acting together also produce out-of-plane shape
changes matching those that typically occur in spherical,
amphibian embryos? To answer this question, we model a
2 mm diameter, amphibian embryo (Fig. 3). Because of its
bilateral symmetry, only one symmetric half of the embryo
need be modelled. A 120 µm-thick outer layer, represent-
ing the ectodermal layer and a fraction of the underlying
mesoderm is given a viscosity, µ. The interior of the real
embryo is filled with cells and fluid and is much less
resistant to deformation. It is modelled using fin i t e
elements that have a viscosity of µ/100. The inner layers
of finite elements are required to maintain constancy of
embryo volume. An isotropic apical constriction of
magnitude FA =0.10 acts over the presumptive neuroep-
ithelium (the dorsal hemisphere). To avoid confusion with
notochord elements, these are not shown with thicker lines,
in this simulation. The notochord is represented using
elements which produce an axial elongation force, FE L p e r
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Fig. 2. (A-C) Results of a finite element simulation in which
notochord and apical forces act on a flat virtual embryo. The
patterns of shape change are evident from the displacements of the
finite element boundaries. The parameter τ is a dimensionless
time. (D-F) Corresponding time-lapse photographs of axolotl
embryo development. Cell motions were tracked manually and
used to deform the reference grid shown in D as the embryo
developed. 
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element over NE L elements, are separated from each other
by distance w and produce a total dimensionless force FE
given by 

NEL FEL
FE = ————— . (6)

µwhθ
These elements are shown by the thicker lines just inside the
dorsal border of the embryo illustrated in Fig. 3. Again,
comparison with biological patterns of deformation make it
possible to estimate this force parameter to be approximately
FE=12. The notochord geometry is based on that shown by
Youn et al. (1980). 

Significant flattening occurs in the dorsal region which
overlies the notochord (Fig. 3B). This is not caused by
notochord straightening, per se, because the notochord is
assumed to have zero bending stiffness in our simulations.
The location and degree of the resulting flattening in the
virtual embryo is consistent with typical amphibian embryos
(Bordzilovskaya et al., 1989). As expected, neither dorsal
flattening nor keyhole in-plane shaping occur in simulations
where only microfilament forces act.

Transverse aspects of neural tube morphogenesis
To investigate the transverse aspects of neural tube devel-
opment, we model a narrow transverse strip of the embryo.

The use of narrow strips to model transverse shape changes
is well established (Odell et al., 1981; Dunnet et al., 1991).
We have confirmed the validity of this approach by
modelling longer segments of the neural plate. We have also
previously shown that the same basic patterns of shape
change occur in initially flat (chick) and initially curved
(amphibian) virtual neural plates (Clausi, 1991). Here, we
use a ‘generic’ initially flat plate so that no features of the
resulting shape changes are attributable to initial curvature
effects. 

An assemblage of 20 volume finite elements, each 40 µm
by 40 µm by 120 µm tall, is used to model a strip from the
left half of a neural plate and 20 geometrically identical
elements model the attached non-neural ectoderm (Fig. 4).
Thicker lines are used to indicate the locations of active
CMBs. These forces increase as the microfilament shortens,
in accordance with equation (1). Time-lapse images of
axolotl neurulation taken in our laboratory and the kinematic
maps of Burnside and Jacobson (1968) indicate that the
epithelium moves medially. Thus, in the simulation, the left
edge of the strip is moved medially at a rate of 56 µm·θ and
the strip undergoes uniform axial elongation so that its width
doubles by τ=17. This rate of medial motion does not
produce compression in the non-neural ectoderm and,
therefore, does not drive neural tube closure. All edges of
the strip are constrained against rotation. 

Fig. 4A shows the starting configuration of the simula-
tion. Fig. 4B,C shows the formation of a distinct neural
ridge. As noted by Brodland and Clausi (1993), this is a
boundary layer phenomenon. The virtual plate remains
largely flat, while it thickens and narrows. This pattern is
consistent with a large body of experimental evidence
(Burnside and Jacobson, 1968; Burnside, 1973; Brun and
Garson, 1983). Fig. 4D-F shows further narrowing and
thickening of the plate and the formation of a further
‘wedge’ or ‘hinge’ point near the midline (Schoenwolf et al.,
1988). One of the important details of this simulation is the
occurrence of skewing at the junction between the neural
ridges and the rest of the plate (Jacobson et al., 1986;
Brodland and Shu, 1992). The neural tube eventually closes
(Fig. 4F). When axial elongation occurs, each area of the
plate and non-neural ectoderm must thin or narrow so as to
maintain constancy of volume (Burnside and Jacobson,
1968), an effect described by Poisson’s ratio (Beer and
Johnson, 1992). For this reference case, approximately 400
time steps are used.

Are similar patterns of shape change produced by other
driving forces? Fig. 5 contains selected, representative
time steps from several simulations designed to answer
this question. Each simulation is designed to test a partic-
ular hypotheses about the forces which drive neurulation,
or to determine the sensitivity of the mechanical system
to changes in various parameters. The initial geometries
and parameters used in these simulations are identical to
those used in the reference case except for the alteration
of one or two parameters or driving forces as shown in
Table 1. 

Substantial differences between the simulations are
apparent. When no axial elongation occurs (Fig. 5B), both
the neuroepithelium and non-neural ectoderm are thicker
than in the reference case (Fig. 5A). This, presumably, is

Fig. 3. In the simulation shown here, both notochord and apical
forces act on a spherical virtual embryo. The left side of an
embryo has been modelled and the cephalic end of the embryo is
towards the left in the figure. Finite elements that simulate
notochord elongation are shown with heavy lines. The dorsal
surface flattens in the region where active notochord elongation
occurs.
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because Poisson thinning does not occur. If the microfila-
ment force remains constant as described by equation (2)
rather than increasing with element shortening, a hinge does
not form at the midline and no part of the plate remains flat
(Fig. 5C). Even over the extended period of this simulation,
a closed neural tube does not form. If the neural plate begins
half as thick as in the reference case, a sharper and narrower
neural ridge is formed, the midline hinge forms twice as
quickly and an additional hinge forms (Fig. 5D). These four
simulations suggest that details of the geometry and force
generators can significantly affect the shape changes
produced.

It is widely held that paraxial microtubules play an
important role in neural tube closure (Burnside, 1973;
Nardi, 1981; Schoenwolf and Smith, 1990). That paraxial
microtubules can influence neural plate thickening and
narrowing has been established (Schoenwolf and Powers,
1987). However, their role in neural tube closure has
remained unresolved. Another popular and related hypoth-
esis is that adhesion forces drive neurulation (Nardi,
1981). Since the forces produced by paraxial microtubules
are mechanically equivalent, both at a cellular and bulk
scale, to those produced by intercellular adhesions
(Brodland and Clausi, 1993), both hypotheses can be
tested using a single simulation. We call these forces
transverse forces. 

Fig. 5E shows the results of a simulation which is
identical to the reference case except that the apical forces
are replaced with transverse forces of magnitude FT= 0 . 0 4 .
Other simulations, not included here, show that it is
possible for the virtual neural plate to actually thin if the
transverse forces are not strong enough to overcome
Poisson thinning caused by axial elongation. No tendency
towards invagination or rolling is observed. The simula-

tions produce shape changes that resemble those shown in
Fig. 6A of Nardi (1981) but not those of his Fig. 6B. We
note, however, that if adhesion forces were preferentially
directed towards the apical surface, they might cause
invaginations. Fig. 5F shows the effect of transverse forces
and apical forces acting together. In this case, the virtual
neural plate thickens to the point that even when the
element apices shrink maximally, they are not sufficiently
keystoned to bring about closure. 

A related hypothesis, which has been suggested by Nardi
(1981) and others, is that transverse forces would cause
invaginations to form if an incompressible base is formed
by, for example, an extracellular matrix (ECM). We agree
that these forces would produce curling in an isolated piece
of tissue. However, the simulation shown in Fig. 5G demon-
strates that the bending forces that are produced are insuffi-
cient to overcome the mediolateral in-plane tension and
cause rolling.

Several lines of argument suggest that forces extrinsic to
the neural plate might be available to drive neurulation
(Schoenwolf and Smith, 1990). The simulation shown in
Fig. 5H shows the shape change produced by a medial force
of magnitude

FMedial
FM = ———— = 0.15, (7)

µwhθ

applied at the lateral edge of the virtual neural plate. We note
that the shape produced bears a strong resemblance to the
shape that occurs in chick when it is treated with cytocha-
lasin D to disable microfilament action (Schoenwolf and
Smith, 1990).

A number of experiments in which neural plate tissue has
been implanted into non-neural ectoderm or vice versa have
been carried out (Jacobson and Gordon, 1976; Moury and
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Fig. 4. A reference case simulation of a
transverse strip of tissue driven by apical
microfilament bundle constriction. The strip
is subject to axial elongation and lateral
boundary motions as specified in the text.
Only the left side of the embryo is shown
since the patterns of deformation are
symmetric. Three-dimensional views are
shown so that the degree of axial elongation
is visible. 
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Jacobson, 1989). Moury and Jacobson note that ‘folds
develop at all the new boundaries’ and that ‘artificially
created neural folds always ‘roll’ over the neural plate.’ Fig.
6 shows a simulation in which an ‘L’-shaped patch of neural
tissue is implanted into non-neural ectoderm cells. The
elements shown are 40 µm by 40 µm by 120 µm tall. The

neural tissue is different from the non-neural ectoderm only
because of its active microfilament forces (FA=0.10), shown
with thicker lines. The simulation shows that the rolling
follows the newly formed boundary closely. Other details of
the shape change are apparent in cross-sectional views of
invagination driven by similar forces and shown in Brodland

Fig. 5. Representative time steps selected
from several families of simulations.
Parameter values and other details of the
simulations are given in the text and in
Table 1. (A) Reference case; (B) no axial
elongation; (C) constant apical force;
(D) thinner plate; (E) transverse forces only;
(F) transverse forces and apical forces;
(G) transverse forces with incompressible
base; (H) extrinsic pushing force.

Table 1.  Parameters used in transverse section simulations
Simulation name Initial thickness  (µm) Axial elongation Apical force FA Transverse force, FT Other properties

Reference case 120 Yes 0.10 (Eqn 1) 0 –
No axial elongation 120 No 0.10 (Eqn 1) 0 –
Constant apical force 120 Yes 0.10 (Eqn 2) 0 –
Thinner plate 60 Yes 0.10 (Eqn 1) 0 –
Transverse forces 120 Yes 0 0.04 –
Transverse forces andapical forces 120 Yes 0.10 (Eqn 1) 0.04 –
Transverse forces with incompressible base 120 Yes 0 0.04 Incompressible base
Extrinsic pushing forces 120 Yes 0 0 Extrinsicforces
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and Clausi (1993). Thickening of the neural tissue, edge
rolling and the occurrence of a somewhat flattened bottom
are evident. 

DISCUSSION

Simulations of the type presented here can have two inter-
pretations. They can be used to test hypotheses about the
forces that drive neurulation. They can also predict how per-
turbations to driving forces would affect the patterns shape
changes produced. The simulations show that the kinds of
shape change produced in a virtual neural plate are highly
sensitive to the sources of the driving forces (Fig. 5A,E,H)
and to their details (Fig. 5C,F) making analyses based on
either interpretation meaningful. In contrast, when only the
ratio of driving force to element viscosity is increased, accel-
erated sequences of otherwise identical shape change are
produced (Brodland and Clausi, 1993). 

To compare models that differ in geometry, however, is
less straightforward (Brodland, 1988). Nonetheless, it can
be concluded from the numerous simulations that we have
done, some of which are shown herein, that CMB constric-
tion acting alone or in concert with other force generators
has a strong tendency to produce the characteristic features
of neural tube closure in virtual embryos of various geome-
tries (Fig. 5A-D,F). Thus, the simulations suggest that, even
in species that have substantially different neural plate
geometries, CMB constriction is likely the principal driving
force.

The reference case simulation demonstrates that isotropic
apical constrictions, which increase with shortening micro-
filament length in accordance with equation 1, can, by them-
selves, produce the cardinal transverse features of neurula-
tion in a virtual neural plate. These include the successive
formation of distinct neural ridges, thickening and
narrowing of the neural plate, skewing of cells at the medial
edge of the neural ridges, formation of distinct hinge points,
and rolling and closure of the neural tube. Here, no use is
made of cell ‘programs,’ cortical tractoring (Jacobson et al.,
1986), or biochemical controls or signals. 

The mechanical basis of this sequence of shape changes
can be explained in detail. Initially, the apical forces in the
neural plate are balanced from element to neighbouring
element (or cell to neighbouring cell) everywhere except at
the junction of the neural plate and the non-neural ectoderm
(Fig. 4A). This allows the cells at the lateral edge of the
neural plate to constrict apically, become keystone-shaped
and form a distinct boundary layer, which we recognize as
the neural ridge (Brodland and Clausi, 1993). Neighbouring
non-neural ectoderm cells are, in response, drawn over the
edge of the neural plate (Fig. 4B,C). Tension in the ecto-
dermal sheet regulates the degree of rolling at the boundary
layer and causes the rest of the ectoderm to remain flat. That
this is indeed a boundary layer phenomenon is supported by
the simulation shown in Fig. 6.

As the apices of the neural plate cells continue to
constrict, the neural plate narrows and thickens, and the
microfilament force acts even further from the current
middle surface (Flugge, 1973) of the sheet (Fig. 4D). As the
microfilaments constrict, the microfilament force also
increases in accordance with equation (1). As a result of
these two factors, a substantially increased bending moment
is produced leading to neural tube closure (Fig. 4F). That
closure is substantially delayed or possibly prevented when
the microfilament force does not increase (Fig. 5C) and that
closure of a thicker plate, which has the same total volume,
is accelerated (Fig. 5B), support this interpretation. The
thinner plate (Fig. 5D) closes more quickly because the ratio
of forces acting to the amount of cellular material that must
be deformed is substantially higher and thus does not con-
tradict this conclusion. 

The data of Burnside and Jacobson (1968) show that the
cephalic end of the future spinal region undergoes less axial
elongation and is thicker than the balance of the future spinal
region of the plate. The simulations suggest that this short
section of the tube closes first because of its greater
thickness. The cephalic parts of the plate do not close as
quickly even though they are thicker because they do not
benefit from Poisson narrowing caused by axial elongation. 

The degree of curvature produced is not uniform from point
to point across the width of the plate. Schoenwolf et al. (1988)
refer to the regions where concentrated bending occurs as
hinge points. That these hinge points are indeed caused by the
same kind of mechanical instability as that discussed by
Brodland and Clausi (1993) is strongly indicated by the
constant force (Fig. 5C) and thinner plate (Fig. 5D) simula-
tions. In the thinner virtual plate, hinge spacing is sufficiently
reduced that an additional hinge is produced. Also, consistent
with the predictions of Brodland and Clausi, when a constant
force (equation (2)) is used, no hinges form.

D. A. Clausi and G. W. Brodland

Fig. 6. This simulation shows an ‘L’-shaped piece of neural tissue
(tissue in which CMBs are assumed to be active) implanted into
non-neural ectoderm. Note how rolling of the non-neural
ectoderm onto the implanted neural tissue occurs along the
boundary between the two tissue types.
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The simulations show that transverse forces alone will not
drive neural ridge formation or produce tube closure in
virtual embryos (Fig. 5E,G). They do, however, cause plate
thickening and narrowing. This is consistent with experi-
ments in which microtubule inhibitors are applied and
normal plate thickening and narrowing does not occur
(Schoenwolf and Powers, 1987). Whether microtubules
provide an active driving force or whether they act to
stabilize shape changes driven by other mechanisms
(Gordon and Brodland, 1987) is unknown. If the transverse
force were increased, an identical sequence of shape
changes would be produced, but at a faster rate.

The extrinsic pushing force simulation (Fig. 5H) demon-
strates that neurulation-like motions that match those
reported by Schoenwolf and Smith (1990) would occur if
lateral pushing forces act at the edge of the neural plate.
Schoenwolf et al. (1988) report that neurulation-like
motions can occur in the absence of apical microfilaments.
Lateral forces, generally similar to those used in this simu-
lation, might be produced by other means. For example,
when the neural plate is removed, medial motions can still
occur, but these motions are somewhat retarded (Jacobson,
1962; Jacobson and Jacobson, 1973). That the archenteron
roof has the ability to drive morphogenetic motions is clear
from Fig. 5 of Jacobson and Löfberg (1969) where, in the
caudal region, the mesoderm motions occur at a faster rate
than those of the immediately overlying neural plate. The
medial motions of the ectoderm are apparently driven by
medial motions of the mesoderm and endoderm, for in the
absence of these tissues ‘neurulation movements were
inhibited entirely’ (Jacobson, 1962).

Experiments in which slits are made in the neural plate or
adjoining non-neural ectoderm (Lewis, 1947; Jacobson,
1962; Karfunkel, 1974; Jacobson and Gordon, 1976) have
led to the conclusion that the ectoderm is under consider-
able tension. Closure and healing of the slits, a process that
takes of the order of one hour, is apparently a wound healing
reaction. Schoenwolf and Smith (1990) argue that such
gaping is due to extrusion of deep cells and that slit closing
is the result of compressive extrinsic forces in the epithe-
lium. This, however, is not consistent with Jacobson (1962),
who reported that when a long incision is made through both
the neural plate and the archenteron roof, the separated
portions of the neural plate narrow and the gap continues to
widen. Apparently, wound healing mechanisms are insuffi-
cient to close a long gap. If the non-neural ectoderm acted
to push the neural folds together, as argued by Schoenwolf
and Smith, a long gap should still close. Schoenwolf et al.
(1988) suggest that expansion of the surface ectoderm may
provide the driving force. The simulation represented in Fig.
5H suggests that such forces, by themselves, would not
produce normal patterns of neural tube formation.

The ability of the notochord to cause axial elongation of
explanted neural plates is well established (Jacobson and
Gordon, 1976; Jacobson, 1984; Adams et al., 1990) and has
led to the notion that it generates axial elongation forces in
amphibian embryos. Youn and Malacinski (1981), however,
report that apparently normal keyhole shape formation and
tube closure are possible in notochordless embryos. Since
invagination of epithelial tissue through the blastopore
continues during the early stages of neurulation, this might

drive the axial elongation. Indeed, the axial force that would
be produced by invagination of dorsal epithelium would be
almost mechanically equivalent to that produced by
notochord elongation. The elongation that acts in the simu-
lation shown in Fig. 3 is consistent with either notochord
elongation or epithelial invagination through the blastopore.
That notochordless explants do not elongate (Jacobson and
Gordon, 1976) suggests that differential adhesions between
laterally adjacent neural plate cells do not act. If they did,
they would produce convergent extension and thus narrow
and elongate the excised plate. 

In the presented simulations, consistent with the current
literature, all neural plate cells are assumed to be initially
identical. The gross shape changes and local element-
element (cell-cell) differences that develop during the course
of the simulations result entirely from mechanical interac-
tions between the elements and not from manual pre-pro-
gramming (Jacobson and Gordon, 1976) or triggering (Odell
et al. 1981). Thus, for example, in a simulation of a noto-
chordless embryo, the substantially different pattern of
virtual neural plate thickness changes is determined entirely
by mechanical interactions (Figs 2, 5B). In contrast,
Jacobson and Gordon use the same pre-programmed height
changes for simulations with and without a notochord.
Because our simulations treat as unknowns a greater number
of relevant primary quantities, such as in-plane displace-
ments and sheet thickness, the likelihood that erroneous
driving forces would produce proper shape changes is also
reduced.

Inasmuch as the mechanical development that occurs at
one instant is dependent on the previous mechanical history
of the embryo, a mechanical basis for an epigenetic
landscape exists. Critical biochemical consequences may
also follow from the mechanical changes (Ben Ze’ev, 1985)
and, in turn, may directly affect the characteristics of the epi-
genetic landscape. Because embryonic cells are in mechan-
ical contact with each other, they can be considered to be
sending mechanical signals to each other through force
interactions. It is through these ‘signals’ that a mechanical
system might contribute to an increase in embryo complex-
ity. 

Brodland and Clausi (1993) have demonstrated that apical
contraction forces can produce a significant variety of
behaviours in cell sheets and masses of cells including
invagination, wave propagation and pattern formation. This
suggests that a uniformity of causes might exist between
these various phenomena. Thus gastrulation, neural tube
rolling, wave propagation, optic cup formation and somite
formation (Stern and Goodwin, 1977; Jacobson, 1978)
might be caused by related mechanisms.

The traditional viewpoint is that neural plate closure is
driven by the CMB constriction, paraxial microtubule
elongation and notochord-driven axial elongation. Our sim-
ulations of transverse sections suggest that CMB constric-
tion and axial elongation are the principal driving forces.
Paraxial microtubule elongation, in contrast, can slow or
even prevent neural tube closure of virtual embryos. CMB
constriction and axial elongation acting together can also
produce dorsal surface flattening in amphibians and in-plane
shape changes that match closely corresponding time-lapse
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sequences. They also produce numerous salient transverse
features of normal neurulation. 

The possibility that there may be cooperation of forces
(Schoenwolf and Smith, 1990; Brun and Garson, 1983), and
significant interspecies differences in the forces that act, is
also supported by our simulations. The experimental
evidence and simulations also suggest that there is redun-
dancy in this mechanical system. Thus, should the primary
system not exert sufficient force or cause shape changes to
occur at some minimal rate, the action of a secondary system
becomes evident. Redundancy is an important feature of
complex man-made systems and provides for them the
robustness that many natural systems seem to enjoy.

With regard to the role of specific subcellular components
in neurulation, we suggest that microfilaments play a
primary role in driving the shape changes. Microtubules
may, however, act to provide intracellular transport and to
stabilize the cells mechanically. They might also mechani-
cally constrain and thus regulate, microfilament-driven
motions (Gordon and Brodland, 1987). Intermediate
filaments apparently give cell cytoplasm a high effective
viscosity and provide lateral support to microtubules
(Brodland and Gordon, 1990). We recognize that a host of
molecular mechanisms are involved in these mechanical
processes. Biochemical and electrical signals within the
plate and from tissues adjacent to the neural plate may also
be important to certain stages of plate or tube development.
This notwithstanding, it is evident that the ultimate
processes that bring about neural plate shaping and neural
tube closure are mechanical. 

We consider the simulations presented here an important
step towards a more quantitative understanding of develop-
ment like that called for by Koehl (1990). Another important
step would be the cataloguing of detailed, species-specific
mechanical properties on which to base simulations. If the
shape changes produced in a particular mechanical simula-
tion do not match experimental results, this would indicate
that additional factors are acting. These might include other
mechanical factors, biochemical signals, cell programs, or
other factors that ultimately have mechanical consequences.
Indeed, a next step might be to identify detailed differences
between species-specific simulations and corresponding
experimental results, and to use these to identify where other
factors that have direct mechanical consequences must be at
work. 

This research was funded a Natural Sciences and Engineering
Research Council of Canada (NSERC) research grant to G. W. B.
and an NSERC Postgraduate Scholarship to D. A. C. Animals for
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Armstrong, University of Ottawa.
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