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Communications

A Fast Method to Determine
Co-Occurrence Texture Features

David A. Clausi and M. Ed Jernigan

Abstract—A critical shortcoming of determining texture features de-
rived from grey-level co-occurrence matrices (GLCM’s) is the excessive
computational burden. This paper describes the implementation of a
linked-list algorithm to determine co-occurrence texture features far more
efficiently. Behavior of common co-occurrence texture features across
difference grey-level quantizations is investigated.

I. INTRODUCTION

Texture features calculated from grey-level co-occurrence matrices
(GLCM’s) are often used for remote-sensing image interpretation
[1]–[3]. There are acknowledged computational shortcomings when
using GLCM’s to determine co-occurrence texture features. Such re-
strictions make pixel-by-pixel image segmentation impractical. Shokr
[3] suggested that a linked list approach may be better suited for
generating co-occurrence features than a matrix approach. The focus
of this communications is to describe such an implementation and to
provide insight into its performance.

II. A LGORITHMS

A. GLCM’s and Features Based on the GLCM’s

A GLCM contains the conditional-joint probabilities(Cij) of
all pairwise combinations of grey levels for a fixed window size
(N) given two parameters: interpixel distance(�) and interpixel
orientation(�): A different GLCM is required for each(�; �) pair.
Each GLCM is dimensioned to the number of quantized grey levels
(G): A GLCM is often defined to be symmetric, that is, a pair of
grey levels(i; j) oriented at 0� would also be considered as being
oriented at 180� so that entries would be made at(i; j) and(j; i):

Applying statistics to a GLCM generates different texture features.
Eight common grey-level shift-invariant statistics are presented in
Table I. These statistics extract three fundamental characteristics
from the co-occurrence matrices. Moments about the main diagonal
indicate the degree of smoothness of the texture (i.e., DIS, CON,
INV, IDM). Another fundamental characteristic of the co-occurrence
matrix is the uniformity of its entries (i.e., MAX, UNI, ENT). If
the grey levels in the window tend to be homogeneous, then only a
few grey-level pairs represent the texture. The final statistic (COR)
describes the correlation between the grey-level pairs(i; j). Two
of the statistics (INV and IDM) normalize the grey-level difference
(i�j) by G, since normalized statistics consistently performed better
than unnormalized versions [4].
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TABLE I
GLCM TEXTURE STATISTICS DEFINED. (�x; �y) AND (�x; �y) ARE

MEANS AND STANDARD DEVIATIONS OF ROW i AND COLUMN j

B. Traditional Implementation

A GLCM can be quite sparse. If the full dynamic range of a typical
image is used, then each GLCM is 256� 256 elements (65 536
entries). If the window size is 20� 20, then, at most, (20)(19)(2)=
760 matrix entries are possible. Applying statistics involves looping
through each of the GLCM’s, an inefficient procedure given that
most of the matrix entries are zero. These computational demands
are, in practice, reduced by using a number of techniques: grey-level
quantization, avoiding pixel-by-pixel segmentation, and limiting the
number of features.

• To reduce the size of the GLCM’s, the image data is quantized
from eight bits down to as few as four or five bits. Quantization
has the potential to remove pertinent information from the image.
What happens to the GLCM features if the full dynamic range
is used?

• For a pixel-by-pixel image segmentation problem, the GLCM
approach is expensive. The resolution of the nonoverlapping
windows is the window size, but the resolution of the fully
overlapping windows is one pixel. Baraldi and Parmiggiani
[1] use nonoverlapping windows, and the result is not realistic
because the segmentation boundaries are “blocky.”

• The number of statistics and/or the number of orientations for
each co-occurrence matrix are limited so that the texture features
are calculated within a reasonable duration. Deciding which
statistics are the most informative for remotely-sensed imagery
has been the focus of research efforts [1]–[3].

Here, we directly address the first two issues (grey-level quan-
tization and pixel-by-pixel segmentation) by utilizing a linked list
approach.

C. Linked-List Implementation

One method to improve sparse matrix performance is to use a
linked-list approach [5]. Using a grey-level co-occurrence linked list
(GLCLL) is efficient because it does not allocate storage for those
grey-level pairs that have zero probability.

The linked lists are set up in the following manner. Each linked-
list node is a structure containing the two co-occurring grey levels
(i; j), their probability of co-occurrence, and a link to the next
node on the list. The linked list is kept sorted, based on indexes
provided by the grey-level pairs. An example of such a sorted list
would bef(1; 2); (1; 4); (1; 5); (3; 3); (3; 4); (4; 6); � � �g wherei < j:

To include a new grey-level pair in a linked list, a search is performed
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TABLE II
COMPUTATIONAL REQUIREMENTS OFCO-OCCURRENCETEXTURE FEATURES

by finding the first instance ofi and then proceeding from that point
to find j: If the pair is found, then its probability is incremented;
otherwise, a new node is added to the list at the location where the
search expected to find the node for(i; j):

An unsorted linked list could have been implemented by simply
searching simultaneously on both grey levels. If(i; j) is not found,
a new node would be added to the end of the list. However, a sorted
list is more efficient because only one comparison for each node is
performed when searching, and an exhaustive search is unnecessary
when a grey-level pair does not exist in the list.

In the GLCM approach, the matrix is usually symmetric, how-
ever, storing symmetrical information increases the length of the
linked lists, which undermines their computational advantage. Thus,
probabilities are stored asymmetrically, and texture features are
still calculated that are identical to those evaluated for symmetrical
GLCM’s.

For a complete image, the GLCLL’s are created when the window
is at the top left-hand corner. After the features are calculated, the
window is moved one column to the right. Instead of recalculating
entire GLCLL’s, the current GLCLL’s are updated to reflect the
new information. The pairs of grey levels introduced by the new
column are inserted into the GLCLL’s. The pairs associated with the
column that the window just passed over are subtracted from the
GLCLL’s. If the subtraction causes the grey-level pair to have a zero
probability, then the node is removed. When the window reaches the
end of the row, it just slides down a single row. Here, it updates the
GLCLL’s by including the new pairs from the row that the window
has just moved on top of and subtracting the pairs from the row
that the window has just moved beyond (in the same manner as
updating a column). The window then moves in a zig-zag fashion
until the entire image has been covered. This method for generating
the co-occurrence information will be referred to as “updating.”

III. T ESTING

Routines have been implemented in C by using an IBM RISC
System/6000 Model 43P (64 Mb RAM, 100 MHz, SPECint92-128.1,
SPECfloat92-120.2). To directly evaluate sea ice imagery, a C-band
HH image, obtained during the Labrador Ice Margin Experiment
(Limex), is used [6]. This image has three dominant classes: brash
ice, open water, and first-year smooth ice. Two types of evaluations
are performed. First, computational speeds of four different scenarios
are compared. Second, samples of the different textures are used
for classification testing. The effects of modifying the grey-level
quantization are investigated.

Classifications are performed by using a supervised pairwise
Fisher linear discriminant [7]. This method finds the line in then-
dimensional feature space so that two classes are optimally separated
by projections of the samples onto the line. A maximum-likelihood
classifier is used to classify projected samples. To classify a sample,
classification is first performed by exhaustively comparing all possible
class pairs. The class that is selected most often is the class to which
the sample is assigned. The advantages of using this classifier include:
low computational load, optimal reduction of ann-dimensional space

TABLE III
COMPLETION TIMES (�-SECONDS PER

WINDOW SAMPLE) TO CALCULATE STATISTICS

to a one-dimensional (1-D) space, and inherent normalization of the
distance measures between the classes regardless of the scaling of
the feature dimensions.

A. Computational Speed Comparisons

Four different scenarios are compared from both a theoretical
and applied perspective. These scenarios are: 1) the GLCM without
updating, 2) the GLCM with updating, 3) the GLCLL approach
without updating, and 4) the GLCLL approach with updating. The
scenarios that do not include updating are important because they
describe the case of classifying individual samples.

Theoretical comparisons of the computational speeds are presented
in Table II. For each texture feature, computational speeds are
dependent on the window dimensionN , the number of statistics
s, and the cost of determining each statistic�. In addition, the
GLCM approaches are dependent onG and the GLCLL methods
are dependent on the length of the linked listsL, which is equal
to the number of distinct grey-level pairs found in the window.
Computational requirements are split into two aspects: the generation
of co-occurrence probabilities and the calculation of the statistics.
Using a GLCM without updating, generating each matrix is dependent
on the number of pairs in the windowN2. Then, each GLCM must
be looped through once to generate each statistics�G2. Using an
updated linked list requires searching and updating the columnsL. A
total of s�L operations is required to calculate the statistics for each
GLCLL. The other two cases are easily derived from these examples.

For computational speed testing, a 32� 32 image of brash
ice is extracted from the Limex image. The co-occurrence
data is determined usingN = f5; 10; 20 pixelsg and G =

f32; 64; 128; 256 grey levelsg: A total of 28 texture features are
determined based on the setf� = 1; � = 0; 45; 90; 135; statistics:
MAX, UNI, ENT, DIS, CON, INV, IDMg: This set excludes the
COR statistic, which has a different theoretical order.

The time per sample of the linked-list approaches is always a
fraction of the matrix approaches (see Table III). The results match
the theoretical orders well. At a fixed window size, doubling the
number of grey levels increases the completion time of the GLCM
approaches by a factor of four. The computational speed of the GLCM
approaches is highly dependent on determining the statistics(s�G2),
since updating has a negligible effect on the computational speed.
Changing the window size for the GLCM approaches also has little
effect on the computational requirements. In contrast, increasing the
window size for a fixed grey level increases the GLCLL completion
time because the larger windows have more distinct grey-level pairs,
which increasesL. Reducing the number of grey levels reduces the
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TABLE IV
CLASSIFICATION ACCURACY FOR DIFFERENT GREY-LEVEL QUANTIZATIONS

completion times of the GLCLL because the linked lists are shorter.
Finally, updating the GLCLL’s is advantageous, especially with larger
window sizes.

B. Classification Testing

All samples are chosen from across the entire Limex image. Sixty-
four and 100 8� 8 samples, each of brash, first-year smooth, and
open water are selected to represent the training and test data sets.
Thirty-two texture features are selected based on the setf� = 1; � =

0; 45; 90; 135; statistics: MAX, UNI, ENT, DIS, CON, INV, IDM,
CORg: To determine the effect of grey-level quantization on the
classification, 256, 128, 64, 32, and 16 grey levels are used. The
training data has classifications that are successful and consistent
across all grey levels (Table IV). Classification of test data is strongest
at full dynamic range and decreases inconsistently with increased
quantization. There is a large discrepancy between the results for
training and test data.

To provide further insight into the ability of the co-occurrence
data and explain the inconsistent results with increased quantization,
each individual statistic is used to classify the data. The results
for classification of test data only are presented in Table V using
f� = 1; � = 0; 45; 90; 135�g:

The degree of grey-level quantization has an unusual effect on the
homogeneity statisticsfMAX; ENT; UNIg, namely, they generate
significantly increasing classification accuracy with coarser quanti-
zation. Increasing the grey-level quantization reduces the textural
information and, thus, should reduce the classification accuracy.
However, when using the full dynamic range, few grey-level pairs
are repeated within the same window and a high state of entropy
exists in the co-occurrence data for each of the classes. As a result,
discrimination is difficult since all classes tend to a near-maximum
state of entropy, generating clusters that overlap in the feature
space. Thus, these statistics are intrinsically sensitive to grey-level
quantization and actually rely on the quantization to be effective.
The smoothness statisticsfDIS, CON, INV, IDMg have stronger
classifications than the homogeneity statistics. Quantization smoothes
the data reducing the effectiveness of the smoothness statistics. Note
that the individual accuracies of the DIS and INV statistics are
actually better than the accuracies using the entire feature set. COR
is quite ineffective when compared to the other statistics, but tends
to improve with coarser quantization.

IV. DISCUSSION AND CONCLUSIONS

When co-occurrence texture features are determined for any typical
remotely sensed image, the computational savings are substantial
when using the linked-list approach relative to the matrix approach.
The computational speed of the matrix approach is more dependent on
the number of grey levels than the linked-list approach. Depending
on the application, performing pixel-by-pixel segmentation can be
computationally feasible using the linked-list approach. The full
dynamic range of the image can be utilized using GLCLL’s, but

TABLE V
CLASSIFICATION ACCURACY (%) OF INDIVIDUAL

CO-OCCURRENCESTATISTICS (TEST RESULTS ONLY)

only with an increase in the computation time. The degree of this
increase is texture dependent.

The classification studies reveal that smoothness statistics (DIS,
CON, INV, IDM) are most effective when the full dynamic range
is used and provide more consistent texture measures for different
grey-level quantizations than the homogeneity statistics (MAX, ENT,
UNI). At full dynamic range, the homogeneity statistics generate
class clusters that overlap considerably because the probabilities
are at or near maximum entropy. At coarse quantizations, this
problem is relieved and more effective statistics are produced. This
raises an interesting concept. Since poorer homogeneity features are
extracted at full dynamic range and using only two grey levels, then
between these two extremes there should exist a preferred grey-level
quantization. How can this optimum be selected? Can it be selected
a priori? Must some knowledge of the grey-level distributions for
each class be known? Does the optimal number of grey levels relate
to the type of grouping found within the co-occurrence matrices?

Textures that have noticeable, but subtle differences at full dynamic
range may become statistically similar under coarse quantization. This
may be very important when classifying remotely sensed imagery.
For example, a SAR sea ice image often contains many different
types of ice types as well as transitions between these ice types, and
quantizing the imagery can remove the subtle differences between
the two similar classes. It should be much safer and consistent if a
feature-extraction method utilizes the full dynamic range.
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