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Abstract

Texture Discrimination of SAR Sea Ice Imagery

The di	erentiation of textures is a critical aspect of SAR sea ice image segmen�

tation� Provision of images that identify pertinent ice types is important for the

operational 
ice breakers� ships� oil platforms� and scienti�c 
ie� global warming

monitoring� communities� Although a human is readily able to visually segment

any textured image� no unsupervised machine method has been designed that con�

sistently and robustly performs the same task�

Two steps are followed to perform image texture segmentation� First� feature

vectors representing local characteristics are determined for each pixel� The more

distinct the features� the better they are able to distinguish di	erent classes� Sec�

ond� the feature vectors are grouped together according to class similarities or

dissimilarities� During this clustering� human intervention should be minimized�

Optimizing each of these steps is important for achieving the overall task�

Many di	erent approaches have been proposed for texture feature extraction�

Three popular methods are investigated and optimized for their supervised classi�

�cation ability� cooccurrence probabilities� power spectrum� and Gabor �ltering�

This information is necessary to serve as a platform for image segmentation testing�

The methods perform well under supervised classi�cation experiments� The Ga�

bor �lters capture the same bene�cial information as the power spectrum features�

however� the Gabor �lters have the ability to capture information with an e	ective

window size that matches the desired frequency 
multi�resolutional ability��

There exists only limited published research comparing di	erent texture seg�

mentation approaches� Cooccurrence features� although extensively used in classi�

�cation studies� are rarely applied to full image segmentation� This is probably due
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to the exceptional computational demands of the traditional approach 
the grey

level cooccurrence matrix or GLCM�� To calculate cooccurrence texture features

orders of magnitude faster than the GLCM� a linked list algorithm is designed and

implemented�

Two clustering approaches are performed� one that assumes the number of

classes a priori 
mixture analysis� and one that automatically determines the num�

ber of classes 
cluster analysis�� Mixture analysis is performed by applying K�means


with the correct number of classes� and then iteratively applying the Fisher linear

discriminant to improve the clustering 
K�means Iterative Fisher or KIF�� Cluster

analysis is performed using the KIF in a binary divisive hierarchical tree where

nodes branch or stop as a function of the cluster separability determined by the

Fisher criteria� For operational purposes� the user indicates when the nodes branch

or stop based on visual cues� The idea is to provide an easier method to segment

the image to reduce operator fatigue and increase throughput�

When cooccurrence and Gabor features are applied to unsupervised image seg�

mentation of Brodatz and SAR sea ice imagery they are demonstrated to have

di	erent abilities� Images containing regions with di	erent textural resolutions are

not segmented properly using cooccurrence features� Gabor �lters� with inherent

multi�resolutional ability� are able to perform this task� When all textures have the

same resolution� both methods are able to distinguish the textures� While other is�

sues such as tone and ice oe shapes must be included for a robust operational SAR

sea ice identi�cation system� incorporation of texture is a necessary component for

successful image segmentation�
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Chapter �

Introduction

��� General

Interpretation of satellite radar images is an important ongoing research �eld� Sci�

entists� e	orts are directed towards improving calibration of radar platforms� par�

ticipating in �eld validation programs to correlate ground measurements with the

remotely sensed data� predictive modelling of the radar backscattering information�

and developing automated algorithms for the identi�cation of pertinent features ob�

served in the satellite imagery� This thesis will focus on the development of texture

segmentation strategies for the purpose of identifying di	erent sea ice classes in

SAR imagery�

Texture is an important part of image interpretation� As early as ����� Shanmu�

gan recognized the importance of texture for the interpretation of natural radar im�

agery ����� Many di	erent texture interpretation approaches have been considered�

but a complete formal de�nition for texture has still not been developed� Texture

measures are required that indicate some speci�c characteristic of the texture itself�

�



Chapter � � Introduction �

that is� a measurement is needed that captures some particular important relation�

ship between a pixel and its neighbours� Texture interpretation is important for

classi�cation problems where individual image samples must be determined to be

one class or another� Texture interpretation is also important for the segmentation

problem where a single image contains multiple textures and the goal is not only to

�nd the boundaries between the textures� but also to associate individual textures

with a particular class�

The texture segmentation process can be broken down into two steps� First�

suitable features 
or characteristics� of each of the pixels must be calculated� This

is referred to as feature extraction� Second� the pixels must be grouped together

as a function of their features� This is the clustering aspect� Improving the quality

of the features will ease the burden on the clustering scheme� A robust clustering

methodology that successful identi�es the pertinent clusters in the feature space is

desirable�

��� Thesis Objectives

The following are the objectives of this thesis�

� Present an understanding of the relationship of the geophysical environment
to the backscattering imagery obtained using synthetic aperture radar 
SAR��

� Review research publications that have utilized cooccurrence texture features
for classi�cation of SAR sea ice imagery�

� Present a linked list implementation for determining cooccurrence probabil�
ities� This method is considerably faster than the grey level cooccurrence

matrix 
GLCM� approach�



Chapter � � Introduction �

� Investigate the feasibility of using a multi�channel �ltering approach for dis�
criminating SAR sea ice imagery�

� Based on classi�cation ability� determine the preferred parameters for three
di	erent texture feature extraction schemes� cooccurrence probabilities� power

spectrum� and Gabor �ltering�

� Apply the most promising feature extraction approaches to the more di�cult
problem of texture segmentation�

� Design� implement� and demonstrate an unsupervised texture segmen�

tation approach�

� Design� implement� and demonstrate a texture segmentation approach

that can be used for operational SAR sea ice segmentation�

��� Organization of Thesis

Following the background chapter 
Chapter ��� an entire chapter 
Chapter �� is ded�

icated to presenting the application environment� Here� the SAR system parameters

that inuence the backscattering characteristics of the surface under analysis and

the relationship of the backscattering as a function of the snow volume�ice surface

are discussed�

In Chapter �� various methods that have been used to generate texture features

as well as techniques used to classify the feature vectors are investigated� In order

to determine preferred methods for texture segmentation� classi�cation studies are

performed 
Chapter ��� These preferred parameters are used to assist the design



Chapter � � Introduction �

process in Chapter � to perform texture segmentation� A summary and discussion

of future research activities comprise the �nal chapter 
Chapter ���



Chapter �

Background

Monitoring of sea ice is a major challenge to both scienti�c and operational com�

munities� Many scientists are ultimately interested in issues dealing with global

warming� According to Barber and LeDrew the sea ice acts as the Arctic�s thermal

regulator� �Radiative and energy balances are intimately linked with the ice cover

as is the development and sustenance of ecosystems� � � � ecological character and

diversity of open water areas� particulary those that occur within the perennial ice

cover� may act as sensitive indicators of climate variability and ecological change in

the Arctic� ��� p���� That the di	erence between energy ux from open water and

the surrounding ice may be two orders of magnitude is evidence that the ocean�

ice�atmosphere relationship contains a wide range of sensitive energy balances �����

Also� during the winter season� the Arctic sea ice covers twice the area as compared

to the summer season ���� Little is known about the global energy transfers required

during such a transition� thus� research is conducted to determine the capability of

remote sensing to measure pertinent variables related to the sea ice� Also� from an

operational standpoint� ice poses severe hazards to ship and ice breaker movement

�
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and o	shore drilling activity ���� ���� Knowledge of ice types� movement� and con�

centrations allow such activities to proceed safely and e�ciently ������ �Industrial

development within ice�infested waters is premised on timely ice information for

tactical navigation and hazard avoidance ��� p������

The scienti�c study of the ice covered regions is di�cult and challenging for

several reasons� For example� the Arctic is a vast and isolated environment� making

ground monitoring an intensive task� Local weather analyses do not necessarily

represent the weather patterns over a larger region� Sea ice information should be

recent 
less than �� hours old� to inform ship and ice breaker movements� especially

those in the St� Lawrence seaway� A high resolution all�weather day or night remote

sensing system that operates in real time is a necessity� Synthetic aperture radar


SAR� is capable of meeting these requirements� The only electromagnetic radiation

capable of day� night� and all�weather monitoring is microwave sensing since selected

microwave frequencies are capable of penetrating the atmosphere under virtually

all conditions ����� Remotely sensed aerial or satellite platforms regularly gather

information over considerable land area at a su�ciently high resolution 
on the

order of metres or tens of metres��

That SAR provides critical information is emphasized by the number of SAR

carrying satellites that have recently been launched� ERS��� ERS��� 
European��

JERS�� 
Japanese�� and Radarsat 
Canadian�� Radarsat has been designed specif�

ically with sea ice monitoring in mind� �In Canada� the Atmospheric Environment

Services Ice Branch� responsible for the provision of ice information for all ice�

infested waters in Canada� will be the single largest user of Radarsat imagery in

the world� at least in the initial years of the satellite� ���� p������ The estimated

required annual number of images is about ����� ���km by ���km scenes� Since

exceptional volumes of data will be transmitted from aerial or satellite SAR oper�
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ations� rapid and accurate interpretation of such data is critical�

Typically� a human operator is clearly and rapidly able to visually distinguish

di	erent ice types and land in a SAR sea ice image� based not only on relative

texture appearance of the di	erent ice types� but on tonal and structural di	erences

as well� Carsey ���� p����� agrees since he states� �Classi�cation of SAR images is

di�cult to do in the computational environment� even if it appears straightforward

on sight�� Developing a robust computer algorithm that is able to perform such a

task has proven to be elusive� The ultimate goal is to develop an algorithm that

has the ability to segment a SAR sea ice image into its salient ice categories� given

a limited number of parameters� �The challenge is to develop computer algorithms

that can consistently discriminate among the various ice types and conditions that

are visually evident in the SAR imagery ��� p�������

A typical pattern recognition methodology 
measurement� feature extraction�

feature reduction� and class assignment� can be used to solve the sea ice recogni�

tion problem� The same approach is used to study classical pattern recognition

problems such as character recognition and medical diagnosis� For the particular

problem at hand� measurement refers to the acquisition of the SAR sea ice image�

Parameters associated with this process are reviewed in Chapter �� Feature extrac�

tion is the determination of unique and identi�able characteristics of the classes

the user wishes to discriminate� For this research� the classes are the di	erent

categories found in the SAR sea ice imagery� Feature reduction reduces the dimen�

sionality of the feature space to remove redundancy and accelerate the algorithmic

speed� Since the number of features may be many and because there may exist

inter�feature redundancy� feature reduction is important� Class assignment is a

process that groups samples with similar features� Successful assignment assumes

that the classes under consideration are fairly homogeneous and separable from
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the other classes� De�ning what constitutes a homogeneous region is problematic

when dealing with natural imagery since such imagery is typically nonstationary�

A recurring problem is �nding a universal approach for all SAR sea ice data sets

since discriminants derived from one data set are not always applicable to other

data sets� A �nal note about the pattern recognition process is that expert knowl�

edge is often required� In terms of sea ice classi�cation� knowledge of the time of

year� historical and prevailing weather conditions� knowledge of the geographical

region� the size and shape of the ice oes� etc� can be of importance to assist the

segmentation process�

Few numerical methods are used in practice to classify SAR sea ice imagery� The

methodology and results of generating texture features using cooccurrence proba�

bilities ���� have been clearly outlined in the research literature ��� ��� ���� Kwok et

al� have recently implemented a classi�cation scheme at the Alaskan SAR Facility

using only �rst order analysis� They recognize the limitations of this approach�

given that other algorithms that include higher order information have performed

better� however� �there are insu�cient observations at this time to support the

implementation of such feature extraction schemes in an operational system� ����

p������� There are indications that� at a minimum� second�order information is

required to properly classify SAR sea ice imagery� According to Barber et al� �tex�

ture measures consistently provided more robust classi�cations than features that

encompassed tone� � � ��� p������� Ulaby et al� also obtained results that indicate

second�order measures outperform tonal measures ������ Texture identi�cation is

an important contribution to interpretation of SAR sea ice imagery�

To robustly perform SAR sea ice identi�cation� additional texture feature ex�

traction methods should be considered� Texture features derived from the power

spectrum have potential to classify SAR sea ice imagery� Success using such meth�
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ods for natural textures by D�Astous ���� and Liu and Jernigan ���� motivates

consideration of this classi�cation approach� The engineering research literature

contains a host of potential segmentation schemes used in computer vision appli�

cations� Various methods are described in Chapter �� Multi�channel �ltering is a

method that can identify characteristic features of an image by isolating pertinent

information such as orientation and dominant frequency components� Based on

wavelet theory and models of the human visual system 
HVS�� these multi�channel

approaches show considerable promise for segmenting SAR sea ice imagery� Gabor

functions� which can be implemented in a wavelet fashion� have several properties

that make them quite attractive for the generation of texture features� The goal

is to provide a feature set that contains separable clusters in the multidimensional

feature space to ensure accurate texture segmentation�

Machine texture identi�cation is an easily de�ned problem� identify di	erent

textures and classify them as well as the human observer� Considerable research to

improve texture interpretation is found in the literature 
Chapter �� however� exam�

ples of speci�c real world applications are few� Identi�cation of pertinent features

in remotely sensed imagery is a well de�ned problem� In general image analysis�

there are many di	erent considerations to analyzing an image� tonal variations�

object analysis� depth perception� noise removal� motion detection� etc� Texture is

only one aspect of the general framework of computer vision� Scientists are still

trying to grasp the basic framework of texture interpretation before connecting this

understanding to other interpretation needs of machine assisted vision problems�

As the integrating of these di	erent needs progresses� being able to distinguish tex�

tures will be an essential aspect� For the time being� computer vision methodologies

consider investigation of the entire scene for tonal or textural variations� Hence�

textural investigation of SAR sea ice imagery is a practical and necessary step to
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improving our understanding of image interpretation� Real world applications tend

to be highly complex for machine implementation� Generic methodologies� that

can be applied to a wide variety of circumstances� are essential�
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Application Environment

There are many di	erent types of sensors used for remote sensing� each with their

own capabilities� Interpretation of the data obtained from these sensors is an on�

going research �eld� My research will be directed to the interpretation of SAR

imagery� primarily for the reasons outlined in the previous chapter� Note that the

synergistic e	ect of a multitude of sensors can produce more productive data sets�

but the potential of each sensor must �rst be fully explored� Also� although there

are many di	erent objectives for remote sensing activities� here the primary interest

is the ability to identify di	erent sea ice types using active microwave sensors�

This chapter contains two sections� The �rst section deals with system parame�

ters� namely� those variables that pertain directly to operation of the SAR platform�

The second section deals with the interaction of the microwaves with the sea ice

surface�

��
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��� SAR System Parameters

Radar is an acronym for radio detection and ranging� Real aperture radar 
or brute

force radar� systems have inherent di�culties producing high resolution data� Res�

olution in the azimuth direction 
ight direction� is dependent on the antenna

length� When attempting to achieve a high resolution� the antenna must have an

unacceptably long physical length 
the beamwidth of the radar beam is inversely

proportional to the antenna length ���� ����� SAR alleviates this problem by syn�

thesizing the e	ect of a very long antenna using the Doppler history created by

the relative velocity between the platform and the ground� Resolution in the range

direction 
direction of signal propagation� is dependent on the pulse length of the

signal� Both real and synthetic aperture radars are called active sensors because

they emit energy pulses and� based on the magnitude of the backscattering response

to the antenna� interpret the surface characteristics� Passive sensors measure energy

emitted or reected from the surface of interest�

Many parameters inuence the backscatter coe�cient� wavelength of incident

signal� incident angle� number of looks� polarization� and look direction� Whether

a surface is considered smooth or rough can be indicated by the Rayleigh criterion�

h �
�

�cos�

where h is the root mean square 
rms� height of the surface� � is the signal wave�

length� and � is the angle of incidence with the surface� If the Rayleigh criterion

holds true� then the surface is considered smooth and will reect most of the signal�

resulting in a low backscatter return� If the Rayleigh criterion is false� the sur�

face is considered �rough� and scatters incident energy in all directions� Note that

an increasing range distance causes the incidence angle to increase which modi�es



Chapter � � Application Environment ��

the backscatter behaviour within a homogeneous scene� Applying an automated

texture segmentation algorithm to SAR aerial imagery can be awkward because

there is a large change in incidence angle across the image swath� A larger range of

incidence angles leads to a perceived increase in variability of ice classes� Satellite

SAR platforms do not exhibit this problem to the same extent because their sig�

ni�cantly higher ight path altitude results in smaller changes in incidence angles

over the same e	ective area� Thus� interpretation of the satellite data tends to be

more consistent�

Wavelengths used to capture sea ice imagery are usually X�band 
��������GHz�

�������cm� or C�band 
�������GHz� �������cm�� Shorter wavelengths are not useful

since they are signi�cantly attenuated by the atmosphere� Longer wavelengths are

advantageous because they have higher penetration depths into the ground� How�

ever� wavelengths such as L�band 
�������GHz� �����cm� are too long to discrimi�

nate the small scale surface roughness found on �rst year ice types impenetrable to

radar� Thus� L�band is better suited to open ocean monitoring�

An important error produced by SAR is speckle� which is a grainy� salt�and�

pepper appearance on the image� �Speckle arises from the coherent nature of radar

waves� causing random constructive and destructive interference and� hence� ran�

dom bright and dark areas in radar imagery ���� p������� Multiple look processing

reduces the amount of speckle by averaging images of the same region� The num�

ber of images averaged is known as the number of looks� The amount of speckle is

inversely proportional to the square root of the number of looks and the resolution

cell size is directly proportional to the number of looks �����

Another important SAR system parameter is polarization of the transmitted

and received signals� Typically� the signal is transmitted�received in either the

horizontal 
H� or vertical 
V� planes� Thus� four di	erent designations are created�
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HH� VV� HV� VH � the �rst letter refers to signal transmission and the second

letter refers to signal reception� Radiation from natural sources� such as the sun�

typically do not have any well de�ned polarization 
random polarization�� Di	erent

polarizations yield di	erent types of backscatter returns�

��� SAR Relationship with Environmental Vari�

ables

����� Physical Properties of Sea Ice

Sea ice is a complex� dynamic� and anisotropic material that� under typical con�

ditions� is a three phase medium� The solid phase consists of the ice crystals� the

liquid phase comprises a brine solution� and air bubbles represent the gas phase�

The initial composition of the sea ice is determined by many variables including air

temperature� wind conditions� ocean currents� salinity� and rate of freezing�

The backscatter obtained using SAR may not necessarily describe the surface

topography of the snow or ice� Note that microwave reections bear no relation�

ship to visible or thermal portions of the spectrum� Depending on the properties

of the measured surface� the signal may be reected� scattered� transmitted then

reected by a lower surface� transmitted then scattered by a lower surface� or at�

tenuated� A dominant factor inuencing backscatter is the dielectric constant of

the material� For example� water is known to have a high dielectric constant� The

presence of moisture in the volume under scrutiny can signi�cantly increase radar

reectivity� distorting surface roughness measurements� Note that there is always

some attenuation of the SAR signal by the atmosphere which is a function of the
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New Ice� Recently formed ice which includes frazil ice� grease

ice� slush� nilas� and shuga� These ice types consist of ice crystals

which are weakly frozen together�

Young Ice� Ice in the transition stage between nilas and �rst

year ice� Ice thickness generally ranges between ����� centime�

tres�

First Year Ice� Sea ice� developed from young ice� which has

no more than one winter	s growth� Thickness ranges from ��

centimetres up to 
 metres�

Old Ice� Ice which has survived at least one summermelt� Often

sub�divided into either second year ice or multi�year ice�

Figure ���� World Meteorological Organization 
WMO� sea ice categories 
adapted

from McKillop ������

cloud cover and current precipitation� Although this is not of serious consequence

to the texture obtained in SAR imagery� it does have a direct bearing on tone�

The World Meteorological Organization 
WMO� has a listing of sea ice cate�

gories summarized in Figure ��� 
adapted from McKillop ������ Researchers have

a good understanding of the di	erences in backscattering characteristics of �rst

year smooth� �rst year rough� and multi�year ice types ��� ���� This information

is important primarily because the ice type gives a strong indication of its total

thickness� which is required for navigation purposes or climatological studies� Land

identi�cation is also of importance� however� land typically does not have a consis�

tent� regular appearance within a SAR sea ice image making automated recognition

di�cult� This task can be performed by registration with existing land maps�
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At the Ice Branch of Environment Canada 
Ottawa� Ontario� individuals are

hired speci�cally for the task of interpreting remotely sensed imagery of sea ice�

These analysts record information in a consistent manner using a set procedure�

Global attributes of the sea ice characteristics that are recorded include� total

concentration 
reported in tenths�� partial concentrations of observed ice types�

stage of developments of ice types 
indicates ice thickness�� and the predominant

formation of the ice�

During the winter season� the backscattering behaviour of the snow and sea ice

is fairly constant� At this time� the snow cover is essentially transparent at mi�

crowavelengths causing the backscatter to be dependent on the ice surface� Since

�rst year ice has a high saline content� radar frequencies are easily reected and

surface scattering dominates ����� Thus� �rst year smooth ice will reect the radar

signal away from the antenna� First year rough ice causes considerable and unpre�

dictable scattering� Since multi�year ice has a much lower saline content 
typically

zero�� backscatter return is inuenced by both surface and volume scattering within

the multi�year ice volume� The backscatter return of the multi�year ice is inuenced

by air bubble size and spacing� ice crystal grain size� and micro and macro�scale

roughnesses� Whether or not new ice can be separated from �rst year smooth ice

is uncertain� however� �New ice in leads has a su�ciently high proportion of well�

oriented features to distinguish it uniquely from �rst year and multi�year ice ����

p������� New ice is not characterized by a discrete emissivity or narrow range of

brightness temperatures� but often displays banded structures oriented parallel to

the lead axis or polynya boundary� First year and multi�year ice are subject to

more random growth than new ice�
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����� Transitory Backscattering Characteristics

A fundamental di�culty with SAR sea ice image machine interpretation is the di�

urnal and seasonal variations that modify backscatter signatures� These variations

are typically related to solar radiation heating of the surface causing uctuations

of the dielectric constant of the snow and ice due to changes in free water content

and brine concentrations� Excessive free water content within or on the ice ����

causes a signi�cant increase in magnitude of the dielectric constant which tends to

mask backscatter signatures of �rst year versus multi�year ice types� Although this

disrupts the ice class discrimination� it can also assist determination of the onset of

melt� Periodic warming leads to recrystallization and air pocket creation which also

a	ect backscatter return� The migration of brine out of the �rst year ice upward

onto the ice surface and into the snowcover is another critical issue� This causes the

dielectric constant of the snow to increase leading to volume scattering within the

snow pack� Thus� �rst year smooth ice begins to appear rough in SAR imagery due

to the volume scattering by the snow� Such seasonal transitions have a severe e	ect

on backscattering characteristics of the cryosphere and are di�cult to monitor� For

the above reasons� Kwok et al� decided to �implement a classi�cation procedure for

seasons when the surface conditions remain fairly stable and a high con�dence can

be placed in the classi�cation results ���� p��������

Another process that leads to confusion for interpretation of SAR sea ice im�

agery is the occasional intrusion of sea water into multi�year oes 
possibly due to

ooding under high snow loading�� The high brine content of the sea water tends

to misrepresent the multi�year ow that has a very low brine content� It is di�cult

to monitor such a situation other than through tracking of oes in SAR images�

Another situation that varies backscatter characteristics is the incidence angle
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of the sensor� Higher incidence angles are known to emphasize variations in surface

roughness� For example� aerial imagery typically has high incidence angles and

�rst year smooth ice and �rst year rough ice are quite discriminable� However� the

surface variation 
from the sensor�s perspective� of the multi�year and �rst year

rough types are similar and discrimination of these two ice types is more di�cult�

A sensor such as ERS�� with a small incidence angle 
�� degrees� discriminates

between multi�year ice and �rst year ice types but has a di�cult time discrimi�

nating between �rst year rough and �rst year smooth ice� The smaller incidence

angle allows the signal to penetrate the multi�year ice more causing a signi�cantly

scattered response yet the �rst year ice types tend to reect the signal away from

the antenna creating a similar appearance�

����� The Role of SAR in Geophysical Interpretation

There are many research questions that SAR can help answer� As in most sciences�

�nding answers to these questions only seems to raise even more questions� Many

applications require daily coverage and typically weekly coverage as a bare min�

imum ���� Ice thickness and open water coverage are primary scienti�c interests

and there is no well�established technique for their absolute determination �����

Monitoring of ice edge ocean eddies using remotely sensed images may assist inter�

pretation of their e	ects on the sea ice environment� Currently� the net signi�cance

of ice eddies is not fully understood� Dynamic thermodynamic modelling of sea ice

cover is still an active research �eld� SAR can also be used to track ice motion�

There are several reasons for this research interest� monitoring latent heat advec�

tion� oceanic surface stress� passive tracing of currents� open water production by

way of ice divergence and shear� and interaction between ice breaker navigation and

ice structure ���� ����� There continues to be active ongoing research into theoret�
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ical modelling� for example� trying to predict complex scattering processes within

the ice sheet and overlying snow�

Much of the above research work requires �eld programs to provide validation

studies� The Seasonal Sea Ice and Monitoring and Modelling Site 
SIMMS� was

such a program operated by the Earth Observation Laboratory 
EOL� of the Insti�

tute for Space and Terrestrial Science 
ISTS�University of Waterloo� in cooperation

with many participating agencies� SIMMS was an annual multi�disciplinary �eld

experiment that involved numerous di	erent research projects ���� This program

has since moved under the direction of the Waterloo Laboratory for Earth Obser�

vations 
WatLeo� and is now called the Collaborative Interdisciplinary Cryospheric

Experiment 
C�ICE� program�

Without any historical information 
temperature� wind velocities� amount of

precipitation� etc��� there does not seem to be a one�to�one mapping of the calibrated

SAR pixel values to actual geophysical variables� but �nding such a mapping for

all seasons is an ultimate goal� Hence� researchers are �rst attempting to keep

as many parameters constant as possible and note the e	ect of varying a limited

number of them on their backscatter coe�cient� Scientists and engineers narrow

parameters down by looking only at a particular season or season change� looking

at the results for sensors with di	erent frequencies over the same region� altering

the polarizations� etc� and comparing these backscatters for di	erent ice types�

In closing� understanding the SAR platform parameters and the SAR relation�

ship with the environment is important for proper interpretation of sea ice imagery�

The visible di	erences in texture are clues to the segmentation of the imagery into

appropriate ice types� The next chapter will investigate textural methods that can

be used for sea ice identi�cation�
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Methods for Texture Feature

Analysis

No one has ever provided a de�nitive� formal description for texture� Many authors

have put forth their own de�nition but they usually recognize that no single state�

ment is complete� �Texture is concerned with the spatial 
statistical� distribution

of grey tones ���� p������� �Texture is the spatial distribution of intensities in image

regions perceived by normal human observers to be homogeneous throughout the

region ����� p����� �Texture is characterized by invariance of certain local measures

of properties over an image region ���� p�������� �� � � image texture may be de�

�ned as a local arrangement of image irradiances projected from a surface patch of

perceptually homogeneous radiances ���� p������

Approaches to texture interpretation can be broken down into three categories�

statistical� structural� and model based� Statistical approaches attempt to char�

acterize textures in a probabilistic sense� Often the characterization is based on

de�nitions of the local texture region such as smooth� coarse� grainy� regular� di�

��
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rectional� etc�� however� not all the statistical texture feature extraction methods

provide statistics that follow such de�nitions� Statistically based methods may be

either spatially or spectrally de�ned� Popular approaches include features derived

from cooccurrence probabilities� from the power spectrum� and from multi�channel

�lter outputs� Statistical methods have had promising success� motivating their

selection for this thesis�

Structural methods are distinctive from statistical approaches since they con�

sider textures to have two fundamental components� a basic primitive that com�

prises the texture and the spatial organization of these primitives� The primitive

is usually a �xed template that can be moved to match a certain image pattern�

Since SAR sea ice types seem to have no predictable� consistent repeating pat�

tern� structural methods are not considered here as a potential method for sea ice

discrimination�

Model based methods provide another generic approach to texture analysis� By

�tting some analytical function to the texture� the texture characteristics can be

captured� The parameters of the model provide a speci�cation for the texture under

study� Typically the analytical function is based on a two�dimensional stochastic

process or random �eld� Markov random �eld 
MRF� models ��� ��� ��� ��� ��� ���

��� ��� have been used successfully as well as fractal based approaches �����

A distinction should be made between texture classi�cation and segmentation�

Classi�cation is the assignment of feature vectors to a particular class� Segmenta�

tion subdivides an image into its constituent parts by locating boundaries between

identi�able textures and by assigning similar texture regions to the same class�

Thus� segmentation requires both texture discrimination 
similarity measures� and

boundary tracking 
discontinuity measures�� Segmentation approaches can be di�

vided into region based and edge based approaches� Region based approaches are
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more applicable for SAR sea ice segmentation since edge information is destroyed

by speckle and there is often a mixture of ice types at distinct ice boundaries�

A supervised classi�cation�segmentation approach requires user input to drive

the algorithm properly� Typically� some familiarity with the data set and the class

assignment procedure is essential for successful results� In the case of texture anal�

ysis� the feature vectors 
for training or implementation� may be obtained from

user�selected 
assumed homogeneous� image samples� To select the training data

that represents a unique textural class is di�cult since the samples must contain

su�cient characteristics to describe the class fully� Unsupervised segmentation� on

the other hand� demands limited human intervention to encourage the algorithm

to run in an automated fashion� No a priori selection of homogeneous class repre�

sentations should be provided to the system� Clearly� an unsupervised scheme is

desirable� however� these methods involve considerably more overhead and atten�

tion to algorithmic details� For example� determining the number of texture classes

is a very di�cult problem� Also� a feature extraction approach must be su�ciently

robust to gather essential and separable class characteristics and allow for subtle

variations within an assumed uniform texture without confusion with other distinct

classes�

Texture analysis� with an emphasis on those methodologies used to interpret

SAR sea ice imagery� is dealt with in the rest of Chapter �� There exists an

abundance of texture interpretation methods that could be used to study SAR

data� but only a selected number of methods are considered here 
Section �����

Methods to classify features are briey reviewed in Section ����
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��� Texture Feature Extraction Methods

Methods for texture feature extraction� with an emphasis placed on SAR sea ice

imagery� are described in this section� First order methods are discussed because

these approaches provide a good �rst guess at segmentation of some natural tex�

tures� Cooccurrence texture features are the most popular method for analysis

of remotely sensed sea ice imagery and this method is presented at some length�

Evidence exists that suggests power spectrum approaches provide viable features

so they are considered next� Promising� recently introduced methods for texture

interpretation are based on multi�channel �ltering� The section concludes with

a description of these approaches in the context of wavelets and qualities of the

human visual system 
HVS��

����� First Order Texture Measures

As mentioned in Chapter �� texture provides more robust classi�cation information

than tone� Tone is not able to consistently identify ice types and is not able to

provide any directional information� Kwok et al� implement tonal analysis based

on expected backscatter signatures of di	erent ice types using look�up tables as

a function of seasonal and meteorological conditions at the time of data acquisi�

tion ����� The look�up tables contain data collected from �eld campaigns over the

past ten years� Results using both aerial and simulated ERS�� data are presented�

The technique has been implemented in the geophysical processor system at the

Alaska SAR Facility for classi�cation of SAR sea ice data� Although texture should

provide more information� the research group uses tonal analysis as a feasible �rst

step to solving the problem of sea ice classi�cation� The original resolution is ��

metres but the pixels are averaged to ��� metre resolution 
eight by eight pixel
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averaging�� Calibration parameters are used to adjust backscatter coe�cients to

absolute calibration to maintain uniformity between data sets� The authors expect

the user to have a high degree of familiarity with the type of data� For example�

the clustering program requires the user to enter input parameters including the

number of classes� the expected within�class scatter� and the between�class scatter�

For their examples� the results are promising�

Filey and Rothbrock ���� used tonal analysis to distinguish between ice and

open water and to resolve the details of deformation and motion of ice oes in

Seasat SAR imagery� Both local average brightness and local variance are used�

Ground resolution of each pixel is �� metres� Each of the images used in the study is

independently enhanced to remove the fallo	 of mean brightness with range and to

stretch the contrast� The mean and variance of each adjacent ��x�� pixel window

comprises the data set� This reduction in the resolution is required to minimize

the computational e	ort� The group had success with distinguishing open water

and ice as well as tracking the motions of ice oes� No e	ort was made to classify

di	erent ice types�

Identi�cation of new ice using gradient operators applied to passive microwave

data was performed by Eppler and Farmer ����� They found that new ice has unique

textural signatures that would assist in their identi�cation� Banded structures are

visible in aerial photographs and these same characteristics generate the observed

radiometric signatures� First year ice and multi�year ice are subject to more random

growth and lack such an organized structure�
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����� Grey Level Cooccurrence Texture Features

Application of cooccurrence texture features for interpreting SAR sea ice imagery

are detailed in this section� First� a description of how cooccurrence texture features

are calculated is described� The traditional approach is to use a grey level cooc�

currence matrix 
GLCM�� Then� in the context of several speci�c research papers�

application of these features to SAR sea ice imagery is discussed�

Cooccurrence Features De�ned

The cooccurrence probabilities provide a second�order method for generating tex�

ture features� A brief presentation of the GLCM method follows� but a more com�

plete explanation is provided by Haralick ���� ���� The matrix contains the condi�

tional joint probabilities of all pairwise combinations of grey levels given two pa�

rameters� interpixel distance 
�� and interpixel orientation 
�� 
measured counter�

clockwise from the horizontal�� Following Barber and LeDrew ���� the probability

measure can be de�ned by�

Pr
x� � fCijj
�� ��g

where Cij 
the GLCM� is de�ned by�

Cij �
Pij
GX

i�j��

Pij

�

Pij represents the number of occurrences of grey levels gi and gj and G is the

total number of grey levels� The sum in the denominator represents the total

number of grey level pairs within a window given a particular 
����� A di	erent
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Maximum Probability 
MAX� maxfCijg�
i� j�
Uniformity 
UNI�

PG
i��

PG
j�� C

�
ij

Entropy 
ENT� �PG
i��

PG
j�� CijlogCij

Dissimilarity 
DIS�
PG

i��

PG
j�� Cijji� jj

Contrast 
CON�
PG

i��

PG
j�� Cij
i� j��

Inverse Di�erence 
INV�
PG

i��

PG
j��

�
��ji�jj�GCij

Inverse Di�erence Moment 
IDM�
PG

i��

PG
j��

�
���i�j���G�Cij

Correlation 
COR�
PG

i��

PG
j��

�i��x��j��y�Cij
�x�y

where 
�x��y� and 
�x��y� are means and
standard deviations of row i and column j

Table ���� GLCM texture statistics de�ned�

GLCM is required for each 
����� Pixel separation distances 
�� are usually less

than ten� Typically� only four orientations are used� �� ��� ��� and ��� degrees�

The orientation ��� degrees is redundant to � degrees� the orientation ��� degrees

is redundant to �� degrees� etc� The average of the four orientations may be used

if invariance to spatial rotations is desired� Di	erent statistical information can be

determined from each GLCM� however� statistics that are grey level shift invariant

are important so that the classi�cation is not a function of tone� Eight such shift

invariant statistics are presented in Table ���� Uniformity 
UNI�� Entropy 
ENT��

and maximum probability 
MAX� are linear 
scale and shift� invariant statistics�

The statistics extract three fundamental characteristics from the cooccurrence

matrices� Moments about the main diagonal indicate the degree of smoothness of

the texture� The closer the entries to the main diagonal� the smoother the texture�

The statistics dissimilarity 
DIS�� contrast 
CON�� inverse di	erence 
INV�� and

inverse di	erence moment 
IDM� are statistics of this type� Note that DIS and
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CON are inversely proportional to INV and IDM respectively� Another fundamental

characteristic of the cooccurrence matrix is the uniformity of its entries� If the grey

levels in the window tend to be homogeneous� then only a few grey level pairs

represent the texture� Non�homogeneity generates many di	erent pairs of grey

levels� The statistics maximum probability 
MAX�� uniformity 
UNI�� and entropy


ENT� describe homogeneity� The �nal statistic� correlation 
COR�� describes the

correlation between the grey level pair 
gi�gj��

Two of the statistics 
INV and IDM� are modi�ed by normalizing the grey level

di	erence 
i� j� by the number of grey levels 
G�� The normalization allows these

two statistics to measure a speci�c characteristic of the texture� namely smoothness�

Without normalization� these statistics are based on the sum of Cij weighted by a

numerical series 
f�� �
�
� �
�
� �
�
���g for INV or f�� �

�
� �
	
� �
�

� ���g for IDM�� For a smooth

texture these statistics are likely to sum Cij values that are close to one while coarse

textures tend to sum Cij values close to zero� The outcome is a sparser cluster for a

smooth texture relative to the coarse texture� This is opposite to the expected e	ect

of these texture statistics when applied to natural imagery� Namely� texture features

that use grey level di	erences should generate relatively tight clusters for smooth

textures and sparse clusters for coarse textures� The normalization provides a series

that is more linear in nature preventing this drawback� Without the normalization�

it is uncertain what characteristic the statistic is determining about the texture�

The normalized statistics consistently have a higher classi�cation rate and larger

inter�class distances than the unnormalized versions 
based on the data sets used

in Chapter �� and hence� will be used throughout this thesis�

To demonstrate the extraction qualities of the cooccurrence data� a compara�

tive example is presented in Figure ���� Here� a pair of �x� pixel subimages are

presented� one represents a coarse texture 
a� and the other represents a smooth
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texture 
b�� The number of grey levels is restricted to four� � is set to zero de�

grees 
the horizontal�� and � is set to one� Note that symmetrical Pij matrices 
as

prescribed by Haralick ����� are determined� For a symmetrical GLCM� a pair of

grey levels 
gi�gj� oriented at � degrees is also considered as being oriented at ���

degrees so that entries are made at 
i�j� and 
j�i� in the GLCM�

There are a number of variables that the user sets when using the GLCM

method� Since the dimension of the GLCM is indicated by the number of grey

levels� attention must be given to grey level quantization� If the number of grey

levels is large� the GLCM occupies considerable memory and the computations are

burdensome� On the other hand� too few grey levels destroys the texture composi�

tion of the sample and has the potential to reduce the e	ectiveness of the texture

features� The size of the sample window is another variable that is user�determined�

In the case of slowly varying texture 
smooth texture�� large analysis windows

should be used� High frequency texture 
coarse texture� require relatively smaller

windows� Better boundary identi�cation is determined with smaller windows and

large windows generate more consistent measurements across homogeneous regions�

Selection of the interpixel distance does not have a well de�ned basis� For example�

this parameter could be determined in the same manner as the window selection�

small � for �ne textures and relatively larger � for smooth textures� Also� with

clearly indicated and placed texture primitives� � could be related to the distance

between the primitives� Selection of � is data dependent as well since the user tries

to select the direction that will provide the most discriminating information� Since

SAR sea ice imagery is assumed� perhaps mistakenly ���� to have isotropic data�

several orientations may be averaged together�
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MAX ����� �����

UNI ����� �����
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�
�� �����

DIS ����� �����
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���� �����

HOM ����� �����

IDM ����� �����

COR ������ ������

Figure ���� GLCM example 
� � �� � � ��� G � ���
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Applications of Cooccurrence Texture Features to SAR Sea Ice Imagery

Many publications describe application of the GLCM for classi�cation studies� Four

papers that speci�cally use the GLCM for interpretation of SAR sea ice imagery

will be discussed 
Barber and LeDrew ���� Holmes et al� ����� Nystuen and Gar�

cia ����� and Shokr ������ Holmes et al� claim to be the �rst to publish texture

classi�cation results of SAR sea ice imagery� Barber and LeDrew are the only sci�

entists to seriously consider alternative texture classi�cation algorithms� The other

researchers essentially default to the most common method 
the GLCM�� Although

each of these papers uses the GLCM� there exist fundamental di	erences in the

treatment of algorithm dependent variables and the data sets used�

Table ��� lists the system parameters for the indicated papers� Holmes et al�

indicate that the L band data provides no additional information over the X�band

data and that XHV has greater dynamic range than XHH� Shokr uses data from

three sensors� XHH 
seven look�� LHH 
four look�� and CV V and a variety of sensor

angles�

The parameters used by these authors for generating the cooccurrence features

are summarized in Table ���� Barber and LeDrew statistically prove that � � �

produces a signi�cantly superior classi�cation when compared to � � � or � �

�� Holmes et al� indicate �Experimentation with the distance parameter led to

our selection of � � � as the most appropriate� but do not give details of the

experimental methodology or results� Shokr experimentally compares � � f ����� g
and concludes that � � � is appropriate� Nystuen and Garcia use a variety of

distances from one to ten and determine that the results are invariant for distances

greater than four� When determining the window size� Shokr �nds that the window

dimensions of �� �� and � have no impact on the texture measures and selected the
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Author
s� Platform Sensor No� Reso� Inc�

Looks lution Angle

Barber � LeDrew aerial XHH � �m �������

Holmes et al� aerial XHV N�P� �m N�P�

Nystuen � Garcia aerial XHH � ��m N�P�

Shokr aerial XHH � �m �������

satellite LHH � ����m N�P�

aerial CV V � ��m �������

N�P� � information not provided by authors

Table ���� System parameters of selected GLCM studies�

smallest value to minimize computation time� Nystuen and Garcia used a variety

of window sizes based on the size of the homogeneous subwindows in the original

image� Holmes et al� and Shokr average the four di	erent orientations 
� � �� ���

��� and ��� degrees� since they assume the texture measures are insensitive to the

direction of the sensor� However� Barber and LeDrew�s analysis demonstrated that

the orientation in the look 
range� direction of the sensor produces results that have

greater statistical signi�cance�

Preprocessing of the image will also inuence the outcome of the texture classi�

�cation 
Table ����� Most of the studies reduce the number of grey levels to sixteen

to reduce computation load� Reducing the resolution by a �ltering scheme can

reduce the e	ect of speckle�

Since di	erent parameters are used by each study� conclusive comparative results

are di�cult to quantify� Holmes et al� classify multi�year and �rst year smooth ice

types with an overall accuracy of ���� The poor results are probably attributed

to the use of only two texture features� Shokr obtains results ranging from �� to
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Author
s� � � Window GLCM


pixels� 
degs�� Size Features

Barber � LeDrew ������� �������� �� UNI�COR�ENT�

DIS�CON

Holmes et al� � average radius�� ENT�CON

Nystuen � Garcia ����� variety mixture COR�CON�HOM�

ENT�clust�prom�

Shokr ������ average ������ CON�ENT�UNI�

HOM�MAX
� indicates authors� preferred parameter value

Table ���� GLCM parameters of selected GLCM studies�

Author Sampled Grey Level Filtering

Resolution 
b � bits�

Barber � LeDrew �m �b to �b adaptive compared

to no �ltering

Holmes et al� �m �b to �b N�P�

Nystuen � Garcia N�P� N�P� N�P�

Shokr ��m
X�band� �b to �b� median �lter�

��m
L�band� and Frost �lter

���m
C�band� �b to �b 
C�band only�

N�P� � information Not Provided by authors

� indicates authors� preferred parameter value

Table ���� Image preprocessing used in selected GLCM studies�
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��� overall classi�cation� He shows that ice types are uniquely identi�ed by the

mean value of any texture parameter� however� the variability is confusing� Barber

and LeDrew performed multivariate analysis because they feel that �information

contained within the GLCMs is not adequately captured by any single texture

statistic ������ K�hat measures ���� of ��� for training data and ��� for cross

validation data are obtained� Barber and LeDrew admit that to make a universal

statement from their results is premature and more studies must be completed�

Nystuen and Garcia obtained ��� classi�cation for their best set of parameters�

They found the range of pixels within a sample window to be an informative texture

feature�

����� Power Spectrum

Spectral statistical feature extraction generates di	erent information compared to

the spatial domain� For example� prominent peaks in the power spectrum indicate

principal direction of texture patterns and location of the peaks gives the funda�

mental spatial period of the patterns� Typical noise processes tend to dramatically

alter local spatial variation of intensity while having relatively uniform representa�

tion in spatial frequency� As a result� frequency domain measures should be less

sensitive to such noise processes �����

The discrete Fourier transform 
DFT� F 
u� v� of a two dimensional signal f
x� y�

is de�ned by �����

F 
u� v� � �

N�

N��X
x�


N��X
y�


f
x� y� expf�j�	
ux vy�
Ng

and the inverse DFT is de�ned by�
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f
x� y� �
N��X
u�


N��X
v�


F 
u� v� expfj�	
ux vy�
Ng

where N is the square image or subimage dimension� This transform can be per�

formed quickly by using the fast Fourier transform algorithm�

There exists a one�to�one mapping between the DFT and its inverse� The power

spectrum is simply jF 
u� v�j� � F 
u� v�F �
u� v�� where � denotes the complex con�

jugate� The power spectrum of the image is the Fourier transform of the autocorre�

lation function� Often� the origin 
which represents the D�C� component� is shifted

to the centre of the image� The total energy excluding the D�C� component in the

image is�

� �
N��X

u��N��

N��X
v��N��

jF 
u� v�j� 
u� v �� ��

Since power spectrums of real images are symmetric� only v � � is considered�

One may also consider the power spectrum as a function of polar coordinates�

F 
r� ��� Using this coordinate system� the radial distribution of the power spectrum

is sensitive to texture coarseness� For example� a small bandwidth of low dominant

frequency components 
ie� high values close to the origin in the power spectrum�

will indicate a smooth texture� A power spectrum with a high bandwidth 
ie�

power spectrum that is more uniformly placed over the entire domain� will tend

to characterize �ne textures� Texture features may be derived by summing the

normalized energy as a function of a de�ned range of its radial component 
r� over

the entire range of its orientation component 
���

�r � �

�

Z �

��


Z r�

r�r�
jF 
r� ��j�drd��
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These features are referred to as �rings� or �annuli�� The angular distribution of

values in the power spectrum is sensitive to the directionality of the texture and

may be de�ned by summing the entire radial range within a de�ned orientation

range�

�� � �

�

Z ��

����

Z N��

r�

jF 
r� ��j�drd��

Such features are referred to as �wedges�� Intersections of rings and wedges will

sum energies in particular regions in the power spectrum and these values are used

as texture features� D�Astous ���� recognizes the shortcomings of only considering

summed features as texture features from the power spectrum� For example� two

textures with quite di	erent spectra would be judged as the same as long as their

respective ring�wedge summed energies were the same� She developed a group of

power spectrum features that recognizes attributes such as the extent of regular�

ity� directionality� linearity and coarseness� which are not reected by traditional

summed energy features� These new features include an entropy based approach

as well as peak and shape characterizations� The entropy based approach did not

seem to generate features that performed as well as cooccurrence features for natural

textures� although the entropy measures reect substantially di	erent information

about the texture characteristics than the summed energy feature �����

Peak and shape characterizations are important power spectrum features� The

degree of regularity in texture corresponds to peaks in the power spectrum� Lo�

cation and concentration of the peaks relates to the coarseness and directionality

in the texture� By isolating critical peaks� texture features may be obtained by

measuring their particular characteristics� The D�C� component is not considered

for peak analysis to generate features invariant to local mean grey level� Features

are summarized in Table ��� where k
u� v� denotes the energy at the highest point
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Percentage Energy 
PCT� k
u� v�
� 	 ���
Laplacian 
LAP� k
u �� v�  k
u� �� v� 

k
u� v  ��  k
u� v � �� � �k
u� v�
Skew of Peak 
SKW� !f neigbours of peak  ��� 	 k
u� v�g

Distance of Peak from Origin 
DIS� u�  v�

Relative Peak Angle 
ANG� tan��
v
u�

Table ���� Peak texture features based on power spectrum�

of a peak� Percentage energy of peak 
PCT� represents the percentage of total

energy of a peak� The Laplacian 
LAP� takes on a small value for a at peak

and a large value for a pointed peak� Since a skewed peak and a symmetric peak

are not discriminated under a Laplacian measure� counting the number of neigh�

bours in the peak which contain at least �fty percent of the peak energy provides

a discriminating measure 
SKW�� The distance 
DIS� of the peak from the origin

interprets coarseness 
small distance� or �neness 
large distance�� The angle of the

peak 
ANG� takes on values between zero and 	 radians due to symmetry of the

power spectrum� Absolute peak angles are sensitive to the rotation of the image�

thus� the angle between two highest peaks is used as a texture feature� Typically�

the highest and second highest peaks are used when determining the above features�

Shape features provide information concerning the overall shape of the power

frequency spectrum� Highly directional texture corresponds to an elongated ellip�

tical shape distribution� while the distribution of an isotropic texture is much more

circular� A two�dimensional probability density function of the spatial frequency

components is obtained by dividing the energy of each frequency component by ��

Each 
u� v� in the power spectrum is then a random vector with associated prob�

ability p
u� v�� The mean of the distribution is 
���� due to symmetry about the
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origin� The covariance matrix is�

S �

�
�� �uu �uv

�uv �vv

�
��

where

�uu �
N��X

v��N��

N��X
u��N��

u�p
u� v��

�vv �
N��X

v��N��

N��X
u��N��

v�p
u� v��

and

�uv �
N��X

v��N��

N��X
u��N��

uvp
u� v��

Based on these measurements� di	erent features can be generated 
Table �����

Isotropy 
ISO� measures the elongation of the probability distribution and has a

range of values from zero to one� For an isotropic feature� the feature value tends to

zero� If the distribution only consists of straight lines 
�u � � or �v � ��� then the

measure tends to one� The spread of the spatial frequency component distribution


SPD� is determined using the square root of the two eigenvalues of the covariance

matrix� �� and ��� The circularity measure 
CIR� compares the area of the distri�

bution to the area of a circle with a radius equal to the length of the major axis�

The fraction of the area of the distribution compared to the encompassing circle

determines the texture feature�

D�Astous ���� demonstrates how di	erent window sizes should not a	ect the

various features that can be derived from the power spectrum� As long as at least

one full period of the texture is contained within the window� power spectrum
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Isotropy 
ISO� j�u��vjp
��u��v������uv

Spread of Distribution 
SPD�
p
���

p
��

Circularity Feature 
CIR� AD
AC

Table ���� Shape texture features based on power spectrum�

features should be consistent� Using this concept� D�Astous describes an hierarchi�

cal split�and�merge approach to segment a full image� Like any other windowed

feature extraction process� confusion occurs when multiple textures appear in the

same subimage� This is the problem when the power spectrum of a full image is

calculated� From the power spectrum� it is impossible to tell which dominant fre�

quencies belong to which spatial coordinates since there is no one�to�one inverse

transformation of the power spectrum back to the spatial domain� Subdividing the

image using a split�and�merge approach circumvents this shortcoming�

Unlike the cooccurrence texture feature approach� no study has been found in

the research literature that speci�cally investigates the potential of the di	erent

power spectrum texture features for application to SAR sea ice imagery� Power

spectrum features have typically been developed and tested on Brodatz imagery�

����� Multi�Channel Filtering

Multi�channel �ltering is a more recent approach to texture analysis� Processing the

image using multiple resolution techniques� �lter banks have the ability to decom�

pose an image into relevant texture features that can then be classi�ed accordingly�

Multi�channel �ltering mimics characteristics of the human visual system 
HVS��

This section will �rst describe how the HVS system processes information in a

multi�channel sense� Then� the theory of wavelets is introduced followed by a de�
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scription of a special wavelet function� the Gabor function� A discussion of methods

to implement the Gabor functions for texture analysis conclude the section�

The Role of the HVS in Texture Interpretation

In order to better implement arti�cial vision systems� scientists have attempted to

improve our understanding of the human visual system� Just as birds were once

used as a natural system to help unlock the mystery of ight� scientists today use

animal models to improve our understanding of biological vision� Implementation of

arti�cial vision systems leads to an improved understanding and gives us a better

appreciation of the abilities of the natural system� Granted� we do not design

airplanes that have wings that ap� however� birds have given us the knowledge

and inspiration to accomplish what might have been considered to be not possible�

Determining how a wing works and how the brain operates involves di	erent degrees

of complexity� Little by little we have improved our understanding of how the HVS

operates and we are learning how to better implement this knowledge e	ectively�

Also� the HVS can also serve as a convenient basis to measure the performance of

arti�cial vision systems� For example� two images are said to have the same texture

if they are not e	ortlessly discriminable to the human observer �����

Julesz presented paradigms for the HVS that have been widely publicized and

discussed ���� ���� He provided evidence that the HVS may not be sensitive to dif�

ferences in probability distributions with orders greater than two� Recent work has

indicated that sensitivity to higher order statistics is possible ����� That second�

order relationships are important provided impetus for development of the cooc�

currence texture features� He also developed the concept of �textons� to explain

preattentive aspects of human visual perception� Textons are suspected to provide

a �rst�order cue to the HVS which directs the visual system to determine the posi�
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tional relationship of the textons in the scene� In this manner� patterns in the scene

are identi�ed� Textons are structural in nature and� as a result� do not provide the

type of discrimination needed for SAR sea ice imagery� Other research has provided

more encouraging models for providing features for texture interpretation�

The human visual system 
HVS� is extremely complex� A highly abbreviated

explanation for the interconnections is as follows� Receptor cells are found on the

back inner surface of the eyes� From there� electrical impulses are passed through

various nervous pathways through the optic nerve and �nally to the visual cortex


located posteriorly in the brain�� Within the visual cortex� it is known that various

cells perform di	erent types of processing on the incoming signals� Hubel and

Wiesel ���� tested responses of the visual cortex in cats and deduced that simple

cells are tuned to speci�c orientations� That is� as a bar is rotated through a visual

�eld� individual simple cells respond only when the bar is within a certain range

of frequencies� The range is not more than ��� for a given cell� Campbell and

Kulikowski ���� carried this concept further and demonstrated that humans have

orientation sensitivity as well as a spatial frequency sensitivity� This led to their

model ���� p����� that the HVS is made up of �a number of independent detector

mechanisms each preceded by a relatively narrow�band �lter "tuned� to a di	erent

frequency� Each �lter and detector would constitute a separate "channel� � � � ��

Experiments have shown that the frequency bandwidth of simple cells in the visual

cortex is about one octave 
see Pollen and Ronner ������ This HVS multi�channel

�ltering model agrees with a very popular generic approach to signal decomposition�

namely� wavelet analysis�

The research by Rao and Lohse ���� provides additional insight to this idea of

orientation and frequency sensitivity but from a human perception slant� Subjects

were asked to classify pictures from the Brodatz album ���� based solely on their
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own perception� Results indicate that people essentially use three high�level fea�

tures for texture discrimination� namely� repetition� directionality� and complexity�

Repetition and directionality are representative of frequency and orientation� Com�

plexity relates to the consistency of the texture� For example� a purely sinusoidal

texture would have low complexity and a texture without any well de�ned pattern

would have high complexity� These three characteristics are important when inves�

tigating the ability of feature extraction methods to accurately identify di	erent

textures�

These experiments predict two fundamentally di	erent theories of what is impor�

tant for texture interpretation within the HVS� One is based on oriented frequency

components and the other is based on structural recognition� The argument is sim�

ilar to the historical debate over the wave versus particle theories of light� Which

method is appropriate# Today we realize that a dual model is a better explanation

of how light propagates� There is ample evidence to support that a combination of

the above two models are a complete way to fully explain mechanisms of the HVS�

However� which methods are most important when creating an arti�cial approach

to mimic the characteristics of the HVS and implement a machine aided approach

to texture segmentation#

Wavelets  What Are They�

This section serves as a brief introduction to the rapidly growing �eld of multi�

channel analysis� Further introductory information can be found in ���� ��� �����

Wavelet analysis has the ability to mimic the frequency and orientation sensitivities

characteristic of the HVS� Wavelets 
�little waves�� are a special group of signals

that have been applied in a wide variety of signal processing applications� including

digital image analysis� Essentially� they are bandpass �lters designed with certain
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characteristics ������ they are oscillatory� they have a fast decay towards zero 
in

all directions�� and they also integrate to zero� Sets of wavelets are created by

modifying the original wavelet 
often referred to as the mother wavelet� by scaling


dilation or compression� and translating 
shifting along an axis�� For example� if

g
x� represents the mother wavelet then�

�p
a
g

�
x� b

a

	

represents the set of wavelets as a function of scaling 
a� and shifting 
b�� The �

p
a

term is used for energy normalization� The wavelet transform of a one�dimensional

signal actually produces a two�dimensional representation 
as a function of a and b��

A continuous time wavelet transform 
CTWT� is de�ned as an operation per�

formed on the input signal f
x� as a function of a and b with respect to a mother

wavelet g
x� ������

Wg�f
x��
a� b� �
�p
a

Z
f
x�g�

�
x� b

a

	
dx

�

Wg�f
x��
a� b�� a linear transformation� generates the wavelet coe�cients� There

exists a discrete wavelet transform 
analogous to the Fourier series� not the discrete

Fourier transform� known as the continuous time wavelet series 
CTWS�� Here�

discrete refers to the transform domain parameter and not the independent variable

of the function that is being transformed� Thus� the scales and translations are

discrete� but the independent variable is continuous� The discrete time wavelet

series 
DTWS� is analogous to the discrete Fourier transform 
DFT�� Here� both

the independent variable as well as the scales and translations are discrete� The

DTWS is used for image analysis� the CTWS for continuous signal analysis� and

the CTWT is often used to derive properties for the other two transforms�
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By de�nition� a Fourier transform integrates the independent variable from �

to  
� If only a �nite range 
a window� is used to generate the Fourier transform

as in Section ������� the transform is referred to as the short time Fourier transform


STFT�� The STFT is an acceptable means of analysis for locally stationary signals�

since dominant frequency components are identi�able and further processing can

be based on these components� Wavelets provide preferable characteristics when

the image or signal under consideration is non�stationary and wideband� SAR sea

ice imagery is an example of such imagery�

The scaling and translation properties of the wavelet transform make it an at�

tractive tool for a host of signal processing applications� The number of oscillations

the wavelet experiences is independent of the scaling and translation� A scaling

parameter less than one causes compression of the mother wavelet� In this case�

more cycles occur in a shorter time frame which indicates higher frequencies and�

inherently� the wavelet transform maps a shorter time interval to higher frequencies�

Similarly� a longer time interval is mapped to lower frequencies� When attempting

to segment a SAR sea ice image� this inherent ability has tremendous potential� A

wavelet transform can be applied so that compressed wavelets identify multi�year

ice types and dilated wavelets identify smooth ice types� The characteristic line

patterns of pressure ridges would have high frequency oriented components that

the wavelet analysis could be �tuned� to isolate� Generally� the wavelet transform

can take a signal� break it down into component pieces� and the manipulation of

these pieces can yield features that represent characteristics of the various textures

that appear in the image� Such multi�resolutional �ltering gives the opportunity to

dissect an image and isolate the essential details necessary for segmentation�
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Gabor Functions Implemented for MultiChannel Filtering

Research has demonstrated that the HVS generates a multi�resolutional decompo�

sition� Since wavelets are intrinsically multi�resolutional� they have been imple�

mented successfully in texture analysis models� A popular multi�channel �lter is

the Gabor function� This function is not truly a wavelet 
ie� in the mathematical

sense�� however� it can be implemented in such a manner as to mimic properties

of a wavelet and it has properties that make it attractive for computer vision ap�

plications� These properties include its potential ability to mimic the behaviour

of simple cells� appealing simplicity� and optimum joint spatial�spatial�frequency

localization�

There is evidence to indicate that this pseudo�wavelet models the general nature

of the two�dimensional receptive �elds of simple cells in the visual cortex ����� In

linear systems language� the Gabor function acts as the impulse response for simple

cells� Also� the Gabor function has the ability to isolate speci�c frequencies and

orientations� well recognized properties of the HVS�

In terms of functionality� a Gabor function is a Gaussian modulated sinusoid�

It is de�ned as a product of an elliptical Gaussian 
aspect ratio �x
�y� centre


X�Y �� and a complex exponential 
spatial frequency F �
p
U�  V �� orientation

� � tan��
V
U��� The complete Gabor function ���� can be represented spatially

by�

f
x� y� �
�

�	�x�y
exp



��
�

�

x�X��

��x
 

y � Y ��

��y

	�
expf�	j�U
x�X� V 
y�Y ��g

and its spatial�frequency domain representation is�

F 
u� v� � exp
n
��	�

h

u� U����x  
v � V ����y

io
�expf��	j�X
u�U� Y 
v�V ��g�
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Figure ���� Even�symmetric Gabor function 
spatial domain��

An example of the even�symmetric 
real� part of apart of a Gabor �lter is

presented in Figure ���� Here� X � Y � V � �� U � ���� cpp 
cycles per pixel��
�x � � pixels� and �y � � pixels� The frequency domain representation is shown in

Figure ����

Selection of �x and �y determines the resolution in both the spatial and spatial�

frequency domains� Low values of �x and �y favour spatial resolution and their high

values favour spatial�frequency resolution� When segmenting an image� short spa�

tial intervals are preferable because we wish to approximate the boundary between

textures� However� smaller frequency bandwidths are preferable to make better

distinctions among di	erent textures� Unfortunately� the spatial extent and the

spatial�frequency bandwidth have an inverse relationship� This tradeo	 
conicting

goals of simultaneous spectral and spatial localization� is known as the uncertainty

principle ���� ���� A Gabor function has an important property� optimal joint reso�

lution in the spatial and spatial frequency domains� If $x represents the resolution
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Figure ���� Even�symmetric Gabor function 
spatial�frequency domain��

in the spatial domain and $u represents the resolution in the spatial�frequency

domain� then the joint resolution is bounded by the inequality�


$x�
$u� � �

�	

The one�dimensional Gabor function achieves the equality of this formula� A similar

criterium is met in two�dimensions �����

Implementation of Multichannel Filters For Texture Interpretation

When describing the cooccurrence technique� there were several research papers

that were used to describe di	erent implementation approaches of the cooccur�

rence data to SAR sea ice imagery� It would be appropriate to demonstrate the

implementation issues of Gabor and other multi�channel �lters applied to SAR sea
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ice imagery� but the literature is quite limited in this area� As a result� examples

will be drawn from methods used for generic texture analysis�

When generating texture features using multi�channel �lters� two primary issues

must be addressed� The �rst issue deals with the functional characterization of the

channels as well as their number� orientation� and spacing� The second issue deals

with extracting signi�cant features by data integration from the di	erent channels�

These two issues are discussed in this section in the context of Gabor �lters�

Functional Characterization

The position 
F ��� and bandwidth 
�x��y� of Gabor �lters in the frequency

domain must be carefully set up to capture essential texture discrimination infor�

mation� This is an important issue because centre frequencies of channel �lters

must agree very closely with the emergent texture frequencies or the channel fre�

quency responses fall o	 too rapidly within a small neighbourhood of the centre

frequencies� This assumes that some identi�able features for a particular texture

are su�ciently spaced in frequency so that cross�channel interference does not oc�

cur� Since Gabor �lters are not fully bandlimited� some aliasing will always occur

regardless of the �lter density� Also� since there are many combinations of 
F � ��

�x� �y�� minimizing the number of �lters is highly desirable from a computational

perspective� Numerous methods to characterize Gabor �lters to perform texture

interpretation will be discussed� These include� locating peaks in the image spec�

trum� using pyramidal schemes� optimizing separability between two textures� or

sampling the frequency plane with a su�ciently dense set of channels�

Bovik ���� mentions three supervised approaches to selecting �lter locations

using empirical information based on the power spectrum characteristics of the in�
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dividual textures� For strongly oriented textures� the most signi�cant spectral peak

along the dominant orientation direction is used as a �lter location� Picking the

lower fundamental frequency identi�es periodic textures� Finally� for nonoriented

textures� using the centre frequencies of the two largest maxima is recommended�

Obviously� an automated method is far more appealing and practical� Also� identi�

�cation usually requires multiple peaks for each texture in the SAR image� making

this selection approach unwieldy� Identifying unique textures with small regions of

support is also di�cult�

Dunn and Higgins ���� develop a method to select optimal �lter parameters

based on known samples of the textures� The objective of this wholly supervised

approach is to develop better methodologies to discriminate textures based on iden�

tifying textural boundaries using only a minimum number of �lters� Only �the�

particular �lter which optimally separates two texture classes 
in terms of their one�

dimensional density functions� is used to partition an image� The �optimal� �lter

may reect strong textural characteristics of one class but may actually express a

lack of textural information 
for that given frequency and orientation� of the other

class� The other class is not being identi�ed as having a particular characteristic�

but lacking a characteristic of the other class� The output of the Gabor �lters is

modelled as a Rician probability density function� To use just a single �lter to

discriminate each texture pair may be di�cult because each texture is subject to

spatial variability and the texture may contain multiple dominant components� If

multiple �lters are used� how does one determine the number of �lters to select#

Instead of trying to identify unique peaks that belong to unique textures� an�

other approach to �lter characterization is to spread the �lters throughout the

frequency domain �eld to capture salient information� By providing near uniform

coverage of the spatial�frequency domain with Gabor �lters� the issue of selection
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of the centre frequencies is avoided� Wright ����� empirically derived preferred �l�

ter parameters in terms of peak frequencies and bandwidths based on preattentive

visual discrimination experiments� His experiments provided evidence for dividing

the orientation into at least seven uniformly spaced channels 
ranging over ������

In the frequency direction� the set of 
�������������������������� cycles per degree and

respective bandwidths of 
������������������������ octaves are recommended for tex�

ture feature extraction� Fernandes and Jernigan ���� applied Wright�s speci�cations

to discriminate textures in satellite forestry imagery�

When Gabor functions are applied as linear �lters� the centre de�ned by 
X�Y �

in the spatial domain is unnecessary since the function will be implemented using

convolution� In the spatial�frequency domain� these �lters appear as simple Gaus�

sians centred on 
F� ��� Thus� Gabor �lters are actually band pass �lters� From a

digital signal processing perspective� this type of analysis is quite straightforward

to implement and utilize� A complete 
even and odd components� Gabor �lter can

be represented spatially as�

h
x� y� �
�

�	�x�y
exp



��
�

�
x�

��x
 
y�

��y

	�
exp
�	jFx��

It is assumed that the x�axis of the Gaussian has the same orientation 
�� as the

frequency 
F �� Bovik agrees that this is the most convenient approach ����� Rota�

tion by � in the x�y plane provides for any arbitrary orientation of the �lter� The

corresponding representation in the spatial�frequency domain is�

H
u� v� � expf��	��
u� F ����x  v���y �g

where again a rotation can be used to obtain any arbitrary � in the u�v plane�

Jain and Farrokhnia ���� use a bank of even�symmetric Gabor �lters to char�

acterize the channels� The authors justify using only even�symmetric Gabor �lters
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on psychophysical grounds� but they provide no full explanation of this basis� If

one were to use only the real 
even�symmetric� component of a Gabor �lter� then�

h
x� y� �
�

�	�x�y
exp



��
�

�
x�

��x
 
y�

��y

	�
cos
�	Fx��

and the representation in the spatial�frequency domain becomes�

H
u� v� � expf��	��
u� F ����x  v���y�g expf��	��
u F ����x  v���y�g

Note that in the even�symmetric representation 
such as in Figure ����� two Gaus�

sians appear in the spatial frequency domain compared to only a single Gaussian

in the complex case�

Placing the �lters evenly across the spatial�frequency domain assists decisions

about the �lter parameters� There are six unknowns when implementing the �lters�

F � �� �x� �y� BF � and B�� The radial frequencies 
F � can be selected by using

psychovisual data� Jain and Farrokhnia implement F in octave format starting at
p
� cycles per image 
cpi�� Since low frequencies are considered not to contribute

to textural di	erences� they do not consider the two lowest frequencies 
for images

dimensioned to ���x��� pixels�� Four equally spaced orientations are used� �� ���

��� and ��� degrees� In terms of psychovisual data� �ner orientation selectivity

may be required� but they provide no such analysis� Setting the variables BF and

B� 
frequency and angular bandwidths� carefully will ensure proper coverage of

the spatial�frequency domain� Since distances between centre frequencies are one

octave� it makes sense to set BF to � octave� Similarly� it makes sense to set B� to

����

In order to determine �x and �y� two equations are required� If BF is deter�

mined as a function of position on the u�axis� then a representation for �x can be

determined� Calculating the half�bandwidth 
��db� response when v � ��
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H
u� �� �
�

�
� expf��	���
u� F ����xg

and solving for u yields�

u � F �
p
ln �p
�	�x

Since the octave distance between two frequencies is simply the log� of their ratios�

then the radial bandwidth may be expressed as�

BF � log�

�
�F	�x 

q
ln
��
�

F	�x �
q
ln
��
�

�
�

Solving for �x yields�

�x �

p
ln �
�BF  ��p
�	F 
�BF � �� 
����

The second equation is determined by the angular half�bandwidth� Setting

u � F �

H
F� v� �
�

�
� expf��	���yv�g

and solving for v yields�

v � �
p
ln �p
�	�y

The tangent of the angular half�bandwidth is then found as�

tan
�
B�

�


�

� p
ln �

F
p
�	�y

�

����
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Solving for �y yields�

�y �

p
ln �

F	
p
� tan 
B�
��

A circular Gaussian may be desired to have a consistent spatial extent in all direc�

tions� In this case� �x is set to �y 
� � �x � �y� and B� is calculated� Equation ���

is used to determine � and Equation ��� is used to determine B�� If a constant

value of � is selected for every 
F� �� pair then the decomposition would be that of

a STFT� From a practical perspective� it makes sense to increase the bandwidth of

the �lter with increasing frequency since the power spectrum typically decreases in

a logarithmic fashion and since this corresponds to narrower impulse responses for

higher frequencies�

A problem with simultaneously capturing information across the entire spatial�

frequency domain is that a considerable amount of data must be generated and

manipulated� For example� given a ���x��� image and Wright�s set of features�

���� � �bytes � ��filters � � � ��Mb of active memory 
given oat precision and

the fact that real and imaginary components will be generated�� In contrast� when

information is transferred from the eye to the optic nerve� there is a considerable

compression in the number of nerve �bres carrying sensory information� This leads

to the possibility that the HVS is performing coding prior to the data reaching the

visual cortex� However� this model of multi�channel �ltering only multiplies the

amount of data that must be processed�

Orthogonal wavelet implementations allow for rapid and straightforward gen�

eration of the wavelet coe�cients using a matrix based �lter bank� Since Gabor

functions are not orthogonal �lters� this can lead to redundant information being

produced in the output of the �lters� If the redundancy is low� there should be no
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real concern for the texture interpretation schemes utilizing the Gabor function�

Jain and Farrokhnia ���� perform a Gabor decomposition using near uniform cover�

age of the spatial�frequency domain� They demonstrate that reconstruction based

on the �ltered images generates an accurate reproduction of the original image�

Mallat ���� prefers using basis functions that are orthogonal for multi�resolution

analysis�

Filter Integration

There are a number of di	erent methods to integrate the outputs from a bank

of Gabor �lters� Mallat ���� mentions that there is �no statistical model to combine

the information provided by di	erent channels�� This is noted because consider�

able information is produced by the Gabor �lter analysis and it is the e�cient

manipulation of this data that will provide appropriate texture features�

Scientists typically agree that a nonlinearity is essential � this matches biolog�

ical functioning and generates computer implementation success� Texture identi�

�cation is usually performed based on the magnitude of the output of the Gabor

functions ���� ���� In the case of a �lter that �matches� the particular texture� the

magnitude of the output is large� hopefully larger than any of the other �lter out�

puts to enable identi�cation� Filters that do not match the frequency components

of dominant texture characteristics should have a negligible response and can be

safely ignored as characteristic of that particular texture� Low responses to any

�lter may be important to identifying a texture if the responses are consistent� In�

stead of using the magnitude responses� Bigun and du Buf ���� use moments of the

Gabor responses to reduce the number of texture features generated�

Malik and Perona ���� advocate the use of half�wave recti�cation� claiming that
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full wave recti�cation and power spectrum responses destroy information necessary

for texture discrimination� Their example looks at a Gabor�like function 
strong

central peak and negative side�lobes�� Scaling the function by �� leads to a texton
that is visibly di	erent� This will change the sign of the Gabor �lter response and

a magnitude calculation will destroy this information� Their approach of splitting

the output into two half�wave recti�cations� one for positive and one for negative�

will recognize such a di	erence� Hence� their discrimination is actually based on

tonal di	erences� Dunn et al� ���� suggests an alternative approach that maintains

information indicated by di	erences in sign and phase�

Porat and Zeevi ���� attempt to identify the dominant local frequency and ori�

entation component� By calculating moments of the responses� the preferred 
F� ��

pair and their variances are determined� No consideration is given to the confu�

sion that would arise in the common case of natural textures that have multiple

dominant 
F� �� pairs� They concatenate their feature set by using local mean and

variance of the grey levels as texture features�

The importance of phase has been the subject of some discussion� however� it has

proven to be not as useful as the magnitude Bovik et al� ���� determine boundary

identi�cation using consistent textures with a phase shift generating a �break� in

the homogeneity of the texture� The boundary identi�cation being performed does

not seem suitable for the needs of segmenting SAR sea ice imagery� Du Buf ����

discusses at length the relevance of local phase information� but recognizes that

�� � � the quality of this information degrades if the textures are disturbed by a small

amount of jitter or by band�limited additive noise ���� p������� Thus� such features

would be very delicate if applied to natural imagery� That the phase of an image is

more important to regenerating an image than its magnitude is noteworthy 
see ����

for discussion�� however� the contribution of phase to image texture segmentation
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is still uncertain�

A nonlinear function applied to the wavelet response does not typically gener�

ate a su�ciently smooth signal to allow for a consistent segmentation� Jain and

Farrokhnia ���� subject each �ltered image to a nonlinear transformation followed

by local smoothing� The nonlinear transformation is reminiscent of a sigmoidal

activation function used in arti�cial neural networks and the window size used for

the local smoothing is a function of the centre frequency of that particular channel�

Bovik et al� ���� understand that textures which do not have su�ciently narrow

bandwidths su	er from �leakage�� They reduce the e	ects of leakage by post�l�

tering the channel amplitudes with Gaussian �lters having the same shape as the

corresponding channel �lters but greater spatial extents� This approach can lead

to erroneous boundary estimates�

Very little work has been done in the area of logically combining the outputs

of the di	erent Gabor �lters to match observed biological vision characteristics�

Manjunath and Chellappa ���� use competitive and cooperative processing of the

Gabor �lter outputs to help in noise suppression and to reduce the e	ects of illu�

mination� The result is an approach that can identify edges� textures� and illusory

contours� They also comment that complex cells in the visual cortex respond to

complex patterns such as textures� Unlike simple cells� these complex cells do not

contain any phase information� are less sensitive to precise location but are tuned

to respond to di	erent speci�c orientations and direction of movement� Modelling

of these cells is performed by summing outputs of similar simple cells�
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����� Other Texture Feature Extraction Methods

There are a wide assortment of additional texture feature extraction methods�

These will be briey summarized here�

Another method for studying texture identi�cation is the use of texture synthe�

sis� By assigning di	erent parameters to a particular generator� di	erent synthetic

image textures are produced� If the texture of an image matches the texture of

a synthetic image� this provides a better theoretical and visual means of under�

standing the texture� Several of these approaches are presented by du Buf et al�

����� This method is commonly used to produce images to test texture analysis

algorithms� Textural synthesis can also be used for the arti�cial generation of two

textures so that the responses of all features under study are equal for the two

�elds� This is the method of choice for Wright ������ Hall and Giannakis ���� use

higher than second�order statistics to characterize texture images� which is counter

to Julesz�s conjecture regarding the adequacy of second�order statistics for visual

discrimination of textures �����

Markov modelling approaches that are used to produce texture synthesis are

also used directly for texture feature extraction� In order to classify rotated and

scaled texture images consistently� Cohen et al� utilized Gaussian Markov random

�elds 
GMRF� ����� Markov random �eld models were also used by Manjunath

et al� for texture segmentation purposes ����� They recognize that a search for an

optimal solution is not possible because of the large dimensionality of the space� so

alternative solution methods must be employed� Bello ��� applies a Markov random

�eld to outputs from a wavelet �lter bank� A combined multiple resolution and

Markov random �eld analysis is performed by Bouman and Liu �����

Laws ���� empirically developed what he called micromasks� local masks that
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detect certain texture characteristics such as edges� lines� ripples� and spots� Bovik

comments that some of these masks have Gabor�like representations ����� Chen and

Kundu ���� expand Laws approach into directional macromasks that determine a

local estimate of the directional energy� A ��D Wold�like decomposition ���� ���

is used by Francos et al� to break down an image into two mutually orthogonal

parts� an indeterministic component 
modelled by a ��D autoregressive model� and

a deterministic component 
representing the harmonic nature of the texture�� The

representation of the deterministic component is similar to the simple texture model

presented by Bovik ����� Reed et al� use a Wigner distribution in a region growing

context to perform texture segmentation ����� McLean ���� uses a discrete cosine

transformation 
DCT� to generate texture features� This is the same transformation

used for encoding in the JPEG and MPEG picture and moving picture formats�

An interesting formulation to model texture was proposed by Randen and

Hus�y ����� They perform texture feature extraction based on the design of an

optimal �nite impulse response 
FIR� �lter 
optimal with respect to the Fisher�s

optimality criterion described in Section ������� They are able to �nd a closed

form solution only if the �ltered image is assumed to be a separable autoregressive

process� They found that their method is quite successful for bipartite images� Al�

though other methods exist that can easily accomplish the same or better results�

the goal of optimal �lters is preferred to reduce the amount of data�

Other multi�channel �ltering methods have been used for texture interpreta�

tion� Malik and Perona ���� implement di	erence of o	set Gaussians 
DOOG� and

comment that the selection of �lters is not a critical choice as long as they have a

good �t with the physiological measurements and they are computationally simple�

Unser ����� uses a discrete wavelet frame 
DWF� that he claims to be superior to

standard wavelet transform feature extraction and this suggests that results are
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better than cooccurrence probabilities� The wavelet decomposition he performs is

quite successful for both classi�cation and segmentation examples� Coggins and

Jain ���� create ad hoc frequency domain �lters that are based on frequency and

orientation speci�c functions� Bello ��� uses a Haar wavelet to decompose images

for texture segmentation purposes� Quadrature mirror �lters 
QMF�� often used in

image coding� can also be applied to the texture identi�cation problem� Based on

energies in the subspaces of the �ltered images� Chen and Kundu ���� classify sets of

Brodatz imagery� Krishnamachari and Chellappa ���� have designed a wavelet �lter

bank whose output will always be a Gaussian Markov random �eld 
GMRF� given

that the input is a GMRF� Using a supervised approach� they segment a ��class

Brodatz image that contains textural regions with a number of di	erent shapes�

��� Pattern Classi�cation

For the purposes of this thesis� traditional pattern classi�cation techniques will be

utilized� Only a brief discussion of the essential aspects are presented here�

����� Feature Reduction

The reduction of dimensionality 
removal of redundancy� of feature space is an im�

portant part of a feature generation process� The feature selection process should

provide a data set with only the essential information necessary for accurate clas�

si�cation� Computer implementations with high feature dimensions are typically

unwieldly� Visualization of the feature space is awkward when the number of di�

mensions exceeds three� With increasing dimensionality of the texture feature space

there is initially a corresponding increase in the classi�cation accuracy ����� Eventu�
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ally� at some unknown point� the texture classi�cation accuracy begins to decline�

Prediction of the total number and type of features is di�cult� so reducing the

dimensionality given a full feature set is usually performed�

A popular method for feature reduction is the orthonormal whitening transfor�

mation 
also referred to as the Hotelling transform� principal components analysis�

or the Karhunen�Loeve transform�� By removing the correlations among the fea�

ture dimensions� this method is used to �nd a lower dimensional representation�

Multi�spectral imagery is often reduced using this approach �����

����� Supervised Classi�cation

There are many methods to perform supervised classi�cation� The method of choice

here is the Fisher linear discriminant 
FLD� ����� The FLD provides a method to

reduce a multidimensional feature space down to a d�dimensional feature space�

This is accomplished by �nding the optimal projection to separate d  � classes�

We are typically concerned with setting d � � so that a ��d maximum a priori


MAP� classi�er can be utilized� In the case of C classes�

�
B� C




�
CA pairwise class

discriminants are determined� The discriminant vector 
w� is found by optimizing

the Fisher criteria�

J
w� �
wTSBw

wTSWw

����

where SB and SW are the between�class and within�class scatter matrices� In the

d � � case� SB and SW are de�ned by�

SB � 
m� �m��
m� �m��
T
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and

SW � S�  S�

where

Si �
X
x�Ci


x�mi�
x�mi�
T

and mi represents the class mean�

By taking the derivative of J
w�� the optimal w is determined to be�

w � S��
W 
m� �m���

Further discussion on the FLD is found in texts by Duda and Hart ���� and

Schalko	 ����� A simple improvement is to use covariance matrices in place of

scatter matrices 
simply divide each scatter matrix by the number of samples in

the class�� Using covariance matrices corrects for unequal class sizes�

Si �
�

Ni

X
x�Ci


x�mi�
x�mi�
T

�

In order to classify a sample when more than two classes exist� the sample is

classi�ed according to each class pairwise discriminant� The class that is selected

most often is the class to which the sample is assigned� The advantages of using

this classi�er include� low computational load� optimal reduction of a multidimen�

sional space to a ��dimensional space� and inherent normalization of the distance

measures between the classes regardless of the scaling of the feature dimensions�
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Also� normalized measurements of inter�class distances based on the Fisher criteria

can be used to assist determination of preferred features�

By using pairwise discriminants in a multi�dimensional environment� it is possi�

ble for a sample to not have a de�nite class assignment when the number of classes

is greater than two� For example� consider the case of three classes 
A�B�C�� If the

sample x is assigned to class A for discriminant A � B� and class B for discrimi�

nant B � C� and to class C for discriminant A � C� then the class assignment is

unresolved� For the classi�cation studies� such a sample is considered erroneous�

For the segmentation studies� unresolved pixels are typically found on the bound�

aries separating di	erent assigned textures� These pixels are assigned to the class

according to its nearest assigned pixel�

����� Unsupervised Classi�cation

Clustering algorithms identify densely populated areas in the feature space� Given

multidimensional vectors� the goal is to �nd the best partition of the feature space

into these signi�cant clusters� Duda and Hart ���� and Jain and Dubes ���� pro�

vide a detailed look at classical clustering techniques� Methods important to the

implementations in Chapter � are reviewed here�

A common clustering approach is the K�means algorithm which iteratively as�

signs classes to the nearest class mean using the minimum Euclidean distance


MED� classi�er� After each iteration� new class means are determined based on the

most recent class assignments� A convenient stopping criteria is to determine when

all samples cease switching to another class� The ISODATA algorithm extends the

K�means approach providing user de�ned mechanisms for splitting and merging

clusters� For both methods� scaling of each of the feature dimensions could a	ect
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the success of the algorithms� Note that the K�means algorithm requires that the

user indicate the number of classes and the ISODATA approach requires knowledge

of the existing data set to produce an accurate clustering�

Hierarchical clustering techniques group�partition the feature space in an in�

cremental fashion until the desired number of classes is reached� The group�

ing�partitioning is typically based on some distance measure between clusters� Two

fundamental procedures are applied� divisive 
begins with all samples in one cluster

and adds classes until some criteria is met� and agglomerative 
begins with each

samples representing a di	erent class and groups similar samples until some criteria

is met��

Generally� determining the number of classes C is a di�cult problem� Fuku�

naga ���� recognizes this and describes how� for a particular data set� di	erent values

of C can be used in conjunction with some optimization criteria to indicate when

the number of classes is correct�incorrect� Methods to determine which clusterings

are best are referred to as cluster validity indices by Jain and Dubes �����



Chapter �

Determining Preferred Texture

Features

To attempt image texture segmentation� one must �rst determine preferred feature

sets� �The development of computational formalisms for segmenting� discriminat�

ing� and recognizing image texture projected from visible surfaces are complex and

interrelated problems� An important goal of any such formalism is the identi�cation

of easily computed and physically meaningful image features which can be used to

e	ectively accomplish those tasks ���� p�������� In this chapter� three texture fea�

ture extraction approaches are studied to generate their individual preferred feature

sets that will be used for texture segmentation� The emphasis of this chapter is to

optimize the individual ability of each of the methods� not necessarily to compare

them� Classi�cation is the method of choice since calculations can be performed

quickly 
which provides the opportunity for a wide variety of tests� and quantitative

error estimates can be determined� Features that perform better in a classi�cation

environment should have a stronger potential to perform better in an unsupervised

��
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segmentation role� The three di	erent texture analysis techniques analyzed are�

the grey level cooccurrence features� the power spectrum features� and Gabor �lter

outputs� The �nal section of this chapter is devoted to summarizing the results

with a look towards texture segmentation implementations�

Two data sets are used for the classi�cation testing� textures obtained from a

SAR aerial image 
to gain an appreciation of the application environment� and tex�

tures obtained from the Brodatz album ���� 
to observe the e	ects on a system with

more yet better de�ned classes�� The Limex SAR image 
Figure ����� image details

found on page ����� contains three di	erent classes� brash ice� �rst year smooth

ice� and open water� Sixty�four and ��� �x� samples of each class are selected for

training and testing� respectively� Brodatz imagery 
illustrated in Appendix A�

is undoubtedly the most common test imagery used in the texture interpretation

literature� This imagery provides opportunity for testing using a variety of classes

and for comparing results with other research� Also� the training and test image

samples are assured to contain one class only� the same cannot hold absolutely true

for the SAR image samples� although e	orts are made to accomplish this� Eight dif�

ferent Brodatz textures are used� cloth 
D���� cork 
D��� cotton 
D���� grass 
D���

paper 
D���� pigskin 
D���� stone 
D��� and wood 
D���� 
The "D%� represents the

numbering system assigned in the Brodatz album�� These textures are chosen since

they have a noticeable but not necessarily regular textural pattern and several of

the textures are similar in nature� somewhat mimicking textures found in SAR sea

ice imagery� The cotton texture� used as a control� is the only one that has a well

de�ned repeating pattern� Prior to classi�cation� each ���x��� image is normalized

to a full ��� grey levels� Training samples are selected by dividing the upper left

hand quadrant into �� ��x�� images� Test samples are selected by dividing the

bottom right hand quadrant into �� ��x�� images� It is interesting to note that



Chapter � � Determining Preferred Texture Features ��

the ��x�� samples of Brodatz imagery are not easy to visually discriminate� This

is also noted by McLean when performing classi�cation on such imagery ����� The

class�pairwise Fisher linear discriminant is used for all classi�cations�

	�� Cooccurrence Features

As described in Section ������ cooccurrence texture features are a popular method

for classi�cation of SAR sea ice imagery� Here� limitations of the cooccurrence

texture feature extraction approach are described� Then� these implementational

hurdles are overcome by doing the following�

� Instead of generating the cooccurrence features using the matrix approach

the GLCM�� a linked list approach 
grey level cooccurrence linked list or

GLCLL� is described and implemented�

� Since many of the statistics generate redundant information� selection of per�
tinent statistics is performed� Reduction of the number of statistics is not

only computationally favourable� but can assist the classi�cation accuracy as

well�

����� Limitations of the Matrix Approach

Although the cooccurrence method has been widely applied to remote sensing image

interpretation� there are implementation restrictions of the approach as described

by Haralick ����� It is interesting to note that Haralick originally referred to the

generation of GLCM features as �quickly computable� 
p������ however� the ex�

cessive computational demand is one reason why this method has been restricted
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from implementation in operational settings� Another restriction is that the co�

occurrence features have not demonstrated robustness across di	erent scenes and

images from di	erent sensors�

Typically� a GLCM can be quite sparse� If the full dynamic range of a typical

image is used� then each GLCM is ���x��� pixels 
����� entries�� If the window size

is ��x��� then at most 
���
��� � ��� pairs are possible� producing a very sparse

matrix indeed& Applying statistics involves looping through each of the GLCMs� a

very costly procedure given that most of the matrix entries are zero� In practice�

these computational demands are reduced in a number of ways� quantizing the grey

levels� limiting the number of features� and avoiding pixel�by�pixel segmentation�

� The image grey levels are quantized prior to GLCM implementation� typically

from eight bits down to as few as four or �ve bits 
Table ����� This reduces

the size of the GLCMs and causes a dramatic decrease in computational

time� Quantization has the potential to remove pertinent information from

the image� What happens to the cooccurrence features if the full dynamic

range is used#

� The number of statistics and�or the number of orientations for each cooc�
currence matrix must be limited so that the features are calculated within a

reasonable duration� Deciding which statistics are the most informative for

remotely sensed imagery has been the focus of research e	orts 
Section �������

Some investigators search for the �best� statistics without considering what

speci�c texture characteristics each is measuring ��� ���� Shokr ���� and

Baraldi and Parmiggiani ��� investigate the textural meaning of each statistic

and give recommendations based on this analysis�

� Even with the above load reductions� performing a pixel�by�pixel segmen�
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tation of an image is impractical for the GLCM approach� although some

researchers have implemented it in this fashion ���� ���� Non�overlapping win�

dows generate texture features that are representative of the whole window

compared to overlapping windows whose texture features are representative

of the centre pixel� Thus� the resolution of the non�overlapping windows is

the size of the windows� but the resolution of the fully overlapping windows is

a single pixel� Baraldi and Parmiggiani ��� use non�overlapping windows and

the result is a segmentation that is not visually realistic because boundaries

between di	erent textures are �blocky�� Little research has been published

to ascertain the ability of the cooccurrence features to perform pixel�by�pixel

image analysis� an approach necessary to generate the detailed segmentation

required for SAR sea ice imagery�

Unser ����� improved on some of these shortcomings by using sum and di	erence

histograms as a substitute for GLCMs� Some of the features determined by Unser�s

method are quantitatively di	erent than the GLCM features� however� they are

supposedly similar in classi�cation ability and require less computation time and

memory storage to calculate� Like the GLCM� this method allocates memory for

cooccurrences with zero probability�

����� Linked List Implementation 	GLCLLs


The subject of sparse matrices arises in many diverse �elds� often for the purposes

of solving linear systems of equations ����� One method to improve sparse matrix

performance is to use a linked list approach� No other linked list implementation for

the generation of cooccurrence probabilities has been found in the research litera�

ture� but such an approach has been suggested ����� Using a grey level cooccurrence
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linked list 
GLCLL� is very e�cient because� unlike the GLCM approach� it does

not allocate storage for those grey level pairs that have zero probability� The tex�

ture features that are generated using GLCLLs are identical to those generated by

the GLCM approach�

The linked lists are set up in the following manner� Each node of the linked

list is a structure containing the two cooccurring grey levels� their probability of

cooccurrence� and a link to the next node on the list� The linked list is kept sorted

based on indices provided by the cooccurring grey levels 
gi� gj�� An example of

such a sorted list would be f
����� 
����� 
����� 
���� 
����� 
����� 
����� � � � g� where

gi  gj�� In order to include a new grey level pair 
gi� gj� in a linked list� a search

is performed� This is done by �nding the �rst instance of gi and then proceeding

from that point to �nd gj � If the pair is found� then its probability is incremented�

otherwise� a new node is inserted at the location where the search expected to �nd

the node for 
gi� gj��

An unsorted linked list could have been implemented by simply searching simul�

taneously on both grey levels� If 
gi� gj� is not found� a new node would be added

to the end of the list� However� maintaining a sorted list is more e�cient because

only one integer comparison for each node is performed when searching and an

exhaustive search is unnecessary in the case that a node for grey level pair does not

exist� Since the length of the linked lists dictates the algorithm speed� using sorted

linked lists is critical�

In the traditional GLCM approach� the matrix is symmetric� however� this

is detrimental to the computational advantages of the linked list approach� For

example� given a grey level pair 
������ the cooccurrence matrix would update

the probabilities at 
����� and 
����� 
�symmetric� implementation�� however� the

linked list enters a probability for the pair 
����� only 
�asymmetric� implementa�
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tion� gi  gj�� The shorter the linked list� the faster the feature extraction� For

a feature such as COR which inherently requires symmetry� the feature extraction

routines can compensate and calculate features as though symmetry existed� The

features MAX� UNI� and ENT change their values under the asymmetrical linked

list approach� however� they still represent the same type of feature and� if desired�

they can be calculated in a manner that assumes a symmetric cooccurrence ma�

trix� Comparative testing has indicated that the symmetrical calculation for MAX�

UNI� and ENT provides better classi�cation accuracy than the asymmetrical cal�

culation� Thus� the symmetrical feature calculation will be used throughout this

thesis� although the probabilities are still stored in an asymmetrical format�

When pixel�by�pixel features are required from an image� the GLCLLs can be

implemented in the following manner� The GLCLLs are �rst created when the

window is at the top left hand corner of the image� After the features are calcu�

lated� the window is moved one column to the right� Instead of recalculating entire

GLCLLs� the current GLCLLs are updated to reect the new information� The

pairs of grey levels introduced by the new column are inserted into the GLCLLs�

The pairs associated with the column that the window just passed over are sub�

tracted from the GLCLLs� If the subtraction causes the grey level pair to have a

zero probability� then that particular pair should not exist in the current linked list

and that node is removed�

When the window reaches the end of the image row� it just slides down a single

row� Here� it updates the GLCLLs by including the new pairs from the row that

the window has just moved on top of and subtracting the pairs from the row that

the window has just moved beyond 
in the same manner as updating a column��

The window then moves towards the opposite edge and continues to move in this

zig�zag fashion until the entire image has been covered� This method for generating
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Read in user defined parameters (window size, etc.)

Read in image.

Place window in top left hand corner.

Calculate texture features.

End of image reached?

End of row reached?

Move window down 1 row. Move window across 1 column.

End algorithm.

Update linked lists accordingly. Update linked lists accordingly.

YES NO

Create linked lists using all pixels in this window.

Figure ���� Algorithm for linked list generation of cooccurrence data�

the cooccurrence information will be referred to as �updating�� This algorithm is

summarized in Figure ���� Franklin and Peddle used a similar updating scheme to

determine GLCMs �����

����� Computational E�ciency of GLCLLs

Four di	erent scenarios are compared from both a theoretical and applied perspec�

tive� These scenarios are� 
�� the traditional GLCM without updating� 
�� the

GLCM with updating� 
�� the GLCLL approach without updating� and 
�� the

GLCLL approach with updating�

Comparisons of the computational complexities are presented in Table ���� For

each texture feature� whether GLCM or GLCLL based� computational speeds are
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Case Determine Probabilities Determine Features

GLCM w�o updating n� s�G�

GLCM w� updating n s�G�

GLCLL w�o updating n�L s�L

GLCLL w� updating nL s�L

Table ���� Computational requirements of cooccurrence texture features�

dependent on the window dimension 
n�� the number of statistics 
s�� and the cost

of determining each statistic 
��� Since the calculation of most statistics involve a

di	erent but approximately similar number of operations� only a generic cost of �

is assumed� In addition� the GLCM methods are dependent on the number of grey

levels 
G� and the GLCLLs are dependent on the length of the linked lists 
L�

which is equal to the total number of distinct grey level pairs found in the window�

The value of L is not only dependent on G but also on texture characteristics�

The computational requirements are split into two aspects� the generation of the

cooccurrence probabilities and the calculation of the statistics based on the cooc�

currence probabilities� In the case of the traditional GLCM approach� generating

each GLCM is dependent on the number of pairs in the window 
n��� Then� each

GLCM must be looped through once to generate each statistic 
s�G��� In the other

extreme� using an updated linked list requires updating the columns 
n� and each

update requires an average linked list search of L� A total of 
s�L� operations

is required to calculate the statistics for each GLCLL� The other cases are easily

derived from these examples�

In order to compare the di	erent scenarios� a ��x�� image of brash ice is ex�

tracted from the Limex image� Window sizes of �� ��� and �� and quantized grey

levels of ��� ��� ���� and the full dynamic range are used to determine the cooc�
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currence data� In the case of GLCM approaches� the full dynamic range is set to a

�xed value of ��� grey levels� A total of �� texture features are determined based

on the set f� � �� � � �� ��� ��� ��� degrees� statistics � MAX� UNI� ENT� DIS�
CON� INV� IDMg� This set deliberately excludes the COR statistic which has a
di	erent theoretical order than the other statistics� Testing is performed using an

IBM RISC System����� Model ��P 
��Mb RAM� ���MHz� SPECint�� � ������

SPECint�� � �������

The increase in speed is impressive� as presented in Table ��� where the time per

window sample 
in �s� is recorded for each test case� The time per sample of the

linked list approaches are always a fraction of the matrix approaches� For example�

given ��� grey levels and a window size of �� the traditional GLCM approach

requires ��� �s per window to calculate the same set of features that the GLCLL

with updating takes ���� �s per window to determine� For an image the size of a

typical remotely sensed image� the computational savings are substantial�

The results of the matrix approaches match the theoretical orders well� At

a �xed window size� doubling the number of grey levels increases the completion

time of the GLCM approaches by a factor of four� Calculating the GLCM with

updating only improves the computational speed slightly� thus the computational

speed of the GLCM approaches is� as expected� highly dependent on determining

the statistics 
s�G��� Changing the window size for the GLCM approaches has

little e	ect on the computational requirements�

In contrast� increasing the window size for a �xed grey level increases the GLCLL

completion time because the larger windows have more distinct grey level pairs and

this increases the length of the linked lists 
L�� Reducing the number of grey

levels reduces the completion times of the GLCLL approach since quantized grey

levels shorten the linked lists� The symmetrical sorted lists 
ie� gi  gj� have
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Number GLCM GLCM GLCLL GLCLL

Window of Grey w�o w� w�o w�

Size Levels update update update update

� full ���� ���� ��� ����

�� full ���� ���� ��� ���

�� full ���� ���� �� ��

� ��� ��� ��� ���� ����

�� ��� ��� ��� ��� ���

�� ��� ��� ��� �� ��

� �� �� �� ���� ����

�� �� �� �� ��� ���

�� �� �� �� �� ���

� �� �� �� ���� ����

�� �� �� �� ��� ���

�� �� �� �� �� ���

Table ���� Completion times 
��seconds per window sample� to calculate statistics�

faster completion times than asymmetrical sorted lists� Results for the same test

set using symmetrically sorted linked lists calculated on a DEC station ���� are

presented in ����� Finally� updating the GLCLLs is advantageous� especially with

larger window sizes�

����� Cooccurrence Parameter and Statistic Selection

Parameter Selection

There are a number of di	erent parameters that must be indicated in order to

generate cooccurrence data� window size 
n�� orientation 
��� pixel separation dis�

tance 
��� and the number of quantized grey levels 
G�� Limiting the number of

parameters will prevent generation of an unnecessarily high dimensional feature
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space�

For classi�cation studies� the window size is often �xed and assumes that suf�

�cient area of the texture is represented to capture an appropriate measurement�

Typically� � is set to f�� ��� ��� ��� degreesg since this is easiest to implement� To
program the generation of cooccurrence data for arbitrary orientations is not rea�

sonable� Short pixel separation distances have typically achieved the best success


Section ������ so � � � will always be used� Various values of � can yield di	er�

ent features� however� it is unknown if there is any a priori method for selecting

its value based on the given image characteristics� Since the ultimate goal is to

develop segmentation methods that are unsupervised� � will be kept at its �best�

guess of �� The rest of this section will investigate reduction of the number of

statistics by removing redundant information� Simultaneously� the e	ect of varying

grey level quantization will be studied�

Results for Entire Feature Set

Thirty�two texture features are selected based on the set f� � �� � � �� ��� ��� ���
degrees� statistics � MAX� UNI� ENT� DIS� CON� INV� IDM� CORg� In order
to determine the e	ect of grey level quantization on the classi�cation� ���� ��� ���

and �� grey levels are used as well as the full dynamic range� The classi�cation

accuracy of both the Brodatz and Limex testing is presented in Table ���� Both sets

of training data have classi�cations that are quite successful and consistent across

all grey levels� Classi�cation of test data is strongest at full dynamic range and

decreases inconsistently with increased quantization� For all cases� there is a large

discrepancy between the classi�cation accuracies for training and test data� Limex

imagery has a much higher classi�cation rate then the Brodatz imagery� probably

because the Limex data set has only three classes compared to the Brodatz eight
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Brodatz Limex

Grey Levels Training Test Training Test

full ���� ���� ���� ����

��� ���� ���� ���� ����

�� ���� ���� ���� ����

�� ���� ���� ���� ����

�� ���� ���� ���� ����

Table ���� Classi�cation accuracy 
�� using all cooccurrence features�

classes�

Results for Individual Statistics

In order to provide further insight into the ability of the cooccurrence data each

individual statistic is used to classify both data sets� The results are presented

in Table ��� 
Brodatz� and Table ��� 
Limex� given f� � �� � � �� ��� ��� ���

degreesg� The system is trained using the selected statistic with the training data
and classi�cation accuracies are only presented for classi�cation of the test data�

For both data sets� the degree of grey level quantization had an unusual e	ect

on the homogeneity statistics fMAX� ENT� UNIg� namely� they have signi�cantly
increasing classi�cation accuracy with coarser quantization� One would expect

increasing the grey level quantization would reduce the textural information and

thus� reduce the classi�cation accuracy� However� using the full dynamic range� few

grey level pairs are repeated within the same window and a high state of entropy

exists in the cooccurrence data for each of the classes� As a result� discrimination is

di�cult since all classes tend to a near maximum state of entropy generating clusters

that overlap in the feature space 
see MAX feature axis in Figure ����� Thus� these

statistics are intrinsically sensitive to grey level quantization and actually rely on
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Grey Levels MAX UNI ENT DIS CON INV IDM COR

full ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ����

Table ���� Classi�cation accuracy 
�� of individual cooccurrence statistics for Bro�

datz test imagery�

Grey Levels MAX UNI ENT DIS CON INV IDM COR

full ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ����

Table ���� Classi�cation accuracy 
�� of individual cooccurrence statistics for

Limex test imagery�

the quantization to be e	ective�

The smoothness statistics fDIS� CON� INV� IDMg have stronger classi�cations
than the homogeneity statistics� DIS and INV generate consistent and accurate

results across both data sets� CON and IDM� the squared distance measures�

maintain a steady classi�cation accuracy for the Brodatz imagery across all grey

levels but decrease their ability to distinguish Limex imagery with increased quan�

tization� Quantization tends to smooth the Limex data preventing the smoothness

statistics from performing optimally� The Brodatz textures are more structured

than the Limex textures� Thus� quantization does not signi�cantly alter the gen�

eral appearance of the Brodatz textures and the smoothness statistics are able to

maintain a consistent classi�cation accuracy� Note that the individual accuracies of
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brash

first year

open water

MAX x 10-3

DIS

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

10.00 20.00 30.00

Figure ���� Texture feature plot of DIS versus MAX 
� � �� � � ��� Limex data��

the DIS and INV statistics for the Limex data are better than the accuracies using

the entire feature set�

In the Limex data set� COR is quite ine	ective when compared to the other

statistics� but tends to improve with coarser quantization� On the other hand�

COR is more successful classifying the more di�cult Brodatz imagery� probably

due to the relatively higher regularity found in these images�
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Selection of Redundant Statistics

There is evidence to indicate that certain cooccurrence texture features are highly

correlated ��� ���� Given f� � �� � � ��� G���g� the correlations of the statistics
are presented in Table ��� for brash ice and Table ��� for the cork texture� The

high correlation between the statistics fDIS� CON� INV� IDMg is expected since
they are all functionally similar� An example of this high correlation in the feature

space is given in Figure ���� where DIS and INV are compared for all three Limex

classes� The statistics fMAX� UNI� ENTg also display highly correlated behaviour�
A supporting example is found in Barber et al� ��� Figure �� where UNI and ENT

are plotted against each other and display a strong inverse correlation�

For the brash ice� the correlation statistic 
COR� has a fairly strong correla�

tion with the homogeneity statistics� but is poorly correlated with the smoothness

statistics� The cork texture� on the other hand� has a stronger correlation between

COR and the smoothness statistics� For the Brodatz textures� the COR statistic

has a higher classi�cation rate� This supports the notion that cooccurrence features

extract one true characteristic of the texture and this characteristic is a function of

the directional smoothness� Between the homogeneity and smoothness sets there

are strong correlations 
all ������ This is expected due to the nature of the im�

agery� smooth textures have fewer grey level pairs than rough textures� causing the

cooccurrence probabilities for the smooth textures to have a lower entropy than the

rough textures� Thus� the smoothness statistics and the homogeneity statistics are

well correlated�

Given the same orientation and pixel distance� the cooccurrence features dis�

play a very high correlation for any number of grey levels� but de�nitely become

increasingly correlated with coarser quantization� as indicated by the average inter�
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MAX UNI ENT DIS CON INV IDM COR

MAX ���� ���� ����� ����� ����� ���� ���� �����

UNI � ���� ����� ����� ����� ���� ���� �����

ENT � � ���� ���� ���� ����� ����� ����

DIS � � � ���� ���� ����� ����� �����

CON � � � � ���� ����� ����� �����

INV � � � � � ���� ���� ����

IDM � � � � � � ���� ����

COR � � � � � � � ����

Table ���� Correlation of features for brash ice 
��� degrees� ���� G�����

MAX UNI ENT DIS CON INV IDM COR

MAX ���� ���� ����� ����� ����� ���� ���� �����

UNI � ���� ����� ����� ����� ���� ���� �����

ENT � � ���� ���� ���� ����� ����� ����

DIS � � � ���� ���� ����� ����� �����

CON � � � � ���� ����� ����� �����

INV � � � � � ���� ���� ����

IDM � � � � � � ���� ����

COR � � � � � � � ����

Table ���� Correlation of features for cork 
��� degrees� ���� G�����

correlation across all selected texture features for each class in Tables ��� 
Brodatz�

and ��� 
Limex��

The high correlation of the entire coccurrence data set can be analysed using

principal components analysis� The average class variances and ranges for the

�rst principal component are presented in Table ����� Given that there are ��

di	erent features� yet the �rst principal component captures most of the variance

for each data set� it is obvious that a tremendous amount of redundancy exists in

the cooccurrence texture features�
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Grey Cloth Cork Cotton Grass Paper Pigskin Stone Wood

Levels 
D��� 
D�� 
D��� 
D�� 
D��� 
D��� 
D�� 
D���

full ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ����

Table ���� Average inter�feature correlations for Brodatz cooccurrence features�

Grey Levels Brash First Year Smooth Open Water

full ���� ���� ����

��� ���� ���� ����

�� ���� ���� ����

�� ���� ���� ����

�� ���� ���� ����

Table ���� Average inter�feature correlations for Limex cooccurrence features�

Brodatz Limex

Grey Levels Average Range Average Range

�� �� ����� �� �����

��� �� ����� �� �����

Table ����� Average and ranges of class variances 
�� for the �rst principal com�

ponent�
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brash

first year

open water

INV

DIS

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0.00 0.50 1.00 1.50 2.00

Figure ���� Texture feature plot of DIS and INV 
� � �� � � ��� Limex data��

Of all the homogeneity statistics� ENT generates the best overall accuracy with

the optimum occurring at �� grey levels� Of all the smoothness statistics� DIS and

INV generate the best classi�cation� but the optimum occurs at full dynamic range�

There is a very strong correlation between the ENT features 
�� grey levels� and DIS

features 
��� grey levels� given the same orientation 
Tables ���� and ������ All the

entries in these tables demonstrate that a very strong correlation exists between the

feature pairs� When the correlation reaches a minimum 
"wood� at ��� is ���� and
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Cloth Cork Cotton Grass Paper Pigskin Stone Wood

� 
D��� 
D�� 
D��� 
D�� 
D��� 
D��� 
D�� 
D���

�� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� ���� ���� ����

Table ����� Correlations between DIS 
full dynamic range� and ENT 
�� grey levels�

for Brodatz imagery�

� Brash First Year Smooth Open Water

�� ���� ���� ����

��� ���� ���� ����

��� ���� ���� ����

���� ���� ���� ����

Table ����� Correlations between DIS 
full dynamic range� and ENT 
�� grey levels�

for Limex imagery�

"open water� at ��� is ������ this is representative of the texture features not �nding

some measurable characteristic of the texture� There is no repeating characteristic

in the wood texture oriented at ���� Open water has a dominant characteristic

in the �� direction 
due to the wind causing a ripple e	ect� and no dominant

characteristic in the ��� direction� Although it is generally believed that smoothness

and homogeneity statistics measure di	erent textural characteristics� this strong

correlation between DIS and ENT support the concept that these statistics actually

measure the same dominant characteristic of texture�
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	�� Power Spectrum Features

Power spectrum features were introduced in Section ������ Due to the di	erence

in sample image sizes� di	erent texture feature sets are derived for each of the

Brodatz and Limex data sets� The Limex imagery uses peak statistics for the

highest peak 
Peak�� fPCT�� LAP�� SKW�� DIS�g� shape statistics fISO� SPD�
CIRg� and summed features de�ned by the intersection of the angular regions f��
���� ������� �������� ��������g and pixel radial distances f������ �����g� Since the
Brodatz imagery has a larger window dimension 
��x�� compared to �x��� a second

peak may be relevant� thus� this imagery is analyzed using both the highest and

second highest peak 
AllPeak� fPCT�� LAP�� SKW�� DIS�� PCT�� LAP�� SKW��
DIS�� ANGg� the shape statistics fISO� SPD� CIRg� and summed features based
on regions de�ned by the angular regions f�� ���� ��� ���� ��� ����� ���� ����g
and radial regions f�����������g in pixel units away from the centre of the power

spectrum�

The computational complexity for the power spectrum features can be deter�

mined in the following manner� The FFT operation requires approximately n� log� n

operations ����� Calculating the power spectrum requires an additional n� multipli�

cations� For each statistic� the calculation of the statistics is negligible compared to

determining the power spectrum� Thus� the total complexity may be approximated

by n� log� n n��

The results of the classi�cation testing are presented in Table ����� These re�

sults are not� in general� as successful as the cooccurrence results 
Table ���� for

both sets of data� Only classi�cation of the Limex test imagery is more successful

for the power spectrum features compared to the cooccurrence features� Note that

classi�cation rates for the power spectrum features remain fairly constant across dif�
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Brodatz Limex

Grey Levels Training Test Training Test

full ���� ���� ���� ����

��� ���� ���� ���� ����

�� ���� ���� ���� ����

�� ���� ���� ���� ����

�� ���� ���� ���� ����

Table ����� Classi�cation accuracy 
�� for all power spectrum features�

ferent grey level quantizations� This is expected because relative spatial�frequency

data should not be altered unless the grey level quantization is to such an extent

that it destroys salient texture characteristics causing di	erent classes to appear

similar� The e	ect of signi�cant grey level quantization might be the cause of the

Limex classi�cation rate dropping dramatically from around ����� success to �����

when quantized to �� grey levels� The Brodatz data undergoes a gradual decline

in classi�cation success with increased quantization� Here� the di	erent textures

are independently sensitive to the number of grey levels so the gradual decline is

expected� Also� with increased grey level quantization� the correlation between

the features stays consistently low 
Tables ���� and ������ unlike the cooccurrence

features�

How do the individual types of power spectrum features fare 
Tables ����

and �����# Summed features perform the best for both data sets� Shape features

performed well for the Limex data but not for the Brodatz imagery� The peak

features for the Limex case seem to be strong� however� following further investi�

gation� it was discovered that the Laplacian of the peak is the only strong feature�

The success of this feature is a result of the energy in the spectrum� not the energy

of the peak� since the sample size is so small� Peak statistics are expected to be



Chapter � � Determining Preferred Texture Features ��

Grey Cloth Cork Cotton Grass Paper Pigskin Stone Wood

Levels 
D��� 
D�� 
D��� 
D�� 
D��� 
D��� 
D�� 
D���

full ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ����

Table ����� Average inter�feature correlations for Brodatz data using power spec�

trum features�

Grey Levels Brash First Year Smooth Open Water

full ���� ���� ����

��� ���� ���� ����

�� ���� ���� ����

�� ���� ���� ����

�� ���� ���� ����

Table ����� Average inter�feature correlations for Limex data using power spectrum

features�

helpful in the Brodatz imagery� where regular repeating patterns are more appar�

ent� however� they do not perform well using this imagery� This probably results

from the window sizes 
��x��� being too small for the autocorrelation function to

capture su�cient periods of the regular repeating texture to make an accurate clas�

si�cation� D�Astous ���� agrees� implementing her algorithms on ��x�� windows of

Brodatz imagery�
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Grey Levels Peak� Peak� AllPeak Shape ����� ����� �����������

full ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ����

Table ����� Classi�cation 
�� of individual power spectrum features for Brodatz

imagery�

Grey Levels Peak� Shape ����� ����� �����������

full ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ����

Table ����� Classi�cation 
�� of individual power spectrum features for Limex

imagery�

	�� Gabor Filter Features

Gabor �lters were introduced in Chapter �� Here� Gabor �lters will be �rst studied

for functional characterization 
selection of orientations� centre frequencies� and

bandwidths�� Then� using these preferred �lter parameters� a variety of feature

extraction methods will attempt improvement of the feature set 
Section �������

Instead of using all ��� Limex test samples� only the �rst �� are used� From an

implementational perspective� it is easier to amalgamate the �� �x� samples into a

single ��x�� image and perform the �ltering on the entire image using the spatial�

frequency domain� Features based on pixels located at centres of the �x� samples

are used for the classi�cation purposes� The feature vectors are dimensioned to the
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number of Gabor �lters used�

����� Functional Characterization

Jain and Farrokhnia ���� implemented Gabor �lters for texture segmentation us�

ing an octave frequency bandwidth of one� an angular bandwidth 
B�� of ���� and

angular spacing 
S�� of ���� Unit octave spacing matches the experimentally de�

termined HVS ability ����� however� ��� angular bandwidths are not in agreement�

Smaller bandwidths of about ��� are more characteristic of the HVS ����� The �lter

implementation outlined in Section ����� will be used� To provide minimal overlap

and still maintain reasonable coverage in the spatial�frequency domain� B� is set

equal to S�� If B� is greater than S� redundancies can occur which could deteriorate

the feature set� The Gabor �lters can be set up using one of two methods� provide

B� and determine �y or allow �y to equal �x and calculate B��

Di	erent �lter con�gurations have been tested on the same data sets used for

the cooccurrence and power spectrum features� Frequency radii 
F � of fp�� �p��
�
p
� cpig are used as centre frequencies to �lter the Brodatz imagery and fp�� �p�

cpig are used to �lter the smaller Limex samples� Thus� when S� � ���� there are
twelve features for the Brodatz imagery and eight features for the Limex imagery�

For S� � ���� there are eighteen and twelve features respectively� For the lower

frequency bands� some spatial �lter overlap occurs with adjacent samples 
since

the individual samples are amalgamated into a larger image�� Although this is not

important in terms of evaluating the ability of the Gabor �lters� it does restrict

direct comparison with the cooccurrence and power spectrum results� The DC

component is set to zero to prevent contribution of the mean local grey level� Since

the Gabor �lters capture information similar to that captured by the summed power
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Brodatz Limex

S� Bandwidth Train
�� Test
�� Train
�� Test
��

��� B� � ��� ���� ���� ���� ����

��� B� � ��� ���� ���� ���� ����

��� B� � ��� ���� ���� ���� ����

��� �x � �y ���� ���� ���� ����

��� �x � �y ���� ���� ���� ����

Table ����� Classi�cation accuracies 
�� using Gabor �lter outputs for di	erent

functional characterizations�

spectrum features� testing di	erent grey level quantizations is not necessary� The

classi�cation results will decrease with increasing quantizations and the decrease is

dictated by the discriminability of the textures at the quantized levels� Thus� using

the full dynamic range should generate better classi�cation accuracy without any

e	ect on the computational speed�

Results for Gabor �lter features based on di	erent functional characterizations

are displayed in Table ����� Better results are obtained with the �ner orientation

spacing of S� � ���� Note that the performance of the classi�cation is poorer

for B� � ��� than B� � ��� given the same spacing of S� � ���� One might

consider that the additional overlap in the spatial�frequency would be conducive to

improving the classi�cation rate� however� here the redundancy actually decreases

the e	ectiveness of the features� Marginal improvements are made by setting B� �

S� as opposed to setting �x � �y�
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����� Feature Extraction of Filtered Outputs

Methods

There are a number of di	erent ways to manipulate the Gabor �lter outputs to

attempt improving the performance of the texture features� These include�

� applying spatial smoothing�

� using the power spectrum�

� using only the real part�

� rectifying the complex output�

� creating moments based on the spatial�frequency plane�

� determining a measure of homogeneity� and

� implementing a syntactic approach to characterize the �lter outputs�

Gaussian smoothing seems to be essential for improving the performance of

Gabor �lters for texture segmentation ���� ���� Bovik uses Gaussian �lters with

the same Gaussian parameters as the corresponding �lters� but with larger extents�

The extent is controlled by �� If g
x� y� is the Gaussian function of the Gabor �lter�

ie��

h
x� y� � g
x� y� exp
�	jFx�

then the function that smoothes the �lter�s magnitude response is g
�x� �y�� Bovik

recommended setting � to �
� � The smaller the value of �� the greater the smooth�

ing� To match the smoothing of the Gabor outputs with the Gaussian of the Gabor
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�lter makes sense since this should yield results that are still spatially well local�

ized� There exists a physiological reason for utilizing smoothing in that it mimics

characteristics of the HVS� Hall and Hall ���� describe the existence of sustained

channels in the visual system� indicating that the HVS not only considers pixels in

the �eld of view� but also pixels in the vicinity�

Instead of attempting to improve all the �lter con�gurations available in Ta�

ble ����� only the most successful �lter con�guration fS� � B� � ���g will be
post�processed� Post�processing results have been calculated for the next best case

fS� � ���� �x � �y g and these are always slightly poorer than post�processing
fS� � B� � ���g� These particular data sets may be better tuned to the �lter
con�guration fS� � B� � ���g� Another explanation is that the spatial bandwidth
is greater in the y�direction for S� � ��� than for S� � ���� The additional spatial

information might increase the discriminability�

Jain and Farrokhnia ���� implemented the �lters using only the real part of the

Gabor �lter� No attempt was made to compare results based on the magnitude

response� 
Their segmentation approach is described in more detail in Chapter ��

page ����� Full wave recti�cation 
summing the absolute value of the real and

imaginary responses� is another method that can be used to process the complex

�lter outputs�

Bigun and du Buf ���� use moments based on the squared magnitude Gabor

�lter responses� They refer to the squared magnitude response as the �local power

spectrum�� Geometric moments are de�ned by�

mpq �
X
i�j

�pi �
q
j jg
�i� �j�j�

where p and q are integers which represent the moment order� The authors use

p  q � � to reduce their feature set from �� �lter outputs down to �� features�
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The parameters 
i� j� index the power spectrum� The �lter response is g
�i� �j��

de�ned in terms of Cartesian spatial frequency coordinates� Central moments are

de�ned by�

�pq �
X
i�j


�i � �x�
p
�j � �y�

qjg
�i� �j�j�

where �x � m�

m

 and �y � m
�
m

� Bigun and du Buf provide no analysis

comparing the Gabor �lter magnitude responses with these moment features� Only

central moments are employed in their segmentation studies� without any explana�

tion for the preference� In this thesis� central and geometric moments generated

by both magnitude and local power spectrum �lter outputs are compared� When

smoothing is used on the �lter outputs� the moments are applied to the smoothed

outputs�

According to psychovisual experiments by Rao and Lohse ����� there are three

important factors that the HVS uses to identify texture� directionality� repetition�

and complexity� Directionality� or orientation� is accounted for in both the cooc�

currence and Gabor �lter methods� Repetition� or identi�cation of the dominant

frequencies� is accounted for in the cooccurrence scheme by the smoothness statis�

tics and by the nature of the Gabor �lter outputs� In the case where textures are

not very regular� the complexity 
also referred to as regularity or homogeneity� of

the texture may be an important issue� Cooccurrence statistics attempt to measure

complexity using the homogeneity features� but� as demonstrated previously� their

applicability is questionable� Irregular or complex textures are not as detectable

as regular textures by the Gabor �lters because of �lter leakage caused by spatial

texture variability� Another feature may be necessary to complement the existing

feature set to address this complexity issue�
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A homogeneous texture has a consistent appearance� In terms of the Gabor �lter

responses the strongest �lter responses should be consistent� A non�homogeneous

texture will have dominant Gabor responses that uctuate� Two di	erent methods

of determining homogeneity will be considered� By determining the local spatial

variance of the �lter response one can determine the degree to which the �lter

response is changing� Those textures with low variances have a high degree of

homogeneity and those textures with high variances will not be homogeneous� An�

other method to determine homogeneity involves applying multiple Gabor �lters

and incrementally increasing the spatial bandwidth 
keeping F and � constant�� If

the response is consistent� then the texture is homogeneous since it has the same

response over a wider spatial extent� The slope of the responses can be used as

a texture feature� The more horizontal the slope� the more consistent the �lter

response� and thus� the more homogeneous the texture�

Both the local variance and slope measures of homogeneity have been estimated

based only on the �lter output with the highest magnitude for each pixel� This �lter

has the frequency and orientation 'F and '� that is assumed to dominate the response

of the HVS and thus controls the regularity that we observe and interpret� The

local variance estimate of homogeneity has been implemented using �x� windows on

the magnitude plane for �lter 
 'F �'��� The slope feature is determined by increasing

the �lter bandwidth by �� twice� The slope of the three values 
determined by

linear regression� is used to represent the new feature� which augments the existing

feature set created by the Gabor �lter bank� Di	erent percentages have been used

and results are consistently similar�

The �nal method for manipulating the Gabor �lter outputs is a syntactic ap�

proach� If all the �lter outputs are ranked in order of magnitude� then one would

expect that the ranking is consistent for the same texture� By assigning each �lter
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its own symbol 
an integer value�� a syntactic string is created� There are existing

methods for string recognition that can be implemented for cluster analysis �����

Ch� ��� Here� the strings representing the �lter outputs are unique since they are all

of the same length and each symbol is only represented once� A �distance� between

two strings A � a�a� � � � aM and B � b�b� � � � bM can be determined by �nding j for

which ai � bj� i � � to M � Then the distance measure can be found by summing

all of the di	erences of i and j�

d
A�B� �
P ji� jj when ai � bj for i � � to M

The squared distance has also been used� but this did not signi�cantly a	ect the

overall results� This type of measure only compares distances between individual

strings� As a result� the k�nearest neighbour classi�er is implemented� The com�

putational demands of the k�nearest neighbour routine are much higher than the

demands of linear classi�ers�

Results

Results are presented in Table ����� This table is split into two sections� one for

unsmoothed �lter outputs and the other for smoothed �lter outputs� Note that the

magnitude response of the no smoothing case is also presented in Table �����

The smoothed responses de�nitely yield results that are substantially better

than their unsmoothed counterparts� Results for the real component without

smoothing are much poorer than the magnitude response without smoothing� It

makes sense that the real unsmoothed version performs poorly since a matched real

�lter response generates sinusoidal variations in the spatial domain� The sinusoidal

variations are not condusive to discriminating the texture classes� In contrast� the

magnitude response is at� generating a consistent measurement that assists the
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Brodatz Limex

Train Test Train Test

No smoothing

Magnitude response ���� ���� ���� ����

Real component only ���� ���� ���� ����

Full wave recti�cation ���� ���� ���� ����

Geometric moments ���� ���� ���� ����

Central moments ���� ���� ���� ����

Homogeneity 
local variance� ���� ���� ���� ����

Homogeneity 
slope� ���� ���� ���� ����

Smoothing 
� � �
�
�

Magnitude response ���� ���� ��� ����

Real component only ���� ���� ��� ����

Full wave recti�cation ���� ���� ��� ����

Geometric moments ���� ���� ��� ����

Central moments ���� ���� ��� ����

Homogeneity 
local variance� ���� ���� ��� ����

Homogeneity 
slope� ���� ���� ��� ����

Table ����� Classi�cation accuracies 
�� of manipulating Gabor �lter outputs using

S� � B� � ��� 
excludes syntactic approach � see text��

classi�cation� Smoothing with a wider Gaussian than the Gaussian in the Gabor

�lter smoothes the sinusoidal variation su�ciently to generate a comparable clas�

si�cation result� The full wave recti�cation results are similar to the magnitude

response results�

Results for both geometric and central moments are not as successful as results

using the magnitude response since classi�cation accuracies are generally lower�

The moment order was set to p  q �� �� reducing the number of features to ���

Additional testing was performed for the Brodatz imagery using p  q �� � and

similar results were obtained� Note that the presented results have been calculated
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as a function of the magnitude response� not the local power spectrum response as

prescribed by Bigun and du Buf� The classi�cation results using the local power

spectrum moments were also calculated and proved to be poorer than those for

the magnitude moments of the Brodatz imagery and about the same or poorer for

the Limex imagery� For brevity� only the results based on magnitude moments

are presented� Although the moment features utilize a smaller dimensional feature

space� their poorer classi�cation ability does not seem to warrant their usage� Bigun

and du Buf did generate successful segmentation� however� the Brodatz textures

they used are quite distinct� It is also interesting to note that they did not mention

anything about smoothing the �lter outputs� They did use a novel feature reduction

method that might have exploited some characteristic of the moment generated

data�

Homogeneity results provide a minor increase in classi�cation success� How�

ever� when Gabor homogeneity features are plotted� they do not reveal additional

classi�cation ability 
Figure ����� Since cotton is a relatively regular texture� its

slope homogeneity is expected to have a higher value than the other textures� Un�

fortunately� the slopes are steeper� This is because the highest �lter response is

strong and the stronger Gabor �lter responses tend to have higher variability� gen�

erating steeper slopes� Perhaps �complexity� deals with the number of dominant

multiple frequency�orientation components� These dominant frequency�orientation

components may be spatially transient preventing accurate spatial�frequency iden�

ti�cation due to �lter leakage� Using this de�nition� the complexity would already

be represented in the feature set of properly �ltered Gabor outputs�

Note that the Gabor smoothed slope homogeneity features tend to improve

the classi�cation of the Brodatz imagery but decrease the accuracy of the Limex

imagery� just like the cooccurrence homogeneity features� Therefore� these homo�
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Figure ���� Inconsistency of Gabor homogeneity features for all Brodatz classes�

geneity statistics may be helpful for distinguishing textures containing signi�cant

structural information�

Results using the syntactic approach are poor 
� ��� for Brodatz and� ��� for

Limex� results only for smoothed training data sets�� When the �lter orientations

are spaced by ���� contrary to the other testing� classi�cation accuracy of the

Brodatz imagery increases� but the results are still below ��� 
Limex results remain

below ����� For brevity� these results are not presented in Table ����� The syntactic
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approach does not seem appropriate for textures that are not very distinguishable�

however� in the case of distinct textures� they can be easily used to distinguish and

code a texture in a very compact manner� For example� none of the cotton samples

are misclassi�ed using the syntactic technique�

Order of Operations

The computational complexity for implementing the complex Gabor �ltering is

summarized in Table ����� Feature extraction requires a ��d FFT 
N� log�N mul�

tiplications�� where N represents the full image dimension� A total of s �lters are

applied� Recall that the image plane must be rotated to accommodate the various

orientations of the �lter 
order R�� so the Gabor �ltering requires not sN� multi�

plications but actually sRN� multiplications� The inverse FFT must be performed

once for each �ltered image 
sN� log�N multiplications� and then the magnitude

envelope must be determined 
sN� multiplications�� Combining all of these sources

generates a total of sN� log�N  RN� multiplications� Smoothing of the magni�

tude envelope may be performed in the spatial domain or in the spatial�frequency

domain� If performed in the spatial domain� the number of multiplications for a sep�

arable implementation is approximately sMN� where M represents the largest di�

mension of the mask� If performed in the spatial�frequency domain� the magnitude

envelope is transformed 
sN� log�N multiplications�� then �ltered 
sN� multiplica�

tions�� and then inverse transformed 
sN� log�N multiplications�� After combining

these orders� the spatial�frequency �ltering generates a total complexity of approx�

imately sN� log�N � Since M will have an average value of greater than �� for a

typical feature set 
given ���� and log�N� is less than ��� it is better to perform

the smoothing in the spatial�frequency domain� Also� mask truncation may occur

during the spatial domain smoothing which could cause inaccurate calculations�
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Complexity 
NxN image�

Gabor �ltering sN� log�N  sRN�

 Spatial smoothing sMN�

 Spatial�frequency smoothing sN� log�N

Table ����� Computational complexity of Gabor �lter texture features�

	�� Discussion of Classi�cation Results

����� Summary of Classi�cation Results

Linked List Implementation

The linked list approach for the generation of cooccurrence image data is greatly

preferred to the traditional matrix approach since it calculates texture features or�

ders of magnitude faster� The computational time of the matrix approach is more

dependent on the number of grey levels than the linked list approach� Depending

on the application� performing pixel�by�pixel segmentation can be computationally

feasible using the linked list approach with quantized grey levels� however� genera�

tion of cooccurrence data will not always lend itself to a rapid feature extraction�

The full dynamic range of the image can be utilized using GLCLLs� but only with an

increase in the computation time� The degree of this increase is texture dependent�

Textures that have noticeable but subtle di	erences at full dynamic range may

become statistically and visually similar under coarse quantization� This should be

important when classifying remotely sensed data� especially sea ice imagery� A SAR

sea ice image can contain many di	erent types of ice types as well as transitions

between these ice types� Quantizing the imagery can remove the subtle di	erences

between two distinct similar ice classes that must be segmented� It should be much

safer and more consistent if a feature extraction method utilizes the full dynamic



Chapter � � Determining Preferred Texture Features ��

range or a quantization level that does not signi�cantly attenuate the textural

information�

Cooccurrence Features

The classi�cation studies reveal that grey level quantization has an inconsistent

e	ect on the classi�cation accuracy across all the available statistics and the given

data sets� Smoothness statistics fDIS� CON� INV� IDMg are most e	ective when
the full dynamic range is used and provide more consistent texture measures for

di	erent grey level quantizations than the homogeneity statistics fMAX� ENT�
UNIg� Homogeneity statistics improve classi�cation ability with increased grey level
quantization� This raises an interesting issue� Since poorer homogeneity features

are extracted at full dynamic range and using only two grey levels� then between

these two extremes there should exist a preferred grey level quantization� How can

this optimum be selected# Can it be selected a priori# Must some knowledge of

the grey level distributions for each class be known# Because of such variability�

are these features useful for unsupervised applications#

For the Limex imagery� the classi�cation accuracies generated by using the DIS

statistic alone have been compared to three scenarios� all of the statistics� fDIS�
ENT� CORg� and fDIS� ENTg� The results using DIS alone proved to be superior
when classifying the test samples� For the Brodatz imagery� which contains textures

that contain more structure� the results are a bit di	erent� Adding COR to the

DIS feature set increases the classi�cation accuracy� Furthermore� fDIS� ENT�
CORg generate a strong classi�cation that is quite consistent across all grey level
quantizations and comparable to the results using all statistics� For structured

images such as Brodatz imagery� homogeneity features and COR are important�

SAR sea ice imagery can contain textures that are well structured� necessitating
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Brodatz Limex

Grey Levels Training 
�� Test 
�� Training 
�� Test 
��

full ���� ���� ���� ����

��� ���� ���� ���� ����

�� ���� ���� ���� ����

�� ���� ���� ���� ����

�� ���� ���� ���� ����

Table ����� Classi�cation accuracy across di	erent grey level quantizations using

statistics fENT� DIS� CORg�

application of COR and homogeneity statistics 
although well structured textures

are not available in the Limex test set�� Thus� these are the three statistics fDIS�
ENT� CORg that will be used for the segmentation analysis in combination with the
four primary orientations and a pixel spacing of one� This is essentially the same

conclusion as Baraldi and Parmiggiani ���� A grey level quantization of �� will

be used to achieve a compromise between accuracy and speed� Results using this

selected parameter set on the Brodatz and Limex imagery are found in Table �����

The results of this data set are quite similar to that of using all the cooccurrence

statistics 
Table �����

Power Spectrum Features

Power spectrum features do not generate su�ciently strong classi�cation results

to motivate their use for segmentation analysis� They are restricted because they

require �xed window sizes� Perhaps this method requires larger windows so that

su�cient periods of the texture are represented to calculate meaningful features�

Another drawback of this method is that� although two dominant peaks are utilized�

additional dominant frequencies may be required by the HVS to identify a given
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texture� Underestimating or overestimating the number of peaks will prevent the

feature set from performing optimally� Peaks provide appropriate measures for tex�

tures that have one or two dominant 
F� �� pairs� Generally� the summed features

tend to give better results� These features are similar to those obtained by the Ga�

bor features� which are advocated since they are able to capture multi�resolutional

features� The power spectrum analysis did demonstrate that the spatial�frequency

texture measures are independent of the grey level quantization 
as long as the

quantization does not destroy salient texture characteristics��

Gabor Filter Features

Since better results are obtained using B� � S� � ���� this will be the choice for the

texture segmentation studies� The �lter bank for a ���x��� image using the four

highest frequency bands is illustrated in Figure ���� There is some concern that

the added dimensionality of ��� spacing may not be warranted due to the increased

computational demands� That is� using ��� spacing instead of ��� spacing increases

the feature set by ��� times and there is a corresponding increase in memory� disk

space� completion times� and swap space to perform the analysis� For some test

texture images� setting S� to ��� will generate a proper segmentation� however� to

generate a more robust and universal feature set� S� � ��� is recommended� With

higher smoothing 
by decreasing ��� better classi�cation results occur� This may be

detrimental when textures representing small spatial regions are to be segmented�

Both the magnitude and full wave recti�cation responses are successful for clas�

sifying the data sets� Since the unsmoothed real responses are relatively much

poorer� utilizing the real response is not recommended� The smoothed real re�

sponses do generate strong discriminations� however� if less smoothing is used� how

these features will respond is uncertain� The Gabor homogeneity features do mildly
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Figure ���� Frequency domain representation of Gabor �lter bank for segmentation

of ���x��� images�

increase the classi�ability of the test data sets� However� given the added compu�

tation� their implementation may not be warranted� Generating moments based on

the local spectrums consistently decrease the discriminability of the texture features

so their implementation is not advocated�

In this thesis� successful results segmenting textured images using Gabor �lters

have been generated by�

� using a pseudo�wavelet implementation�

� providing full coverage of the spatial�frequency domain� without signi�cant
overlap between individual �lters�

� setting the DC gain to zero to prevent classi�cation based on tone�
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� utilizing the magnitude of the Gabor response�

� smoothing outputs�

� using a class pairwise Fisher linear discriminant to classify the training and
test sets�

����� Relationship Between Gabor and Cooccurrence Fea�

tures

There is a high degree of correlation between the tuned Gabor �lter outputs and

corresponding cooccurrence measurements� Figure ��� compares the response for

a Gabor �lter at 
�
p
�cpi� ��� 
��x�� sample� and a cooccurrence measurement

for 
CON���� using the cotton and wood textures� Both of these textures have no�

ticeable vertical components� The correlation for wood given these two features is

����� for cotton� ����� These are very strong correlations� especially given that the

features are extracted using two completely di	erent techniques� Such high corre�

lations indicate that both methods tend to generate the same critical information

about the particular texture�

����� Comparison of Results to Other Studies

There exist other texture classi�cation comparative studies� These will be reviewed

and contrasted with respect to the current study� To make direct comparisons is

awkward due to di	erences in the test data and di	erences in the methodologies

implemented� In some cases� the potential of the methods for image segmentation

is evaluated�
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Figure ���� Demonstration of the correlation between Gabor �lters and cooccur�

rence probabilities�

Comparing Cooccurrence and Power Spectrum Results

In one of the earliest studies� Weszka et al� ����� compare three standard approaches

to texture classi�cation and demonstrate that the summed power spectrum features

perform the poorest and the cooccurrence method is comparable to the �rst�order

statistics of grey level di	erences� This study is of limited applicability because of

insu�cient data and application of only single and pairwise features when classify�

ing�
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D�Astous and Jernigan ���� present the results of comparative texture classi�

�cation of peak and shape features� summed features� and a lone cooccurrence

texture measure 
CON�� Their results indicate that the peak and shape measures

are superior to the cooccurrence measure which is superior to the summed features

when ��x�� samples of Brodatz imagery are used� Liu and Jernigan ���� investi�

gate the potential of using D�Astous� texture features in the presence of additive

noise� They also introduce additional power spectrum texture features to compare

a total of twenty�eight such features� Five Brodatz classes are successfully classi�ed

based on training�test data sets 
about ��� accuracy�� They indicate that their

methodology is an improvement over the results obtained in D�Astous� thesis �����

He et al� ���� compare cooccurrence features� peak power spectrum features� and

summed power spectrum features� The IDM statistic proved to be very e	ective

discriminating the Brodatz texture images� Contrary to D�Astous and Jernigan

results� the summed energy features outperformed peak texture features� Overall�

of the top seven texture features in their analysis� six are based on cooccurrence

features�

McLean ���� compares a vector quantization 
VQ� approach to cooccurrence

and power spectrum texture features� He used a k�nearest neighbour approach

to classify samples from seven Brodatz images� This classi�cation strategy is ap�

propriate for the vector quantization approach� however� it may not be a preferred

method for classifying cooccurrence and power spectrum feature sets� For his study�

the VQ results are superior� His classi�cation results for using the cooccurrence

technique 
������ seems quite low compared to the results presented earlier in

this chapter using ��x�� windows of similar Brodatz imagery� The classi�cation

accuracy of the cooccurrence features consistently exceeds that of the power spec�

trum features by a signi�cant margin� The VQ methodology runs into the same
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di�culty as the cooccurrence and power spectrum approaches if implemented for

segmentation purposes � selection of window size� In addition� increasing the win�

dow dimension in the VQ approach causes a quadratic increase in the feature space�

Unsupervised approaches using VQ are awkward because classes are identi�ed by

multiple prototypes�

Essentially� these results support the testing presented earlier� Namely� the

cooccurrence features tend to perform better than the power spectrum features�

Under conditions where the textures are quite regular and window sizes are a su��

cient size to represent a number of periods of the texture� power spectrum measures

can be quite strong� When the window size is equal to or less than the period of

the texture� the cooccurrence features are better able to handle such uncertainty�

Cooccurrence Features Compared to Gabor Filtering Results

Augusuteijn et al� ��� classi�ed a Thematic Mapper 
TM� set of images using a

number of di	erent methods� including cooccurrence matrices� power spectrum�

and Gabor features� Power spectrum features 
as de�ned in their paper� and Ga�

bor �lters are found to be preferred choices� Cooccurrence features also generate

successful results� but their applicability is shunned by the authors due to the long

execution times� Even for a single image band� the results for these three methods

are all quite successful using �x� windows� suggesting that the samples are distinct�

They even use the average of the four dominant angles to generate the cooccurrence

features� indicating that the textures are isotropic� Their �lter methodology may

not be appropriate since they use a constant bandwidth for all frequencies and this

may not generate suitable spatial�frequency domain coverage� The Gabor �lters are

not forced to have a zero mean impulse response� hence� the �lters are using local

mean grey levels to assist discrimination� This is substantiated by the fact that� to
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achieve a strong classi�cation based on the cooccurrence features� the mean grey

level had to be included as a feature�

Kundu and Chen ���� compare the cooccurrence features with those obtained

from a quadrature mirror �lter 
QMF� bank� Interestingly� they apply the cooccur�

rence features to the low�low output of the �lter bank and derive other additional

features from the high pass �ltered data� Their results show that the combined

QMF�cooccurrence features are preferred over the cooccurrence technique alone�

Applying results from the QMF bank to image segmentation is awkward since the

�ltering methodology is set up in a block format� When compared with the Gabor

wavelet scheme� not every pixel has its own individual response for every resolution

and orientation�

Chang and Kuo ���� use a tree structured wavelet to perform classi�cation� A

number of methods are compared� The discrete cosine transform 
DCT�� discrete

sine transform 
DST�� discrete Hadamard transform� and Laws masks all performed

similarly and second best to their tree structured approach� For the same reasons

as Kundu and Chen� this method is not conducive to image segmentation� The

Gabor �ltering seems to lag in performance� However� their implementation only

used the real part of the Gabor �lter without smoothing� which� as described in

Section ������ is not expected to generate appropriate texture features�

Ohanian and Dubes ���� compare four di	erent techniques for their classi�cation

ability� Markov random �eld parameters� Gabor �lters� fractal based features� and

cooccurrence features� Two syntactic 
fractal� and two real 
leather and painted

surfaces� are used as test imagery� The cooccurrence features generate the best

classi�cation rate� determined by a K�nearest neighbour classi�er and leave�one�

out approach� However� the Gabor �ltering is probably not performing optimally

since a constant spatial�frequency bandwidth is used without any local smoothing�



Chapter � � Determining Preferred Texture Features ���

Barber et al� ��� compare a number of di	erent methods in the context of clas�

sifying samples of SAR sea ice imagery� The cooccurrence features are deemed

better than the Gabor �ltered data implemented using Wright�s �lter parameters


Section ������� The poor success of the �ltered data can be explained in a num�

ber of ways� Wright�s parameters are not organized in a wavelet fashion and the

bandwidths are not set up to provide proper spatial�frequency coverage� Also� the

�lter output is unnecessarily normalized by its area covered in the spatial�frequency

domain� In addition to these features� the �lter outputs are manipulated using the

approach that D�Astous used working with the power spectrum ����� From the en�

tire set of Gabor �lter outputs and D�Astous features based on these outputs� only

two features are selected� This limited amount of information may explain why the

Gabor �lter outputs are not able to perform optimally� It is interesting to note

that each of the methods compared in this publication used di	erent classi�ers�

Typically� in the other comparison papers� only one classi�er is used so as to treat

each texture analysis method equally�
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Texture Segmentation Study

This chapter draws on information accumulated thus far in this thesis to present an

unsupervised texture segmentation methodology� Drawbacks of current approaches

are summarized to motivate the design of a clustering scheme� This algorithm is

applied to the segmentation of test and SAR sea ice imagery� At the same time�

distinct abilities of the cooccurrence and Gabor texture features are identi�ed� The

end result is a theoretical approach for unsupervised texture segmentation and an

operational approach for SAR sea ice image texture segmentation� A comparison

of these results with other published studies is performed�


�� Design of Clustering Methodology

Both Gabor �lters and cooccurrence probabilities are able to characterize textural

information� However� an unsupervised method to group the feature vectors to

create a segmented image is di�cult to devise� Determining the boundaries between

classes as well as grouping regions with similar characteristics is necessary� No

���
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successful� robust method has been identi�ed in the research literature� One of the

more di�cult tasks is determination of the number of distinct texture classes in

the image� The goal is to design a generic texture segmentation methodology that

works with a wide variety of imagery� not a segmentation approach that only works

with two classes� very distinct textures� or straight boundaries� An algorithm that

best mimics what the HVS is able to perform and considers to be distinctive is

important� This section will present a method that is able to identify the pertinent

textural regions and the number of classes in the image given that the classes are

well identifed by the features� Keep in mind that the derivation and examples are

based wholly on textural cues only� not tonal�

����� Drawbacks of Current Approaches for Clustering Ga�

bor Texture Features

Dunn et al� ���� ��� 
also discussed in Section ������ perform image segmentation

in a very limited manner using Gabor �ltered outputs� only two distinct textures

are found in the image� each texture takes up one�half the image� the textures

are separated by a single straight boundary� training samples are required 
fully

supervised�� and only one �lter is used to distinguish the two textures 
although

textures may have more than one dominant frequency�orientation pair�� Dunn�s

current approach is not appropriate for the generic texture segmentation problem�

His concept that only a limited number of �lters is required to segment an image�

however� is important from a computational perspective�

Jain and Farrokhnia have published a well�referenced texture segmentation al�

gorithm ����� This algorithm has signi�cant restrictions�

� The methodology for determining the number of classes is not e	ective since
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it works properly for only one of the provided eight examples ����� They

implement an incremental strategy using the modi�ed Hubert index to indi�

cate when the number of classes is exceeded� This requires that the entire

system be solved at least as many times as the number of classes� which is

computationally expensive�

� The ISODATA algorithm is applied to cluster the feature vectors� Since the

number of samples per class is roughly the same for their examples� the ISO�

DATA algorithm may be using this a priori knowledge to indicate minimum

and maximum sizes for the clusters� The ISODATA algorithm is not appro�

priate for solving the generic texture segmentation problem and should only

be used when considerable knowledge about the image is known� SAR sea

ice imagery is an example where the number of samples per class cannot be

assumed a priori�

� The spatial coordinates of the pixels are used as features� The example im�
ages have individual textures placed in a block�like fashion� where textures

are located in only one part of the image and the areas covered by the textures

are approximately the same� For an image like Figure ���
a�� using spatial

coordinates as features provides a tremendous advantage for segmentation�

For an image such as Figure ���
a� or Figure ���
a�� the spatial coordinates

will only confuse the classi�cation since areas represented by each texture are

di	erent and some textures are located in more than one region of the image�

Thus� inclusion of the spatial coordinates in the feature set is not appropri�

ate for solving the generic texture segmentation problem� The smoothing of

the feature maps in the Gabor scheme provides this type of close neighbour

information�
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����� Clustering Implementation

To solve the general texture segmentation problem� the classes should be repre�

sented by fairly well de�ned clusters in the feature space� The e	orts of Chapter �

are directed towards achieving this goal� There are several other constraints which

signi�cantly compound the problem�

� Each of the clusters may be represented by a di	erent covariance matrix�

� No assumptions can be made about the number of samples that belong to
each class�

� The total number of classes is not known at the onset�

The goal is the ability to identify dense groupings of samples in the feature space�

To �nd the centroids of the clusters and the proper class variances associated with

them� a two step approach is used that requires procedures outlined in Section ������

The K�means algorithm is used to �nd the centroids of each of the classes� This�

of course� assumes that the number of classes is known� Once the centroids are

found� the samples can be assigned and this represents a rough approximation of

the true segmentation� If the clusters are well separated� then the centroids should

be found and a general description of the segmentation generated� The clusters

can then be processed using a class�pairwise Fisher linear discriminant algorithm


FLD�� The a priori probabilities as estimated by the cluster sizes are used� The

Fisher discriminant will correct for the class variances� but it is not certain that the

variances have been fully corrected following only one pass� Thus� the clusters are

improved incrementally by applying the Fisher discriminant algorithm iteratively


iterative FLD or iFLD�� Applying K�means �rst followed by iFLD will be referred

to as the KIF 
K�means iterative Fisher� algorithm�
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Figure ���� Clustering accuracy of K�means versus KIF�

The advantage of KIF is illustrated in Figure ���� The K�means algorithm

�nds the means of the two class clusters� but� the Euclidean distance classi�er may

assign many samples to the wrong class� The iterative Fisher linear discriminant


iFLD� generates a more appropriate separation of the classes by utilizing the class

covariances�

When do the iterations cease# As in any clustering problem� to ascertain when

the optimal separation occurs is di�cult� Here� the average of the inter�class Fisher

distances is used as an indicator� If this average decreases following an iteration�

then the algorithm ends� However� in my experience only a few iterations are

required to correct for the class variances� so the maximum number of iterations



Chapter � � Texture Segmentation Study ���

is set to �ve� If this Fisher approach is not able to improve the segmentation

following �ve iterations� then the shortcoming of the algorithm is that K�means did

not identify the prototypes� probably because the clusters are not well separated in

the feature space� This is either due to the features not accurately distinguishing

the classes or due to the similarity of the textures in the image� The K�means

algorithm makes the inherent assumption that each of the classes forms a distinct

Gaussian�like cluster in the feature space�

The feature space is actually quite sparse� If the image is ���x��� then there

are ����� samples� Assuming only two classes in the image� one would encompass

a minimum of ����� samples� The cooccurrence approach will have a smaller

dimensional space 
���d� than the Gabor approach 
���d�� Assuming that ten

samples are su�cient to describe the probability density function 
pdf� in ��d space�

approximately ���� samples are required to represent the ���dimensional pdf for a

single class� Obviously� the ����� samples are inadequate to do this� Fortunately�

the K�means algorithm is quite oblivious to the sparseness and only identi�es dense

regions as identi�ed by the minimum Euclidean distance�

One must make sure that the feature space is properly scaled� For the cooc�

currence texture features� each selected statistic is performing a di	erent measure

on the cooccurrence probabilities� thus� the feature dimensions must be normalized

to have the same range� On the other hand� the Gabor �lters are measuring the

same qualitative aspect of the textures� namely� the responses to certain �lters�

Scaling these features will destroy the relative responses of the �lter outputs� criti�

cal information for the segmentation� Thus� to scale the Gaborian feature space is

unnecessary�

After K�means determines the class prototypes� the next task is to improve

the segmentation using the iterative Fisher linear discriminant� This discriminant
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projects the sample vectors from an n�dimensional space into a ��dimensional space�

The resultant ��dimensional pdfs have su�cient samples to properly estimate their

parameters� One could use a minimum inter�class distance metric for classifying

samples� however� the quadratic boundary is not justi�ed with this relatively sparse

data set�

The seeds that are used for the K�means algorithm are the �rst samples found

in the image 
beginning at the top left hand corner�� Given no other information

about the image� this is a suitable place to begin� Due to the assumed periodicity

created with discrete time forward and inverse FFTs 
used to generate the Gabor

features�� these seeds have the potential to lie near a boundary between numerous

distinct textures 
from each corner of the image�� For the cooccurrence measures�

a boundary is set�up around the image so as to mimic periodicity� The boundary

width is one�half the window dimension used to extract the cooccurrence features�

This ensures that the Gabor and cooccurrence methods are treated equally�

����� Determining the Number of Classes Using a Divisive

Hierarchical Tree

Determining the number of classes in a feature set is a di�cult problem� The

distinctiveness of a pair of clusters can be determined by an inter�cluster distance

measure� The Fisher criteria 
Equation ���� provides such a measure by determining

the ratio of the Euclidean distance between the means and the cluster covariances�

If the cluster projections onto a Fisher discriminant are always Gaussian� the error

between two classes can be determined� The Gaussian assumption does not always

hold which leads to inaccurate error estimates� Parzen pdf estimates of the pro�

jected data can be made and the error determined� This has not been attempted
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due to the added computation� The Fisher distances o	er accurate estimates of the

separability of the clusters and will help determine the number of clusters�

A �rst try at solving the clustering problem was performed by incrementing the

number of classes and solving the entire set of samples for each increment 
like Jain

and Farrokhnia as outlined on page ����� Instead of using the modi�ed Hubert

index� the inter�cluster Fisher distance was used as an indication of whether to

continue incrementing the number of classes or to stop the algorithm� With each

increment� one of the following should occur� a distinct class is identi�ed from a

larger grouping of clusters� a cluster of classes is split into a pair of subclusters

or classes� or a single class is split� This method proved awkward because the

most separable classes are not always the �rst classes identi�ed by the K�means

algorithm� so to determine when the algorithm should stop is di�cult� Also� single

complex textures might be split before two distinct yet similar classes are separated

and a method to determine when this would happen is unknown� When multiple

classes are being considered the average inter�class Fisher distance is not an ap�

propriate method to indicate when the iterations should stop since� although the

average may drop� the best segmentation may not have been achieved� Inter�class

distances may be reduced for well de�ned class pairs� but those class pairs that

are not as separable may not be properly separated when the average inter�class

distance drops�

A better method to perform the clustering and avoid solving the entire feature

set as many times as the number of classes� is a binary divisive hierarchical ap�

proach� This approach is best explained graphically� Consider the case of three

distinct classes in a ��d space 
Figure ����� At the top of the binary hierarchical

tree� two classes are assumed� Applying KIF to the entire set of samples generates

clusters A and BC 
clusters B and C combined�� The Fisher discriminant combines
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clusters B and C so that the joint projection resembles a single class on the A�BC

discriminant� generating a large Fisher distance� The large distance will allow the

algorithm to proceed by assuming that A and BC are distinct� Then� K�means

and the iterative Fisher scheme are applied to each of the two clusters� A and BC�

to attempt to split them up� The splitting of the single cluster A generates a low

Fisher distance so cluster A is left as an individual class� The BC cluster is easily

separated� Here� the tree can proceed to the next level and try separating the two

clusters B and C� As when A was considered� the splitting of B and C generates

low Fisher distances and they are left as individual classes� The �nal clustering

identi�es A� B� and C as individual classes� This method is also able to determine

if there is only one texture class in the image�

If the clusters are well separated in the feature space� there will exist a range of

acceptable Fisher distances that can be used to generate an accurate unsupervised

segmentation� Let � denote the threshold value� If � is set below the minimum of

the range� then classes that should not be split will be split� If � is set above the

maximum of the range� then clusters that should be split into classes or subclusters

will not be split� By setting � to any value in the correct range� the segmentation

will proceed properly� If all textures in the image are highly separable and well

clustered� then � has a large range� Setting � is a function of the feature extraction

method and the type of imagery being analysed�


�� Algorithm Testing

Testing will be performed on both test and SAR images� Brodatz images are the

primary test images used and these assist investigation of theoretical concerns deal�

ing with unsupervised segmentation� This information will be carried to the SAR
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Figure ���� Divisive hierarchical clustering strategy

images where a practical implementation for image segmentation will be described

and presented� Comparisons between Gabor and cooccurrence texture features will

be performed�

����� Segmentation of Test Imagery

Two segmentation approaches will be used in this section� If the only information

provided to the clustering problem is the number of classes� this is known as mixture

resolving ����� Unsupervised cluster analysis refers to clustering without any a
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priori information whatsoever� Both the mixture resolving and cluster analysis

approaches are presented for each image using both cooccurrence and Gabor feature

sets� Mixture analysis is performed by giving the correct number of classes to the

KIF algorithm� Cluster analysis uses the hierarchical divisive approach�

The �rst image is a simple ���x��� bipartite image 
Figure ����� The original

image 
a� contains cork 
D�� and cotton 
D��� and 
b� represents the true segmen�

tation� Both the Gabor 
c� and cooccurrence 
d� segmentations have similar results

and are easily able to segment the images in an unsupervised fashion� The range

of � is ������ ����� for the Gabor approach and ������ ����� for the cooccurrence

approach� The Gabor approach tends to generate clusters that are more separable�

The next image 
Figure ���� contains the same textures as Figure ��� but the

sinusoidal boundary makes it more di�cult to distinguish the two textures� The

segmentation results are again about the same� however� some changes in the ranges

for � occurs� The Gabor segmentation requires a range of � � ������ ����� and the

cooccurrence segmentation requires � � ������ ������ The upper limits of ������

and ������ demonstrate that the two clusters representing the two classes are not

as separable as in the case of the straight boundary 
������ and ��������

The next step in complexity involves adding textures to the test image� Fig�

ure ��� represents segmentation of an image with four Brodatz textures� calf 
D����

grass 
D��� wool 
D���� and wood 
D���� This image was originally published by

Krishnamachari and Chellappa ����� Note that each of the textures have approxi�

mately the same textural resolution� Both the Gabor and cooccurrence methods are

able to segment the image� using mixture resolving 

b� and 
c�� and unsupervised

cluster analysis 

d� and 
e��� The ranges of � required to perform the segmentation

unsupervised are ������� ����� for the Gabor approach and ������������� for the

cooccurrence approach� The Gabor approach has a tendency to want to subdivide
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a� Original 
b� True segmentation

Unsupervised� 
c� Gabor result 
d� Cooccurrence result

Figure ���� Segmentation of bipartite Brodatz image separated by straight bound�

ary�
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a� Original 
b� True segmentation

Unsupervised 
c� Gabor result 
d� Cooccurrence result

Figure ���� Segmentation of bipartite Brodatz image separated by sinusoidal bound�

ary�
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the grass texture 
����� compared to ������ for the cooccurrence method�� The

grass is not very consistent and represents a texture that is not easy to characterize�

The mixture analysis in 
b� and 
c� increases the error along the lower boundary of

the grass texture for both methods� The hierarchical approach reduces this error

by considering regions individually�

As an example of how the iterative Fisher linear discriminant improves on the

K�means clustering� Figure ��� shows the clustering at the top of the hierarchical

tree� The system tries to divide all the Gabor feature vectors for the image into two

clusters� K�means is able to produce a fairly accurate segmentation� The iterative

Fisher approach signi�cantly reduces the error so that the four classes are more

accurately divided into two clusters of two�

The next test image 
Figure ���� also contains four Brodatz textures� however�

these textures 
cork � D�� cotton � D��� paper � D��� and rai	a � D��� have di	erent

textural resolutions� The cork and paper are poorly de�ned� especially compared

to the cotton and rai	a� Whether mixture analysis or the hierarchical clustering

approach is used� the textures are clearly discriminated using the Gabor features�

The range for � is ������ ������ indicating that an unsupervised segmentation is

possible� The cooccurrence features cannot discriminate between the cork and the

paper textures� Using the unsupervised protocol� the cooccurrence segmentation

would have stopped after the �rst level in the hierarchical tree� Here� it would

isolate the cotton texture� but then �nd that the cotton texture is easier 
based

on Fisher distances� to separate into two clusters than to break down the remain�

ing three classes into two clusters� However� if the image is forced to split into

four clusters� the clustered image in 
f� results� Even when the proper number of

classes is provided� the cork and paper textures cannot be distinguished using the

cooccurrence features 
d��
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a� Original

Mixture analysis� a priori� 
b� Gabor result 
c� Cooccurrence result

Unsupervised� 
d� Gabor result 
e� Cooccurrence result

Figure ���� Segmentation of image with four Brodatz textures 
obtained from ������
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a� Following K�means 
b� Following K�means and iterative FLD

Figure ���� Demonstration of the ability of KIF to generate better clusters than

K�means alone�

If a larger window size is used to capture the cooccurrence features� the cork and

paper textures may be better discriminated� however� the boundaries between the

textures will be more erroneous� If a smaller window size is used� the boundaries are

better approximated� but the regions have poorer estimates� The Gabor technique

is better suited to the multi�resolutional problem since di	erent frequencies are

tuned to di	erent textural resolutions found in the image�

What happens if Figure ��� is created with sinusoidal instead of straight bound�

aries 
Figure ����# The Gabor features are not able to distinguish between cork

and paper for the mixture analysis case� Since the boundaries occupy a signi�cant

area of the image� the blurred textural boundaries are identi�ed as a separate class�

Using less smoothing could alleviate this problem� A segmentation was performed

using the average local grey level as an additional feature� Using this feature set�

the mixture analysis is able to distinguish between cork and paper and generate a

result similar to 
e�� The hierarchical approach 
e� does manage to separate the

two classes 
� has a range ����� ������ without using the average grey level as a
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a� Original 
b� True segmentation

Mixture analysis� 
c� Gabor result 
d� Cooccurrence result


e� Gabor result 
unsupervised� 
f� Cooccurrence result 
forced�

Figure ���� Segmentation of image with four Brodatz textures separated by straight

boundaries�
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feature� The lobe at the centre of the image that should be assigned to the cork

class is erroneously assigned to the paper class� In this local region� insu�cient

spatial extent is provided to accurately identify the paper texture� The Gaussian

smoothing blurs the boundary between the paper and cork causing the cork to be

assigned to the paper class� Regions are estimated well but boundaries are not

accurately estimated�

The cooccurrence features are again unable to discriminate between the paper

and the cork textures� Here� the unsupervised algorithm would have again stopped

after �nding only two classes� Image 
f� presents the results if the clusters are

forced to divide properly into four classes�

The image represented in Figure ��� was originally published by Bigun and du

Buf ����� Seven Brodatz textures are combined in a �� patch mosaic so that each

texture�s boundary touches each of the others at least once� The textures are visibly

distinct from each other� One texture is noticeably complex and the rest have

regular patterns� Di	erent textural resolutions are apparent� Horizontal boundaries

are straight� but the vertical boundaries are generated by a random walk procedure�

The Gabor features easily segment the image into the seven classes� The hi�

erarchical unsupervised approach 
d� generates a segmentation that is marginally

better than the mixture resolving approach 
b�� For the unsupervised approach�

� has a large range of ������ ������ The �nal seven clusters that are determined

are passed through the iterative Fisher linear discriminant to improve the segmen�

tation� The cooccurrence features are not able to segment this image e	ectively�

For the mixture analysis� the cooccurrence features are not clusterable� The un�

supervised hierarchical approach can only identify �ve of the seven textures and

the boundaries between the textures are not well localized� Manually forcing the

clusters to separate into seven classes� the textures are still poorly identi�ed 
e��
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a� Original 
b� True segmentation

Mixture analysis� 
c� Gabor result 
d� Cooccurrence result


e� Gabor result 
unsupervised� 
f� Cooccurrence result 
forced�

Figure ���� Segmentation of image with four Brodatz textures separated by sinu�

soidal boundaries�
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Again� if a larger window size is used� the regional identi�cation will improve� but

this will generate more errors at the textural boundaries� Smaller windows will do

the opposite� For this type of image� the cooccurrence measures are ine	ective�

The �nal image 
Figure ����
a�� for this section is provided by Unser ������ In

this ���x��� test image� there are four distinct texture regions each with equalized

histograms so that step edges between the textures are not apparent� The textural

resolution is about the same for each of the textures� Both the Gabor and cooccur�

rence approaches are successful using the unsupervised approach 
� is ������ �����

for the Gabor features and ������ ����� for the cooccurrence features�� The cooc�

currence segmentation is sensitive to the window size� Smaller windows 
�x�� have

been used to obtain a better boundary approximation� but regional accuracies su	er

noticeably�

����� Segmentation of SAR Sea Ice Imagery

Operational Implementation

There is a noticeable lack of textural SAR sea ice image segmentation publications

and none have been found that describe automated approaches� This is proba�

bly due to the requirement that unsupervised segmentation must satisfy additional

demands� boundary identi�cation and �vague� texture identi�cation� Boundary

identi�cation is di�cult since textural edges are highly variable� both in terms of

directionality and edge de�nitiveness� De�ning what constitutes a homogeneous

region is problematic when dealing with natural imagery since there is consider�

able and unpredictable within�class variation� For example� multi�year ice is not

always identical from image to image or even within the same scene but its general

appearance is often the same� It is this general appearance that must be character�
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a� Original

Mixture analysis� 
b� Gabor result 
c� Cooccurrence result


d� Gabor result 
unsupervised� 
e� Cooccurrence result 
forced�

Figure ���� Segmentation of image with seven Brodatz textures 
obtained

from ������
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a� Original 
b� True segmentation

Mixture analysis� 
c� Gabor result 
d� Cooccurrence result

Unsupervised� 
e� Gabor result 
f� Cooccurrence result

Figure ����� Four class image� Image obtained from ������
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ized� Recall that many di	erent variables inuence the outcome of the backscatter

coe�cient� further disrupting classi�cation procedures� These identi�cation prob�

lems exist even though the ice types are quite discriminable by a human observer�

Because of this extensive variability� segmentation of SAR sea ice imagery should

be performed in an unsupervised manner� Supervised approaches will not generate

consistent results since selected class samples are insu�cient to describe all the

class variability throughout the image� Sometimes it is di�cult to provide a priori

an exact number of classes� A chief concern is �nding a universal approach for all

SAR sea ice data sets since texture features that are found to be suitable for one

data set are not fully extendable to other data sets�

There are some generic characteristics that are required from a SAR sea ice seg�

mentation system� Preferably� no preprocessing should be applied� This saves com�

putation time and prevents destroying any pertinent textural information� Methods

should be semi�automated to process the considerable amount of information� Also�

the method should be robust and universal� It should be able to classify a particular

scene� as well as adjust for seasonal and diurnal variations� End user requirements

are also important� For navigational purposes� the user is particularly concerned

about identi�cation of multi�year ice� A risk factor that weights probabilistic error

in favour of selecting multi�year ice types would help to avoid missing any multi�

year oes� Collection of ice type concentrations throughout the Arctic region would

require di	erent risk factors depending on the goals of the study�

One of the goals of this thesis is to provide a practical tool for operators to gen�

erate end products for users of remotely sensed imagery� The wholly unsupervised

approach is e	ective� but an incorrect value of � could prevent segmenting classes

that are visibly distinct� Also� the expertise to take into account the other visible

cues that the operater requires has not yet been developed� A signi�cant degree of
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supervision is still required when interpreting such imagery�

The hierarchical segmentation approach is an appropriate technique to assist the

user� The user starts with the full image� Using existing maps� the land is masked

out� Land typically does not have a regular appearance and there is no known

methodology for its automated recognition� Then� the KIF algorithm is applied to

generate two clusters� The user chooses to continue subdividing either clustered

region in the same manner until a satisfactory visible segmentation is achieved�

Based on texture alone� the segmentation will probably not proceed beyond four

or �ve textures� Nuances in the regions will subdivide the image further� but the

human operator is probably better able to do this on their own� The computer is

able to save the operator considerable e	ort subdividing the larger constant texture

regions of the image� This is the approach used to segment the SAR images in this

section�

Since the textures have a �ner resolution than what appears in the Brodatz

imagery� the feature extraction parameters have been modi�ed accordingly� The

Gabor features only use the three highest frequency bands and � is set to ���� Cooc�

currence features use a window size of �x�� Computations for feature extraction are

faster because of the reduced feature dimension 
in the Gabor case� and the smaller

window size 
in the cooccurrence case�� This is important because the image sizes

are all ���x����

Testing

Since the SAR sea ice images often contain information other than textural� careful

attention has been paid to use test imagery that contain textural cues� To test

algorithms on SAR imagery that require tonal features would lead to erroneous
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results since both the Gabor and cooccurrence approaches have been implemented

to be independent of local average grey level�

The images in Figures ���� and ���� were obtained from Barber et al� ��� and

were captured using a STAR�� platform 
X band� HH polarization�� The resolu�

tion is � metres 
� look�� Each image is captured using a di	erent look direction�

Multi�year� �rst year smooth� and �rst year rough ice types are apparent� Both

the Gabor results 
in Figures ���� and ����� and the cooccurrence results 
in Fig�

ures ���� and ����� generate similar segmentations� Since the Gabor method uses

smoothing of the feature images� textural boundaries tend to be a bit more blurred�

however� regional errors are fewer� Both methods generate accurate segmentations

by identifying the pertinent ice types�

Considerable segmentation information available in the images are attributed

to tone� however� the pure textural information captured by both the Gabor and

cooccurrence feature sets provide quite accurate image segmentation� Multi�year

ice types have the highest dominant frequencies followed by �rst year rough and

then �rst year smooth ice types� Visually� we include tone in the discrimination�

However� the brighter backscatter responses often have higher frequency compo�

nents and this information is used by the cooccurrence and Gabor features for

segmentation� The tonal di	erence between the multi�year ice and the �rst year

ice types create an edge that generates strong responses from the high frequency

Gabor �lters� This response is blurred causing the segmentation to encroach from

the multi�year ice types into the �rst year ice types� This is not something that

would be expected from the HVS since boundaries should stay localized at the step

boundaries between the ice types� Inclusion of tonal information should improve

the boundary localization�

Barber et al� used the images to perform supervised texture classi�cation com�
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parisons� Classi�cation ability always dropped when applying discriminants created

from the calibration samples to samples obtained from the validation image� regard�

less of the technique used� Here� it is demonstrated that unsupervised segmentation

is probably a better means of performing texture identi�cation� Class samples used

in the supervised approach can never be assured to represent all the variability for

that class throughout the entire image� Unsupervised approaches do not require

selection of samples to generate a discriminant�

The �nal image is presented in Figure ����� This C�band HH image was obtained

during the Labrador Ice Margin Experiment 
Limex� during springtime ���� 
�

degrees Celsius� ����� The image has pixels with ��� metre spacing and was taken

in nadir mode at incidence angles of between �� and �� degrees� This image contains

brash ice 
top left hand corner�� open water 
dark region in centre� with a wind

blowing left to right�� and �rst year ice 
right and left hand sides��

A manual segmentation 
performed by myself� is presented in Figure ���� for

comparison to the Gabor and cooccurrence segmentations� These two methods

capture di	erent information about this image� The Gabor features are able to

identify the ice oes at the edge of the �rst year ice as being distinct from the rest

of the �rst year ice 
Figure ������ These oes tend to be smaller than the oes found

in the rest of the �rst year ice� The cooccurrence features are unable to do this

because of the small window size used 
Figure ������ The cooccurrence features

are able to distinguish the regions of the open water with and without waves�

something that the Gabor features do not capture� Both methods approximate the

classi�cation percentages of the manual segmentation as presented in Table ����
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Figure ����� Aerial SAR image 
subimage of Figure �
a� in �����

Open Water First Year Brash

Manually �� �� ��

Gabor features �� �� ��

Cooccurrence features �� �� ��

Table ���� Class assignment percentages following segmentation of Figure �����
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Figure ����� Segmented Figure ���� based on Gabor features�
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Figure ����� Segmented Figure ���� based on cooccurrence features�
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Figure ����� Aerial SAR image 
subimage of Figure �
b� in ����



Chapter � � Texture Segmentation Study ���

Figure ����� Segmented Figure ���� based on Gabor features�
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Figure ����� Segmented Figure ���� based on cooccurrence features�
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Figure ����� Aerial SAR image obtained from �����
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Figure ����� Manual segmentation of Figure �����
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Figure ����� Segmented Figure ���� based on Gabor features�
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Figure ����� Segmented Figure ���� based on cooccurrence features�
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�x� ��x�� ��x��

w�o updating ��� ��� ����

w� updating �� ��� ���

Table ���� Completion times 
seconds� for cooccurrence feature set collected for

Figure ���a�

����� Algorithm Speeds

Image segmentation speeds are compared using an IBM RISC System����� Model

��P 
��Mb RAM� ���MHz� SPECint�� � ������ SPECint�� � ������� In Sec�

tion ������ speeds are compared using a single class of high frequency data� Here�

a complete ��class Brodatz image 
Figure ���a� is used to compare algorithm com�

pletion times�

Completion times for generating the cooccurrence texture features without and

with updating are presented in Table ���� Although only the features for the ��x��

window are used for segmentation� features are calculated for window sizes �x� and

��x�� just to compare the completion times� As in Section ������ using the updat�

ing approach is quite advantageous and becomes more important with increasing

window size�

Clustering times for mixture analysis are presented in Table ���� Since the Gabor

feature set has a higher dimensionality 
���d versus ���d�� the clustering takes

longer� The dimensionality is especially important for the iFLD algorithm� where

inverses of the Sw matrix 
dimensioned to the feature space size� must be calculated


Section ������� Gabor features are better able to quickly �nd the centroids of the

clusters 
�� iterations instead of ���� A frequency band or two could be removed

from the Gabor feature set to segment this image and obtain similar results� This

would reduce the completion times to better approximate those obtained for the
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Time 
seconds� Iterations

Gabor

Features ��� �

K�means �� ��

iFLD ��� �

Total ��� �

Cooccurrence

Features ��� �

K�means �� ��

iFLD �� �

Total ��� �

Table ���� Completion times for unsupervised segmentation using Gabor and co�

occurrence feature sets collected from Figure ���a�

cooccurrence features� Since it is desirable to utilize a consistent Gabor feature set

that can be applied to a wide variety of image types� results for the full ���d feature

space are presented� The unsupervised segmentations require more computing time�

���s for the Gabor features and ���s for the cooccurrence features� Not only must

time be spent �nding the appropriate clusters� but a considerable amount of time


one�quarter for Gabor� one�sixth for cooccurrence� is spent determining whether or

not the �nal clusters are truly single classes� This takes considerable time because

the iFLD will try to divide one class into two clusters and will often reach the

maximum number of iterations 
�� before stopping�

Since the amount of time required for clustering is a function of the distinc�

tiveness and number of the classes in the image� a theoretical prediction of the

computational order is not appropriate�
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�� Discussion of Segmentation Results

����� Comparison to Other Texture Segmentation Compar�

ative Studies

Research publications comparing di	erent texture segmentation approaches are few�

Many publications discuss novel individual segmentation schemes� but there is a

noticeable lack of comparative studies� Reed and du Buf review recent texture

segmentation approaches in a summary paper ����� 
The popular paper by Haral�

ick ���� describes general texture interpretation without an emphasis on segmen�

tation�� Given that Gabor and cooccurrence techniques are two popular texture

analysis methods� there has been very little research published to compare their

ability for image segmentation� Three such papers have been noted for discussion

here�

Strand and Taxt ����� compare Gabor and cooccurrence texture segmentation

with their new method 
one that essentially calculates a local frequency measure�

ment�� The Gabor and cooccurrence techniques are implemented ine	ectively� For

example� the Gabor approach uses some centre frequencies that are clearly too low

to be helpful for discrimination given the textures used in their study 

p
�cpi and

�
p
�cpi for ���x��� images�� Also� the two highest octave frequency bands 
�

p
�cpi

and �
p
�cpi� are not included� These would have de�nitely assisted the segmenta�

tion since the cotton and herringbone Brodatz textures are better recognized using

these higher centre frequencies� For both the cooccurrence and Gabor approaches�

the feature sets are restricted to only � and �� degrees orientation� even though the

Brodatz herringbone texture 
D��� 
which has strong �� and ��� degree features�

is used in the test image� The number of grey levels is reduced to eight for the
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cooccurrence approach� possibly destroying important textural information�

Du ���� compares texture segmentation of remotely sensed imagery using Gabor

�lters and cooccurrence measures� His results are similar to those obtained in Sec�

tion ������ both Gabor and cooccurrence features are able to identify the pertinent

aspects of the texture� Gabor results tend to blur the boundaries while cooccur�

rence features preserve �ner detail� Regions are better approximated by Gabor

features than coocurrence features� Du�s approach is highly supervised since not

only are samples trained on� but the Gabor �lter parameters are based on Fourier

analysis of the training sets�

Dubuf et al� ���� compare seven di	erent approaches for their ability to perform

texture segmentation� Cooccurrence measures represent one of the methods� Laws

masks ���� are another method used� Some of the Laws masks have shapes that

are similar to Gabor �lters� however� Laws masks do not have the design exibility

that the Gabor �lters o	er� Spann and Wilson�s ���� unsupervised segmentation

algorithm is used� This method identi�es the boundaries between textures� but does

not seem to simultaneously group similar textural regions together� For the SAR sea

ice segmentation problem� additional processing would be required to group regions

of similar textural characteristics� Dubuf et al� describe quantitative measures for

comparing di	erent segmentations� Their methods demonstrated a tendency for

cooccurrence and Gabor�like features to be better than the other methods� It is

di�cult to compare their results to the current study since they only used bipartite

images for their testing� Visual observations are used in this thesis to compare

di	erent image segmentation tests�
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����� Summary of Segmentation Findings

The KIF method to cluster feature vectors was developed and implemented� Results

of applying the technique to Gabor texture features� both in mixture resolving and

unsupervised clustering modes have been� in general� successful� If the clusters

are well separated in feature space� then the K�means algorithm is able to �nd

the class centroids� Since clusters do not typically have equal� isotropic covariance

matrices� the Fisher linear discriminant is used to correct for errors generated by

the K�means algorithm� Iteratively applying the Fisher linear discriminant further

improves the segmentation� Other algorithms using the Gabor �lters have not

always accounted for the disparity in covariance matrices from cluster to cluster

and this is demonstrated to be an important aspect for proper segmentation�

The unsupervised approach requires setting the parameter � � This is not unrea�

sonable because the computer must be told what humans consider to be similar or

dissimilar� Setting � to a value of �� is a reasonable estimate for unsupervised seg�

mentation of the Brodatz imagery� Di	erent imagery may require di	erent values

of � � For this reason� plus the fact that expert information must be used when seg�

menting SAR imagery� the hierarchical assisted segmentation scheme is proposed�

This method is successful for the operational segmentation of SAR sea ice imagery�

Both Gabor and cooccurrence features have the ability to identify texture� how�

ever� they have di	erent aptitudes� These di	erences will be summarized in three

ways� the ability for the Gabor features to interpret multiresolutional textures� the

clusterability of the Gabor features� and the ability for cooccurrence measures to

capture detailed information�

Gabor features are better for solving the general texture segmentation problem

since they are able to distinguish patterns with di	erent textural resolutions� This
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is clearly represented by the results in Figures ��� and ���� Cooccurrence features

are not appropriate for segmenting images with multiple textural resolutions�

Cooccurrence measures require a �xed window size� This is not the reason

why they are not capable of multi�resolutional analysis� For example� one could

select multiple window sizes� However� when the window size is too small for a

particular texture in the image� erroneous feature measurements are made which

impedes clustering� When the window size is too large� features at boundaries are

not accurate� This not only a	ects the boundary estimation� but contributes to

confusion when clustering�

Consider two distinct textures 
A and B� in an image segmentation context�

Assume Gabor �lter 
F� �� is tuned to texture A� but not to texture B� Thus�

a strong response is invoked using 
F� �� while within texture A� As the texture

boundary is approached� the �lter 
F� �� begins to decrease its response as its spatial

extent begins to overlap the texture boundary� The �lter response of 
F� �� will be

relatively low when the spatial extent is fully within texture B� Thus� ideally� a

well de�ned step edge appears between textures A and B� The cooccurrence data

behaves in a di	erent manner� For a given orientation and statistic 
S� �� texture

A has an expected response and texture B has another expected response� The

magnitude of the response is not necessarily dependent on the texture � it is only

hoped that the texture response is consistent for texture A and texture B� As the

window moves across the textural boundary� it is uncertain how the given 
S� ��

will respond due to the mixture of textures� Although the response is expected to

be consistent when the window is completely in A or completely in B� the response

when crossing the boundary is unknown� This unexpected response may represent

the response of another texture in the image and this will confuse any unsupervised

texture segmentation scheme�
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In the case of supervised classi�cation using cooccurrence measures� the dis�

criminant can be trained to emphasize the informative features� The confusion

rising from the uncertain features will not play a role in the classi�cation� Thus�

cooccurrence features are strong when classifying the data that the discriminant is

trained on� but these types of analyses have no practical operational purpose 
why

bother classifying data that already have class assignments#��

These observations suggest that� in general� Gabor features are more clusterable

than the cooccurrence features� The magnitude of each Gabor �lter output is

relative to the other �lter outputs� The cooccurrence features do not have these

characteristics which impedes clustering�

The cooccurrence features do excel at capturing �ne details� as indicated by the

results of the SAR imagery� The Gabor technique requires smoothing of the feature

maps� blurring textural boundaries belonging to small regions� The cooccurrence

features do not require smoothing and capture �ne boundary details when the

textures are distinct with the same textural resolution� Also� the cooccurrence

probabilities treat every pixel in the window with the same weight� For a small

window size� this may be appropriate�



Chapter �

Summary of Results and Their

Implications

��� Summary of Results and Research Contribu�

tions

This thesis has generated a variety of results� These have been summarized in detail

at the end of each of the two testing chapters� Chapters � and �� Here� a summary

of the major results and their contribution to the research literature are presented�

� Design and implementation of a fast procedure for capturing cooccurrence
texture features�

The cooccurrence texture features have been in use for over two decades� A

severe restriction of the method for operational applications is the computa�

tional demands of the matrix 
GLCM� approach for calculating the cooccur�

rence probabilities and features� Although cooccurrence features are popular

���
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in the remote sensing community� no commercial software package is known

that calculates the cooccurrence texture features in a computationally e��

cient manner� The linked list implementation in this thesis has exceptional

computational advantages over the traditional matrix approach and is thus

important to the remote sensing community�

� Investigation of parameters for three texture analysis methods� Generation
of preferred parameters for the two most successful approaches�

The linked list approach provides the opportunity for rapid indepth testing of

the cooccurrence features� For example� testing of statistics across di	erent

quantization levels generated insights into their abilities� There does not seem

to be any other research that has performed this particular type of analysis�

Also� features that are determined to be highly correlated and thus redundant

are removed from the feature set� The end result is a more robust feature set

requiring signi�cantly less time to calculate�

Power spectrum features generated texture features that had poorer classi��

cation ability compared to the cooccurrence measures�

Di	erent Gabor �lter parameters and manipulations of the �lter responses

were compared analytically for their classi�cation ability� This helps to de�

termine which manipulations is more appropriate for the task at hand� Here�

a successful methodology has been identi�ed 
Section ������ for implementing

Gabor �lters for texture identi�cation�

� Identi�cation of cooccurrence and Gabor measures that agree with psychovi�
sual characteristics of the HVS�

Rao and Lohse ���� identi�ed repetition� directionality� and complexity as

important psychovisual characteristics necessary for texture identi�cation�
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These characteristics describe the most critical texture features generated

by the cooccurrence and Gabor features� In fact� the cooccurrence and Ga�

bor features tuned to a texture�s dominant orientation and frequency will be

strongly correlated� This indicates that the important information captured

by these two methods are quite similar� even though both use completely

di	erent approaches� Both� in essence� generate a local estimate of the direc�

tional frequency�

� Design and implementation of an unsupervised texture segmentation scheme

KIF��

K�means generates a reasonable texture segmentation for distinct textures�

Textures that are not so distinct require additional information to segment

properly� Some textures have variations in their dominant frequency and ori�

entation textural content� making them di�cult to identify� These complex

textures require special handling since the covariances of their feature dimen�

sions must be taken into account� This is performed using a class�pairwise

iterative Fisher linear discriminant� From an unsupervised perspective� deter�

mining the covariances is quite di�cult� Here� the clusters generated by the

K�means algorithm are successfully used as a starting point for the iterative

Fisher linear discriminant�

� Detailed comparison of cooccurrence and Gabor texture features for unsuper�
vised segmentation�

Gabor �lters and cooccurrence probabilities generate similar information us�

ing di	erent techniques� however� their segmentation capabilities are di	erent�

Gabor �lters are able to capture information in a multi�resolutional manner�

If an image contains patterns with di	erent textural resolutions� the Gabor
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�lter can easily capture this type of information while maintaining spatial

localization� The cooccurrence features are unable to capture features in a

multi�resolutional fashion�

The cooccurrence features are able to capture detailed information� which

is important in the context of natural imagery� The cooccurrence measures

are perhaps better suited for supervised classi�cation than the Gabor �lters�

The cooccurrence measures have a �nite extent and treat every pixel in the

same window 
which is already assumed to contain only one texture only�

in the same manner� The Gabor �lters weight the contribution of the pixels

as a function of distance from the centre pixel� a better approach for image

segmentation�

� Design and implementation of an operational approach for the segmentation
of SAR sea ice imagery�

The unsupervised approach to image segmentation is not necessarily appro�

priate for all SAR sea ice imagery under all circumstances� In addition to

texture� various other aspects of the imagery must be taken into account�

The divisive hierarchical model is appropriate as a tool for assisting the op�

erational segmentation of SAR imagery�
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��� Future Research Directions

���� Improve Accuracy of Texture Features for Segmenta�

tion

Cooccurrence Features

Cooccurrence features become confused at textural boundaries� To try to improve

segmentation near boundaries� the cooccurring probabilities can be weighted by a

Gaussian centred on the window instead of uniformly weighting all the cooccurring

grey level probabilities� The probability contributed by grey level pairs that are

closer to the centre of the window would be emphasized and those near the edge of

the window would be deemphasized� This might allow for improved classi�cation

near boundaries�

The cooccurrence data has always considered only the probability of two oc�

curring pixels� What type of information can be derived from n�occurring pixels#

This would create opportunities to generate diverse texture features based on mul�

tidimensional space as opposed to a ��dimensional space� This suggestion is not

feasible for the matrix approach because of the excessive computational demands�

but it is extendable using linked lists with a moderate increase in the computational

costs� If a more robust texture feature set will be created is uncertain� Since it

is more unlikely that n�occurring pairs would repeat within the same window� the

homogeneity features will probably be ine	ective� Moment features would have to

be determined with respect to the n�dimensional diagonal� The reliability of these

estimates is unknown�
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Gabor Features

The Gabor feature set determined by evenly covering the spatial�frequency domain

creates a high dimensional feature space that requires substantial computing time

for unsupervised clustering� However� only a few distinct �lters are required for ro�

bustly identifying any particular texture� Devising a scheme that �nds an optimal

set of �lter responses for a local spatial region is appealing� If an accurate local

estimate of the dominant Gabor �lters can be made� then adjacent local regions

can be determined to be either the same or di	erent from the current region� This

would allow the texture to �grow�� in much the same manner that the HVS would

track and identify a consistent texture within an image� I have spent signi�cant

time attempting this type of approach� Many problems are associated with this

design for unsupervised segmentation� determining the number of distinct �lters

required� determining whether the spatial region is within a constant texture region

or near a texural boundary� and estimating the statistics of the �lter parameters�

Promising results were obtained for bipartite images with distinct textures� how�

ever� generating a robust solution for diverse imagery proved to be elusive�

Linear Gaussian smoothing may not be the optimal choice for smoothing the

Gabor feature maps since textural boundaries are smoothed which can a	ect the

segmentation 
see Figure ���c� for example�� An adaptive smoothing of the Gabor

feature maps may be more appropriate� Smoothing the constant regions and avoid�

ing edge smoothing should prevent modifying the feature measurements near the

textural boundaries� There is also a signi�cant increase in the computational time

required for feature extraction if adaptive smoothing is employed�
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Other Texture Features

The research literature lacks comparative analyses between di	erent texture seg�

mentation approaches� This thesis compares two statistical based methods for their

segmentation performance� Model based approaches have also been demonstrated

to be successful for texture segmentation� Comparison of a model based approach

with the Gabor and cooccurrence methods would be enlightening�

The Gabor and cooccurrence features may be quite e	ective when combined�

Gabor �lters are important when multi�resolutional textures are involved� How�

ever� the cooccurrence probabilities are more e	ective at capturing high frequency

features from isotropic imagery� If the Gabor feature set is augmented with a small

window isotropic cooccurrence feature 
one that averages all four directions into a

single measure�� then this combined feature set may be more e	ective for solving

the general texture segmentation problem� Another way to handle this problem is

to average the Gabor responses of all the orientations of the highest frequency band

and use this as an additional texture feature�

���� Improve Computations

The linked list approach for generating cooccurrence texture features is a tremen�

dous improvement over the traditional matrix approach� The linked list is a burden

for searching since a linear search of the list is required to determine whether or not

a grey level pair exists� The linked list approach may be further improved by using

a tree structure ���� which would reduce the amount of time required for searching�

Additional memory would also be used�

Clustering feature vectors derived from large images is unwieldly� The Equitz

algorithm ���� can reduce the number of feature vectors by clustering similar feature
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vectors� The data set could be reduced by a certain percentage of the original� Each

of the features in the reduced feature set would also be represented by the number

of samples assigned to it based on the Equitz algorithm� Running K�means and

iterative Fisher linear discriminant on the reduced data set would accelerate the

execution times�

���� Other Applications

Further potential of the segmentation scheme can be exploited by segmenting other

sources of SAR imagery ie� forestry� agricultural crops� etc� As long as there is some

noticeable textural distinction between classes� Gabor and cooccurrence measures

can generate useful discriminating information� The clustering algorithm can also

be attempted to solve other clustering problems� As long as the class centroids can

be identi�ed by K�means� this clustering algorithm should be successful�

���� Create Standard Texture Analysis Image Library

Texture analysis is at a stage of development whereby a universal set of test im�

ages is important� Computer implementations for practical applications started well

over twenty years ���� ago� Methods for seriously considering the fully unsupervised

approach initiated about one decade ago ����� Current research indicates an abun�

dance of texture analysis publications� however� few scientists test methodologies

on images previously used for texture segmentation analysis� Whether a method

is useful for generic texture identi�cation or whether it is only useful for certain

images is di�cult to ascertain� Creating a texture image library that scientists can

all access and use will enable these types of comparisons�
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To enable a test bed of appropriate images� di	erent application areas would

�rst be identi�ed� Remotely sensed� biomedical� theoretical� and surface inspection

imagery are suggested applications areas� Then each method would have subareas

of interest� For example� remotely sensed imagery could contain images dealing with

di	erent sensors 
aerial� SAR� visible� satellite� infrared� etc�� and di	erent terrain


sea ice� forestry� agriculture� etc��� Theoretical images would include Brodatz�

Markov modelled� and fractal collages� Contributions from scientists in di	erent

research �elds would assist generation of a robust set of images that can be used

to consistently compare various texture segmentation algorithms�
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Figure A��� Brodatz images used for classi�cation testing�
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Figure A�� Brodatz images used for classi�cation testing 
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