
SD 575 Image Processing 

Fall 2015 
 

Lab 0: Introduction 

Lab Date: Sep. 16, 2015 

No Lab Report, Not Graded 
 

The Image Processing Labs 
 

The lab component of SD 575 is designed to complement the material being covered in the lecture 

portion of the course. Labs are intended to be done in groups of two or three (preferably two). The 

labs will illustrate and reinforce the concepts covered in the lectures by providing an opportunity to 

observe the effects of the algorithms. The labs will allow you to experiment with a variety of image 

processing algorithms, and to design and implement your own.  

 

The lab instructions assume that you are using Matlab. The image and signal processing toolboxes 

of Matlab have made it powerful scientific software for digital image processing. Matlab is 

particularly well-suited for prototyping and experimenting with algorithms with minimal overhead. 

 

Students who are new to Matlab can find many tutorials and introductions online: 

 

https://uwaterloo.ca/information-systems-technology/services/scientific-computing-software-

support/supported-software-scientific-computing/matlab/introduction-matlab-course-notes 

 

UW IST’s page on Matlab has details on the availability of Matlab, examples, and links to tutorials.  

 

http://www.mathworks.com/access/helpdesk/help/helpdesk.html 

The official documentation for Matlab contains detailed examples illustrating the use of practically 

every function. 

 

 

 

Matlab 
 

The goal of this lab is to provide an introduction using the Image Processing Toolbox of Matlab. 

 

Matlab supports most common image formats, including JPEG, GIF, BMP, PNG, and TIFF. 

Typing “help imread” at the Matlab prompt will give a complete list. 

 

To find out what commands are available in the Image Processing Toolbox, type "help 

images".  Matlab commands are generally quite well documented, and typing “help 

[commandname]” will give you detailed information on what a function does and how to use it. 

You will also be able to find an often more detailed explanation online by searching “Matlab 

[commandname]” on Google. 

 



Some Useful Matlab Image Processing Commands 
 
imread Load an image 
imwrite Save an image 
imshow Display an image 
imfinfo Display image information 
mean2 Compute global mean value of an image 
std2 Compute the global standard deviation of an image 
improfile Select a line along which to take an intensity profile 
imhist Compute and display the image histogram 
fspecial Generate a predefined filter mask 
filter2 Perform a 2-D convolution 
rgb2gray Convert RGB to grayscale 

 

 

 

Useful Matlab Information 
 

Numeric variables in Matlab are all implicitly treated as matrices, and most operators and functions 

are designed to behave appropriately for matrices. Matlab is highly optimized for operations on 

vectors and matrices, and users encouraged to design their programs to exploit this: a “vectorized” 

function is generally at least an order of magnitude faster than a function that manually iterates 

through the matrix. 

 

Matrix vs. Element-by-Element Operations 

 

When working with matrices, there are two ways that operations can be performed. They can be 

performed element-by-element, or using the entire matrix. Operators ,  /, and ^ are defined as the 

matrix operation. So, for example, if A and B are matrices  
 

C = A*B;   D = A^2; 

 

would multiply matrix A with B and store the result in C, and multiply matrix A by itself and store 

the result in D. (Note that Matlab will give an error if the dimensions of A and B are not suited to 

these operations.) 

 

Adding a "." modifier in front of these operators causes them to be performed on respective, 

individual elements. Thus, the command 
 

C = A.*B;  D = A.^2; 

 

would instead assign to C a matrix where each element is the product of the respective element in A 

multiplied by the respective element of B. D is a matrix equal in size to A where each individual 

element has been squared. By using the modifier, the operation is performed on each element of the 

matrix individually rather than on the matrix as a global structure. Notice that when both operands 

are scalars, both forms yield the same result. 



 

One side note: if you do not terminate a command with a semicolon (;), Matlab will output the 

value generated by the command. 

 

 

uint8 vs. double Format 

 

Typically, images are stored in a format where the pixel values span the integer range [0, 255].  

Images of this format are loaded by Matlab and stored in a type known internally as uint8, or an 8-

bit unsigned integer.  Some operations in Matlab may not be defined for this data type and will 

need to be converted to the double floating-point type which spans the range [0, 1].  This can easily 

be done by dividing the values by 255, or by using the im2double function. 

 

 

Loading and Saving Images in Matlab 
 

The previously mentioned imread and imwrite commands are used to load and save images in 

Matlab.   

 

To load an image, use the imread command as follows. 

 
i = imread('filename'); 

 

The image information is now stored in the matrix i.  The file name must be enclosed in the single 

quotation marks (').  If the file is not found, it may not be in the Matlab path.  Either use the path 

tool (Set Path) found under the File menu, specify the entire path of the file, or change directory in 

the Matlab prompt to the location of the file.  For example, to load an image called 

vacation.jpg from D:\Pictures, you would use the command 

 
i = imread('D:\Pictures\vacation.jpg'); 

 

To save an image, use the imwrite command as follows. 

 
imwrite(i,'filename'); 

or 
imwrite(i,'filename','fmt'); 

 

If the string fmt is not specified, imwrite attempts to determine the format based on the 

filename extension you use. 

 

To incorporate images into your reports, Microsoft Word is able to import images from many 

formats, including JPEG, TIFF, GIF, PNG, and BMP. 

 

You are also able to export to file from the figure window when you display your images. With this 

method, you can create Encapsulated Postscript (eps) versions of your images for use with mark-up 

languages such as LaTeX or for use in Word. 



Sample Session 
 

 

Command Result 

A = imread('cameraman.tif'); Read in the cameraman image 

imshow(A) Display the image 

imfinfo('cameraman.tif') Display the information associated with that image 

Figure 

Agray = rgb2gray(A); 

imhist(Agray) 

Open a new figure window 

Display that image’s histogram in the new window 

P = impixel(A) Examine the pixel values in the image 

m = mean2(A) 

s = std2(A) 

Find global statistics (mean, and standard deviation) 

on all the pixels in the image 

B = imadjust(A,[],[],gamma); 

      with gamma < 1 

      or    gamma > 1 

figure, imshow(B) 

Adjust image intensity 

    Stretch dark regions 

    Stretch light regions 

View the result in a new window 

B = histeq(A); 

imshow(B) 

Equalize the histogram 

h = fspecial('average') 

C = filter2(h,A)./255; 

Generate a local average mask 

Smooth the image with the local average mask, and 

normalize the result from [0,255] to [0,1] 

D = (double(A)./255) - C; 

imshow(D + 0.5) 

Find edges using (image - smoothed image) 

NOTE:  the image when loaded is stored in 'uint8' 

format, which has range [0, 255].  Most operations 

must be done using 'double' format which has range 

[0, 1] so the image must be rescaled. 

E = (double(A)./255) + D; 

imshow(E) 

Enhance the edges 

h = fspecial('sobel') 

F = filter2(h,A)./255; 

Find horizontal edges with sobel operator 

h = fspecial('sobel')' 

G = filter2(h,A)./255; 

Find vertical edges with sobel operator 

I = sqrt(f.^2 + g.^2); 

imshow(I) 

Create an edge image with the gradient magnitude 

 



Programming in Matlab 
 

Matlab provides an easy means for users to create their own programs or functions.  User defined 

scripts and functions are provided through what are called ".m" files.  These are a collection of 

Matlab commands organized in a particular means.  All valid Matlab commands can be used within 

functions, including other user defined functions, provided they are all in the same directory, or are 

locatable within the Matlab path. To set the Matlab path in Windows, select the "Set Path" option 

under the "File" menu and add your own directory to the path. 

 

The ".m" files can be created in your favourite text editor (vi, emacs, Notepad++, NOT Microsoft 

Word or WordPerfect) or using the Matlab editor.  To use the Matlab editor, simply type "edit" 

once Matlab is running. 

 

An ".m" file is normally organized as follows: 

 

function [return_value_1, return_value_2, …] = function_name(input_value_1, input_value_2, …) 

 

Matlab code 

 

The word function must appear as the first uncommented word in the file.  If there is only one 

return value, it does not need to be contained in "[]".  The ".m" file must have the same name as the 

function_name or it will not work. The return values and input values can be scalars, matrices, 

images, etc.  There is no need to use a return statement, as in C or C++, and multiple values can be 

returned.  The returned value is simply the last value stored in that variable name when the function 

completes execution. 

 

Comments can be added using the "%" character.  Anything after the "%" will be considered a 

comment and ignored. 

 

Matlab supports all programming constructs including decisions (if - else if - else) and loops (for, 

while).  For more details, see the help files or printed documentation. 

 

For example, the following function will create the edge image with the gradient magnitude using 

the Sobel edge detector (edge detection will soon be discussed in the course lectures). 

 
function Y = sobel_grad(X) 

% sobel_grad creates and returns the magnitude 

% image of the sobel edge detector 

 

Y = sqrt(filter2(fspecial('sobel'),X).^2 + ... 

filter2(fspecial('sobel')',X).^2); 

 

The “…” indicates that the command is continued on the next line. 

 

Note that you can also create .m files that do not begin with a function declaration. These files are 

treated as scripts, and operate on the user’s workspace variables. 


