SD575 - Digital Image Processing Problem Set 1 - Point Operations for Enhancement

1. Suppose an under-illuminated image has a grey level histogram represented by the probability density function:

$$
\mathrm{p}_{\mathrm{f}}(\mathrm{r})=3(1-\mathrm{r})^{2}, 0 \leq \mathrm{r} \leq 1
$$

(a) What point operation would best enhance this image? Explain. Describe how local contrast is affected in bright and dark regions of the input image.
(b) Suppose a discrete image has 8 grey levels and 140 pixels with the histogram $\mathrm{H}[\mathrm{k}]=(7-\mathrm{k})^{2}, 0 \leq$ $\mathrm{k} \leq 7$. What transformation would you use to enhance this image? Show your resulting histogram.
2. Suppose the grey level probability density function of an image is approximately:

$$
\mathrm{P}_{\mathrm{f}}(\mathrm{r})=5 \exp (-5 \mathrm{r}), 0 \leq \mathrm{r} \leq 1
$$

(a) Which of the transformations $s=r^{2}$ or $s=\operatorname{sqrt}(r)$ would produce a better image? Explain.
(b) What transformation would equalize the histogram, achieving a uniform grey level distribution?
(c) Suppose a digitized image has a grey level distribution given by:

$$
\mathrm{pf}_{\mathrm{f}}[\mathrm{k}]=0.5(0.5)^{\mathrm{k}} ; 0 \leq \mathrm{k} \leq 7
$$

What is the histogram equalization transformation and the resulting histogram over 8 output grey levels from 0 to 7 ?

