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Abstract

Block-based motion compensated transform coding is a ubiquitous paradigm for video
compression systems. In such video encoders, block-based motion estimation is a significant
tool for the reduction of redundant information. In atypical video encoder, motion
estimation is the most computationally expensive process, accounting for 60-80% of
computational resources. Many fast block-matching techniques have been proposed,
however, few are well suited to implementation in aVLSI system. Inthisthesis, anovel
motion estimation algorithm is proposed that exhibits some properties that facilitate efficient
VLSl implementation, while providing an average compression performance increase of up
to 15%, over the traditional full search block-matching algorithm.
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Chapter 1

Introduction

A vast array of applications involves the transmission or storage of video sequences.
Recent advances in digital technologies have created heightened interest in digital formats of
video. The advent of the Internet has enabled digital video applications such as video-
conferencing, and, with the ubiquity of personal computers, has created a demand for
consumer multimedia applications. Television broadcasting is also moving towards the use
of digital broadcasting technologies with the introduction of satellite, digital subscriber layer
(DSL) and other digital service providers. Emerging technologies, such as digital cinema,
continue to create further demand for digital video.

Raw digital video is a sequence of digital frames. In atypical television application, each
frame would be comprised of 720 rows and 480 columns of pixels (picture elements), and the
video sequence would have 30 frames per second. With 24 bits of information per pixel,
transmission of such video would result in a data rate of over 248 Mbps. Emerging high-
definition television standards would require over 1.5 Gbps. With the limited bandwidth of
today’s networks and storage media, there is a clear need for effective video compression
technologies. For example, a DSL network connection has a typical data bandwidth of 6
mbps, far below the required data rate for uncompressed video.

1.1 Video Compression

Digital video signas contain redundant and irrelevant information [1]. Redundancy in
video can be of many forms. spatial redundancy, due to the correlation of neighbouring
pixels; tempora redundancy, due to the correlation between video frames [2]; and coding
redundancy, due to other statistical redundancies that occur throughout the encoding process.
Digital video signals can also include data that are imperceptible to the human visual system
- this data can be considered irrelevant in most applications. Because of these properties, it is
possible to compress video signals to manageable data rates without introducing significant
quality degradation.



The video compression application can be viewed as a traditional digital signal
transmission system, the basic components of which are shown in Figure 1-1. For video
compression applications, the transmitter would include the functionality of a video encoder;
the channel could take the form of a digital broadcast or storage medium; the receiver would
include the functionality of a video decoder corresponding to the encoder. The efficiency of
a video compression system is defined by two measurements. the data rate through the
channel and the error or distortion between the source video signal and the decoded signal.

Encoder
Content .
. Encoder Transport » Transmitter
Provider
System

A 4

Transmission

Channel

Decoder

Transport |« Receiver
System

Decoder

A

?

Figure 1-1 - Digital signal transmission system

There are two fundamental approaches to video compression systems. Lossless, or
reversible compression [3], requires that there be zero error between the source video and the
decoded video signals. The efficiency of the system is then only defined by the data rate.
Compression systems of thiskind are typically able to achieve compression ratios of between
2 and 5 times [4,5]. This form is usualy found in specialised application areas such as
remote sensing or medical imaging [6]. The majority of video compression applications can
tolerate some degradation between source and decoded video signals. Such lossy
compression systems are able to achieve much higher compression ratios depending on the
tolerance for signal degradation.



1.2 Exploiting Pixel Redundancy in Video Coding

An observation fundamental to video compression is that successive frames of a video
sequence are often very similar. Aswell, pixel values within aregion of the same frame are
also quite similar. The high correlation of pixel values between frames and within the same
frame implies significant redundant information for encoding. Modern video compression
systems have several mechanisms for exploiting this redundant information to achieve data
rate reductions. Among them, one of the most significant such mechanismsis called motion
compensation [3].

The purpose of motion compensation is to decorrelate pixel values. This is done by
creating a predicted value for each pixel in a frame with respect to pixelsin past, current, or
future frames. The aggregation of the predicted pixel values for a video frame is called the
predicted frame. The predicted frame is subtracted from the original frame to be encoded,
creating a prediction residual frame. With a perfect motion compensation system, the pixels
in thisresidual frame would be completely uncorrelated.

Ultimately, the goal of motion compensation is to reduce the required data transmission
rate for the compressed video sequence. Data rate reduction is possible through motion
compensation in video coding systems through the syntax defined for the compressed stream,
which is known to the encoder and the decoder. The syntax defines a set of parameters that
is used to generate predicted pixel values for the current frame based on previously encoded
pixel values. In generd, it is possible to find appropriate prediction parameters, such that the
data rate for encoding the prediction parameters and the residual pixel information is
significantly less than the data rate that would be required to encode the original pixel values.

A very simple form of motion compensation would be to use a previous frame as the
predicted frame — the predicted value for each pixel is the co-located pixel value in a
previous frame. In this case, the prediction parameters would simply signa the previous
frame to be used for prediction, and the pixel information to be coded would be the
difference between the two frames. As is true for most video sequences, when successive
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frames are very similar, this approach would be effective at decorrelating the pixel value, and
reducing the encoded data rate.

1.3 Block Based Motion Compensation and Estimation

Various video coding systems allow different prediction models. These can vary widely in
complexity from the simple frame difference model, discussed in the previous section, to far
more complex models where the prediction model is better able to accurately predict the
pixel values. In the latter case, the proportion of the data rate alocated to the prediction
parameters is greater, but the portion alocated to the pixel data is far less — resulting in
overall compression gains.

The process by which the best prediction parameters are identified for each video frame is
called motion estimation. As the complexity of the prediction model increases, so too does
the required complexity of the motion estimation process, and therefore the computational
resources required for implementation. There is therefore a trade-off in the determination of
the complexity of the prediction model used for motion compensation. There is an obvious
need to achieve significant compression of video sequences. However, this must be balanced
against the implied complexity and feasibility of implementation.

In practice, the most common prediction model used for video coding is block translation
[3]. Inthismodel, video frames are divided into rectangular blocks of pixels. For each block
of pixels, a similar block of pixels is identified in a previously encoded video frame. The
pixelsin this block of the previous frame are then used as the predicted values for the pixels
in the current frame. The difference in location of the pixel blocks in the previous and
current frame is called motion. This motion is coded as the motion vector that defines the
location of the prediction block in the previous frame, with respect to the block in the current
frame. In most cases, for each block in a video frame, it is possible to find a block in a
previous frame where the data rate to encode the motion information and the pixel residual
information for the block is less than the data rate that would be required to encode the
original pixel information.



1.4 Contribution

In modern incarnations of video compression systems that use block based motion
compensation, the motion estimation task is often the most computationaly expensive
component of the encoding process. Recent complexity advances, such as variable block
size compensation and sub-pixel motion vector resolution, have further highlighted the need
for efficient block based motion estimation.

In recent years, much research has been done to improve the efficiency of motion
estimation algorithms [7-16]. Many of the approaches use complex procedural strategies that
are far more appropriate to software implementations than to efficient hardware very large
scale integration (VLSI) implementation. This thesis proposes a novel method for efficient
motion estimation within the context of ablock translation prediction model. This method is
aimed at addressing some of the issues associated with a VLS| implementation of a video

encoder.

The next chapter will describe the theory and structure that is common to most modern
video compression systems. Particular reference will be made to recent standardisation
efforts, specifically International Telecommunication Union Telecommunication
Standardization Sector (ITU-T) recommendation H.264. The following chapters will discuss
the motion estimation problem, and a variety of motion estimation techniques. Several fast
motion estimation algorithms proposed in the literature will be described and their suitability
for hardware implementation will be considered. Chapter four will then describe the
proposed motion estimation algorithm, and its performance will be evaluated. Chapter five
concludes the thesis and provides recommendations for future enhancements to the proposed

algorithm.



Chapter 2

Block-Based Motion Compensated Transform Coding

2.1 Video Compression Standardisation

Wide interest in video compression throughout various industries and academia has led to
the standardisation of video compression. Several successful video compression standards
have emerged over recent years — largely falling within the Motion Pictures Experts Groups
MPEG, or ITU-T H.26x groups of standardg[17-20]. The most common of these standardsis
MPEG-2[18], which has become ubiquitous within the television broadcasting and DVD
industries. The most recent emerging standard is the ITU-T recommendation H.264 [21].
While H.264 offers much advancement over MPEG-2, both video standards are examples of
Block Based Motion Compensated Transform Coding. This chapter will provide an
overview of the basic structure and each of the compression tools of the H.264 compression
standard. While many of the details are specific to H.264, much of the general theoretical
discussion will be equally applicable to any of the aforementioned standards.

2.2 Encoder-Decoder System Overview

Standard video compression techniques[17-21] are often referred to as hybrid techniques
because they make use of several compression tools simultaneously. Each such tool can be
used independently, or in conjunction with the other methods. The methods common to all
standards video encoding systems are colour sub-sampling, motion compensation, frequency
transform, quantisation, and lossless or entropy encoding. Figure 2-1 shows the structure and
interconnections of the hybrid coding scheme used by H.264 and other video compression

standards.
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Figure 2-1 - Block diagram of the hybrid video encoding scheme
2.3 Colour Image Representation

A digital video sequence can be viewed as a series of 2-D colour images or frames.
Frames are represented by a luminance signal (luma Y) and two chrominance signals
(chroma Cr and Cb). The human psycho-visual perception system exhibits much greater
sensitivity to high frequency variations in the brightness or luminance of an image that in the
chrominance components [22]. The MPEG video compression standards]18,20,21] exploit
this aspect of the psycho-visual system by reducing the resolution of the chrominance
components of a video signal. Specificaly, in H.264, the two chrominance signals are
represented with half the vertical and horizontal resolution of the luminance signal (4:2:0
sub-sampling). This generates a 2:1 compression ratio with minimal visua quality
degradation [23].



2.4 Motion Compensation

The most important feature of video compression systems is the ability to exploit the
gpatial and temporal redundancies inherent in all video sequences. Largely, this is
accomplished through predictive coding. In this scheme, a predicted value is estimated for
each pixel of avideo frame, and the difference between the predicted and actual values of

each pixel isthe only pixel information required to be encoded (Figure 2-2):
Plx y] = Plx y]+ RIx.y], (1)

where P is the original pixel value, P is the predicted value of the pixel, and R is the
prediction error or residual, a position (x,y). If the predicted pixel value is derived from
other pixels from the same video frame, the effect of this technique is to reduce the spatia
redundancy of the video. If the prediction is derived from other video frames of the

sequence, the temporal redundancy is reduced.

R[le] - r \ P[le] -
A
Piy] Pixel
Prediction

Figure 2-2 - Predictive Coding

The MPEG/ITU video compression standards referred to in section 2.1 allow many
prediction models to be used to estimate pixel values. As aresult, the encoded stream must
also contain a set of prediction parameters that define the prediction model, and therefore,
estimate the pixel using previously decoded pixels. When considering the data rate cost of
encoding, it is important to consider both the amount of data required for the pixel
information and for the prediction parameters. The MPEG/ITU video compression
standardg[17-21] divide each frame into blocks of pixels and define the estimates of the
entire block through one set of prediction parameters. These blocks are called macroblocks
and for H.264 [21] they have a size corresponding to 16x16 luma pixels and two fields of 8x8
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chroma pixels. For each macroblock, there are two types of prediction models used by the
video compression standards: Intraframe estimation, and Interframe estimation. These are
discussed in the next sections.

2.4.1 Intraframe prediction

In each frame of a video sequence there is a high spatial correlation. Thisimpliesthat it is
possible to calculate reasonable estimates of the values of a block of pixels based on a set of
neighbouring pixels. H.264 defines intra prediction modes that generate a 16x16 predictive
block of pixels based on the neighbouring pixels above and to the left of the macroblock.
Also, H.264 alows for intra prediction on a 4x4 pixel block level using a similar set
neighbouring pixels. There are four directional intra prediction modes for 16x16 intra
prediction and nine directional 4x4 intra prediction modes. These are described in full detail
in[21].

The estimation strategies used for intraframe prediction are typically an exhaustive
evaluation of the available prediction modes for each block [15]. The resource requirements
for this are far less than for interframe estimation. As a result, this thesis focuses on

interframe estimation.

2.4.2 Interframe prediction

The most significant video compression tool is interframe prediction. Also called motion
compensation, this form of prediction is used to remove temporal redundancies in video data.
Motion compensation attempts to model the motion of objects within a video sequence over
time. This corresponds to a mapping of pixels in one frame to pixelsin a previously coded

frame.



Referring to Eq. (1), the predicted value of a pixel in the current frame F}([x y] is estimated
from the previously coded frame P, ,, using prediction model PRED(), and a set of motion

parameters:

F3k[x, y] = PRED({ motion__ parameters}, Pk_l) 2

The aggregation of this mapping will be a predictive frame, F}( asindicated in (1). The

residual frame, Ry, is produced by the subtraction of the predictive frame from the original
frame:

R=R-FR ®)

The residual frame will contain much less information than the original frame therefore
reducing the data rate required for the pixel information. When the data rate required to
encode the motion parameters that define the motion-based prediction and the residua frame
is less than the data rate that would required to encode the original frame directly, motion
compensation provides compression gain.

Motion in a video sequence can be of several different types — an object can undergo any
combination of rotation, zoom and trandational motion in any direction. Many research
papers in the literature have proposed motion compensation models to precisely describe the
motion of groups of pixels. In [24] and [25], for example, arbitrarily shaped object models
are defined to describe the shape of moving objects in video. In [26], a method for
describing macroblock block motion as a generalised spatial transformation is presented.
Many of these motion models, and others that exist like them, pose too great a challenge in
estimation of the best parameters to be practical for most video encoding applications. Asa
result, ssimpler motion models are more appropriate for most video compression applications.

The motion compensation used in most MPEG/ITU video compression standardsis limited
to trandational motion of blockg[17-21]. For each block of pixels, asimilar block of pixelsis
identified in a previously encoded frame, and is used for prediction. The difference between
the position of the predictive block of pixels in the previous frame and the position of the
original pixel block can be represented by a motion vector with horizontal and vertical

10



components. Xyv and Yyy. For translational motion model, the prediction for each pixel
within the block is formed with the following equation:

Isk[xo’Yo] = I:f<-1[xo + X1 Yo +YMV] (4

where (Xo,Yo) isthe position of the original pixel. The residual between the original block
and the predictive block is encoded, as well as the motion vector that defines the difference
between the positions of blocks in their respective respective frames. Figure 2-3 illustrates
this motion compensation.

Motion Vector

Frame N o o e

Frame N+1

Figure 2-3 - Block M otion Compensation

Motion vectors used for motion compensation show a high degree of correlation, with
motion vectors of neighbouring blocks [23]. For thisreason, it is reasonable to use predictive
coding for the motion vectors as well as the pixel information. In MPEG-2, a motion vector
was predicted from the motion vector of the macroblock immediately to the left — the
differential motion vector between two successive motion vectors was encoded. In H.264,
additional neighbouring blocks are used for prediction. Referring to Figure 2-4, the predicted

11



motion vector for block of pixels X is calculated from the vectors that have been applied to
blocks A,B,C and D.

Early MPEG compression standards [18,20] used a fixed block-size for motion
compensation. It has been shown that compression gains can be achieved with adaptive
block size motion compensation [27]. Allowing variable block sizes allows better prediction
in areas where image detaill does not align with macroblock boundaries. H.264 supports
seven block sizes for motion compensation: 4x4, 4x8, 8x4, 8x8, 8x16, 16x8 and 16x16. The
resulting possible macroblock configurations are shown in Figure 2-5.

D A B

C X

Figure 2-4 - Neighbouring blocks (A-D) used for motion vector prediction of X

16x16 16x8 8x16 8x8

8x4 4x8 4x4

Figure 2-5—Macroblock Partitioning for Motion Compensation in H.264
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2.4.3 Video Sequence Structure

In the MPEG/ITU video compression standards[17-21], video frames are typically encoded
as a series of groups of pictures (or GOPs). Each frame within a GOP is encoded as one of
three types, according to the type of prediction used in encoding. Figure 2-6 shows a typical
arrangement of video frames within a GOP. The frames are shown in the order that they
would be displayed. The order that the frames are encoded in is determined by the inter
estimation dependencies.

Intra Frames

Thefirst frame of a GOP is an Intraframe (or I-frame). I-frames are encoded using only intra
methods pixel prediction. Since all predictive pixels are from the same frame, they are coded
independently of all other frames.

=etee | B P B P B P

Display Index 0 1 2 3 4 5 6

Figure 2-6 - Typical frame ordering of a group of pictures
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Predictive Frames

Predictive frames (or P-frames) use interframe prediction methods as well as intraframe
methods. For P-frame motion compensation, only forward prediction is supported — frames
used for prediction must temporally precede the encoded frame. 1n H.264, multiple reference
frame prediction is permitted, i.e. P-frames pixel blocks may be predicted from any
preceding I-frame or P-frame. This feature is useful for encoding transitionally covered
background and periodic non-translational motion [2].

Bi-Predictive Frames

Bi-predictive frames (or B-frames) use an expanded set of inter-prediction methods
compared to P-frames. Specifically, B-frames support forward and backward prediction for
motion compensation — reference frames may occur before or after the encoded frame in the
display order of the video sequence. In addition, H.264 B-frames support bi-predictive block
compensation[21]. In this method, the predictive blocks may be calculated as a combination
of blocks that occur in different frames. In early video compression standards, B-frames
were predicted from previously encoded I-frames or P-frames as shown in Figure 2-6. The
H.264 standard allows motion compensating prediction from any previously encoded frame
in the video sequence, including prior B-frames.

2.5 Transform Coding

Block based transform coding is ubiquitous in the area of image and video coding. The
purpose of transform coding is to express pixel information in away in which it can be more
efficiently encoded. Thisis done by selecting a transform that will decorrelate the elements
of the block and compress as much of the energy of the block into as few coefficients as
possible. The optimum transform for spatial decorrelation is the Karhunen-Loeve transform
(KLT), however, it is unsuitable for practical encoder implementations, because the basis
functions of the transform are image dependent [3]. The Discrete Cosine Transform (DCT)
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is the most commonly used transform for video coding because its performance is close to
the KLT, and there are efficient hardware and software implementations. In the H.264
standard, a 4x4 integer “pseudo-DCT” transform [2] is used for transform coding of the
prediction residuals.

The main disadvantage of the block-based transform coding approach is that it can result in
perceptually significant artefacts at block boundaries [28]. To correct for this phenomenon in
H.264 a deblocking filter has been defined for the frame reconstruction and decoding paths.

2.6 Quantisation

To this stage, none of the compression tools discussed so far have been inherently lossy.
Information loss is introduced to the encoded video through quantisation. Quantisation is the
process through which data values are expressed with a lower degree of precision. In this
case, the pixel block coefficient values are to be quantised. The extent of information loss is
determined by the quantisation step-size — alarger step-size implies fewer unique values that
a coefficient can take, and therefore greater information |oss.

In H.264, the transform representation of a pixel block will contain one DC and fifteen AC
coefficients. Very little of the energy of the block will be contained in the high frequency
coefficients- these coefficients will normally be near zero. As aresult, these coefficients can
be quantised heavily with little impact on the quality of the encoded video sequences. In
practice, many AC coefficients are quantised to zero, and therefore this frequency
information is discarded.

In early video compression standards, the quantisation step-size was adaptive over
frequency components. The purpose of this adaptivity was to exploit a reduced sensitivity of
the human visual systems of higher frequency components — information loss at high
frequencies is less perceptually significant than at lower frequencies. However, due to the
smaller transform size and better pixel prediction, a flat quantisation matrix is used for
H.264.
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2.7 Entropy Coding

The final video compression component used in the hybrid encoding scheme is entropy
coding [28]. The purpose of this compression tool is to exploit the statistical redundancies
that exist in the sequence of syntax elements (i.e. coefficients, motion vectors, etc) to be
encoded to the bitstream. An entropy encoder provides a mapping between input symbols
(i.e. syntax elements) and codewords to be written to the coded bitstream. The fundamental
idea is to use shorter codewords for more frequent symbols and longer codewords for less
frequent symbols. The entropy decoder is able to perform the inverse mapping, and recreate
the original sequence of symbols. As no information is lost through this process, it is often
called lossless encoding.

0—1 5 6
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Figure 2-7 - Zig-Zag Scan Order for Coefficients

The efficiency of the entropy coding is closely related to the transform and quantisation
steps. As described above, many of the quantised AC coefficients of the residual pixel data
will be zero. Each video compression standard defines a scan pattern that defines the order
that the coefficients are encoded into the bitstream. The scan patterns are roughly designed
to increase monotonically in frequency, so there will be a series of consecutive zeroes. Such
symbol sequences can be very efficiently coded by an entropy coder. Figure 2-7 shows the
zig-zag coefficient scan pattern used in H.264 [21]. The goal of motion compensation is then
to reduce the magnitude of the coefficients that result from the prediction residual,

particularly in the high frequency components, since these are more expensive to encode

The H.264 standard supports two versions of entropy coding: Universal Variable Length
Coding (UVLC) and Context-Based Adaptive Binary Arithmetic Coding (CABAC). UVLC
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[29] uses a fixed codebook that is based on prior probability models for each symboal.
CABAC [30] adapts the probability model for each symbol according to the context of the
symbol and the frequency of occurrence in the previously encoded bitstream. CABAC
entropy coding requires a more complex implementation than UVLC, but it has been shown

to provide a coding efficiency gain of 9-27% [30].
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Chapter 3
Motion Estimation

Video compression standards define a syntax that allows a motion model based on
translational block motion to be used for pixel prediction. Effective use of the motion
compensation tools provided for by the standards definitions requires that the encoding
process identify appropriate prediction parameters. Specifically this requires that the
encoding process identify the best, or at least good, prediction modes and motion vectors for
each block in each inter-predicted frame. The process of determining the best motion
parameter is called motion estimation. The accuracy of motion estimation has a significant
impact on the effectiveness of motion compensation block prediction, and ultimately the
compression efficiency of video encoder. In addition, as the motion estimation process is not
defined by the syntax of a video standard, its effectiveness is the main distinguishing feature
in assessing the quality of a standards-based video encoder.

The goal of motion estimation is to identify the motion parameters that will result in an
encoded stream with the lowest possible data rate and the best visua quality. Severa
approaches to motion estimation are explored in the literature, including image feature-based
estimation techniques (e.g. [14]), and optimisation based on mean field theory (e.g. [31]). By
far the most common approach to motion estimation for video compression is block-
matching. This chapter will describe first block-matching motion estimation and discuss the
two features of a block-matching algorithm (BMA) — the matching cost function and the
search strategy. The well-known full search strategy as well as some fast BMAs will be
discussed in terms of coding performance and implementation considerations.

3.1 Block-matching

The purpose of block-matching is to match the current block of pixels with asimilar block in
areference frame. Each block of pixelsin a reference frame is identified by the vector that
definesits position in the frame. For each candidate reference block there is a corresponding
candidate motion vector (W/’ ). Figure 3-1 shows the setup for a general block-matching
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algorithm. A cost function is defined that eval uates the match between the original block and
the candidate block: J(CMV). The block-matching algorithm then tries to find the motion

vector that gives the minimum cost value:

MV = (dx, dy) =argminy, 4 J (dx, dy) , (5)

where dx and dy are the horizontal and vertical components of the motion vector.

The brute force approach to block-matching would be to perform the cost calculation for
every possible block position in every possible reference frame. This approach is far too
computationally expensive, and is unnecessary to achieve good compression. Block-
matching algorithms instead perform the cost calculation for a subset of all possible motion
candidates. The defining characteristics of a block-matching algorithm are the selection
strategy for determining which positions to test, and the cost function that measures the
quality of a match.

Xo Xo
>
CMV = (dx, dy)
Candidate
— Position
YO ) :| YO
Original MB Original Position
Original Frame Reference Frame

Figure 3-1 - Block-matching
3.1.1 Matching cost functions

Block-matching cost functions measure the difference between the candidate block and the
origina block. This cost is to be minimised so that the prediction residua has less energy

19



and therefore the cost of encoding pixel coefficientsis minimised. A good overview of block
matching distortion measures is provided in [32]. By far the most commonly used distortion
measure is the Sum of Absolute Differences (SAD). For an NxM block of pixels, the SAD
cost function for the candidate block is defined as:

Jso(@xdy) =8 @ [0, §)- Ry i) (6)

where O is the original block, and Ruaxay) IS the candidate block in the reference frame
corresponding to motion vector (dx,dy). This distortion measure is sometimes expressed as
Mean Absolute Difference (MAD), which is an equivaent measure where the SAD is
normalized by the number of pixelsin the block.

An aternative to SAD isthe Mean Squared Error (M SE):

2
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Jye (0x,dy) =

MSE, or Euclidean distance, provides better coding performance than SAD, becauseitisa
closer measure to perceptual quality of the human visual systems. However, due to the need
for one multiplication per pixel, it has asignificantly higher computationally complexity. As
aresult, SAD is more commonly used.

Many distortion measures have been devel oped to reduce the computational complexity of
the SAD distortion measure. One approach to reduce complexity is the truncation of pixel
values to reduce the bit depth of the SAD measure [9,16,33,34]. SAD truncation does
provide computational efficiencies, especially for VLSl implementation, however, it does
result in non-trivial coding loss. Other approaches to complexity reduction include pixel sub-
sampling of the origina and reference blocks [35,36], and integral projection matching

8,37].

Block-matching cost functions have been proposed that provide compression
improvements at the expense of additional computational complexity. For example, [38]
presents the use of the Walsh-Hadamard transform (WHT) in the block-matching cost
calculation. The WHT is afrequency transform domain similar to the integer transform used
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in H.264, and has been used in transform coding image compression applications [39]. The
bases of the WHT use only 1/-1 values, so application of this transform requires only
addition and subtraction operations. When the WHT is applied to a block-matching residual,
the result approximates the frequency coefficients that would be produced by the integer
DCT. The quantisation operation can be approximated by removing near-zero coefficients.
Measuring the magnitude of the resultant coefficients provides an accurate indication of the
data rate cost associated each candidate position. This block-matching is used by the
reference encoding software for H.264 provided by Joint Video Team (JVT), and yields
substantial compression gains.

The distortion measures above measure the prediction error of block-based motion
compensation. A second factor to consider in block-matching cost evaluation is the amount
of data required to encode the prediction parameters — i.e. motion vectors. Rate-Distortion
optimal methods have been proposed to incorporate estimates of the bit-rate and distortion
[40]. This approach is especially beneficia at low bit-rates and for variable block-size
encoders, where the bit allocation for the prediction parameters becomes a significant part of
the overadl bit-rate.

3.1.2 Full Search Block-matching

It is not feasible to evaluate the cost function for every possible set of prediction parameters
for any block of pixels. A subset of positions must chosen for this evaluation. The most
common approach in VLS| implementations is the well known full search block-matching
algorithm [41], where a rectangular window is defined in the reference frame, and block-
matching is performed at every position within that window (Figure 3-2). This algorithm is
used frequently because it is conceptually intuitive, and provides accurate motion estimation
results. The search window is typically centred on the co-located position in the reference
frame of the origina block, and is defined by its dimensions. In most applications, search

ranges from 8 to 64 pixelsin each dimension are used.
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This algorithm is used almost exclusively in VLSI applications because it provides many
implemental benefits [42,43]. Specifically, the regularity of operation and memory accesses
inherent in this agorithm trandate into architectural efficiencies. In addition, this approach
iswell suited to variable block size motion estimation. Since the data flow for each block of
al block sizes is the same, it is possible to compute the distortion for all block sizes in
parallel with minimal additional implementation cost [44,45].

Search Window

Current Frame Reference Frame

Figure 3-2 - Full search block-matching sear ch window

Despite these implementation efficiencies for VLS, full search block-matching is
computationally very expensive. Each pixel SAD requires three arithmetic operations:
subtraction, absolute value and addition. The total number of arithmetic operations per
second is then:
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numOps = 3xF, Xk, W, N, xf (8)

where Fx and Fy are the dimensions of each video frame, Wy and W are the dimensions of
the full search window, and f is the frame rate. For afull D1 720x480 video sequence at 30
fps, using a search window with 32x32 search positions, the total number of arithmetic
operations per second is:

numOps = 3.19” 10%°

In typical video encoders, the motion estimation is responsible for 60-80% of the
computational load. When considering the increasingly popular high-definition standards
(HDTV), this proportion is likely to be more. For this reason much work has been done
towards developing fast block-matching motion estimation techniques.

3.2 Fast Block-Matching Algorithms

Fast block-matching algorithms follow one of two distinct approaches. The first type are
guaranteed to produce the same result as the exhaustive full search algorithms but are
designed to find the optimal position with fewer calculations. The methods proposed in
[13,15] follow such an approach. In both cases, a “best-so-far” threshold is developed in
each case and the distortion calculation for each search position is stopped once the threshold
has been reached. This type of algorithm could be useful for statistical power savings within
a VLS implementation, but it does not help the “worst-case” requirements for
implementation.

The second approach is to reduce the number of search positions in such a way that, on
average, the compression performance is not severely impacted. These techniques require
some level of adaptive control over the search path. Methods have been proposed that alter
the parameters of the search window on a block adaptive basis, for example, the method in
[7] proposes that the size of the search window be altered for each block. The VT H.264
reference encoder motion estimation [46]provides block adaptive control over the placement
of the search window in the reference window to exploit the spatial correlation of motion
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vectors. In this algorithm, the search window is centred on the position corresponding to the
predicted motion vector for the block (recall from section 2.4.2. that the motion vector
predictor is calculated from neighbouring blocks). Due to the high spatial correlation of
motion vectors, using this approach, a smaller search window is needed to achieve equivaent

encoding performance to the non-adaptive full search algorithm.

For a VLSl implementation, this algorithm has some disadvantages. The efficiencies of
implementation described in [42] are dependent on the consistent overlapping of the search
window of two successive macroblocks. This was useful for management of the search
window buffer, reducing the memory bandwidth required for loading reference pixel data
For block-adaptive search window the search window buffer must be able to be reloaded for
each block — significantly increasing the memory bandwidth requirement of the encoder.
These properties will be discussed further in section 4.2.

Many fast motion search strategies have been proposed that reduce the number of search
positions. These motion estimation methods require more low-level adaptive search control,
adapting the search path at each search position. Such block-matching algorithms include the
Logarithmic Search [10], the Three Step Search [47], the Four Step Search [48], the
Diamond Search [49], as well as others [11,12,50]. These block-matching algorithms follow
the same approach to block-matching that is characterised by the following steps:

1. Evauate the block-matching cost function at a few positions (typicaly four)

surrounding the centre of the search window.

2. Compare the resultant costs and re-centre the search in the direction of the best
position (of the few).

3. Steps1and 2 are repeated either a fixed number of iterations, or until the algorithm
converges on alocal minimum.

These algorithms assume a unimodal cost surface, and therefore that the local minimum is
actually the global minimum. Since this unimodal assumption is sometimes not valid, these
algorithms are susceptible to local minima, and as a result, do not achieve the same rate-
distortion performance as the full search. These algorithms drastically reduce the number of
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search position over the full search strategy. For software implementations, this resultsin a
substantial reduction in the computational load and so the implemental benefit is worth the
loss in compression efficiency for many applications. Kuhn [32] compares the
computational complexity and coding efficiency of the full search algorithms with the three-
step search. The three-step search resulted in an average bit-rate increase of 3.9%, while
reducing overall computational complexity by approximately 12 times. However, in
sequences with complex motion, the three-step search showed a coding efficiency
degradation of up to 26%.

The direct relationship between the number of search positions and the cost of
implementation that exists in a software implementation is not present in a VLS
implementation. Due to the dependencies in execution from one stage of the motion search
to the next, and between macroblocks [12], these algorithms do not lend themselves to
parallel architectures. This problem is exacerbated with variable block-size motion
compensation. Since the search paths of each block of al sizes do not coincide, there is no
opportunity for parallel accumulation of the costs of different sized blocks. While efficient
architectures have been proposed for fast motion search algorithms, such as [41,51], none
address variable block-size estimation.

3.3 Summary

The most computationally intensive element of a video encoder is the motion estimation
module, requiring 60%-80% of the computational resources of typical implementations. The
most common motion estimation algorithm is full search block-matching. This algorithm is
exhaustive and is guaranteed to be optimal within a rectangular search window, but has a
high computational load. Several fast block-matching strategies have been proposed, which
are based on adaptive search paths. These methods do reduce the required computational
load, particularly for software implementations. However, due to its regular structure, simple
control overhead, and improved compression efficiency, full search block-matching iswidely
used for VLSI encoder implementations.
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In the next chapter, a block-matching method is proposed that offers all of the
implementation benefits of the full search algorithm, while yielding comparable coding
performance with far fewer search positions.
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Chapter 4

Constant Search Offset Motion Estimation

In the previous chapter, the motion estimation problem was explained. The basic full
search block-matching agorithm was discussed, as well as severa fast block-matching
algorithms. It was shown that while the fast block-matching algorithms do require fewer
search positions to achieve reasonable coding performance, they are generaly ill suited to
VLSl implementation. Moreover, the full search block-matching algorithm is
computationally intensive, but it does lend itself well to efficient VLS| implementation. In
the next section, the full search block-matching algorithm will be formulated in detail. In
section 4.2, the suitability of the full search block-matching algorithm will be explained in
relation to three significant implemental considerations to the design of VLS| systems. For
comparison, the suitability of the block-adaptive full search algorithm will be discussed, and
shown to be far more expensive than the traditional full search agorithm. In section 4.3, the
motion characteristics of video will be examined. Sections 4.4 through 4.6 will present a
proposed motion estimation algorithm that provides many of the implemental advantages of
the traditional full search, while enabling a significant reduction in the implemental expense
required for good coding performance. Finaly, experimenta results will be presented in
section 4.7 and 4.8.

4.1 Full Search Block-Matching Motion Estimation

As described in section 3.1.2, the full search block-matching algorithm entails the matching
of the original block of pixelsto blocks of pixels at every possible location with a rectangular
areawithin areference frame. The rectangular area of the reference frame can be defined by
the location of the top-left and bottom-right pixel locations:

(XTL'YTL)z(XC'YC)_ (SX'SY) (9)

(XBR’YBR):(XC’YC)+(SX’SY)+(NX_:LNY_l) (10)
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where (X1 ,Y7) and (Xgr,Ygr) are the positions of the top-left and bottom-right pixels of the
reference area, S and Sy are the search ranges in the horizontal and vertical direction
respectively, Nx and Ny are the horizontal and vertical dimensions of the original block of
pixels and (Xc,Yc) isthe centre position of the motion search.

The number of pixelsin the rectangular reference areais:
Area(S,, S, Ny, Ny ) = (258, + N, ) {255, + Ny) (12)

For the traditional full search, the centre position is co-located to the position of the
original block of pixelsinthe origina frame. That is,

(xc ’Yc) = (Xo ’Yo)
where (Xo,Yo) isthe position of the top-left pixel of the original block of pixels.

For variable block-size motion estimation, the traditional full search algorithm has the
property that the search area for each sub-block of a macroblock is contained within the
search area of the 16x16 block. In the block-adaptive full search algorithm, the search area
of each sub-block of the origina macroblock is centred on a different position (Xc ,Yc).
Therefore each sub-block requires an independent search area.

4.2 VLSI Implemental Considerations

The three most significant properties to compare VLS| architectures or algorithms are time,
power consumption and required area [32,43]. In this case, time refers to the number of
clock cycles required to perform the motion estimation for each macroblock. The time
required for motion estimation of each macroblock is affected by the scope of the motion
search (i.e. the number of search positions) and amount of parallelisation that is possible in
the VLSI design due to the regularity of the execution flow [32]. Power consumption is
difficult to estimate prior to design of the VLS| architecture, but it has been shown that 1/0O
bandwidth is an important criterion to the power consumption of a VLS| implementation.
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The manufacturing cost of a chip is directly determined by its area [43]. While chip areais
difficult to determine precisely before a chip is fully designed [32], it is possible to consider
some of the factors. Specifically, the reference memory area typicaly represents a
significant proportion of the total area of a motion estimation module, and can be accurately
estimated according to the algorithm, prior to a detailed design of the VLSI architecture[32].
In addition, chip area is also impacted by the I/O bandwidth through the complexity of the
memory control system, and the area of the data buses[32].

A specific video compression application will dictate the appropriate trade-off between the
execution time, memory size and /O bandwidth. It is important to consider these
implemental properties when selecting a motion estimation algorithm for implementation
within a VLSI architecture. In the rest of this section, each of these properties will be
discussed for the both the traditional full search motion estimation algorithm and the block-
adaptive full search motion estimation algorithm.

4.2.1 Number of Search Positions

To estimate the time required to perform block matching, we consider the total number of
consecutive search positions. For the traditional full search algorithm number of search

positionsis given by:

NumSearchPositions = (25S, +1){2>S, +1) (12)

Since the search paths of the sub-blocksisidentical to the search path of the 16x16 block, the
SADs for al block-types can be calculated simultaneously. As a result, these sub-blocks do
not contribute to the time requirements of the motion estimation.

In the case of the block-adaptive full-search algorithm, the search paths or the sub-blocks
are generally not identical to that of the 16x16 block, so these block must be considered
separately. Furthermore, since the search path for each block is dependent on the estimation
results of the other blocks, the motion estimation must the done consecutively. The time
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required for each macroblock is related to the total number of search position for all sub-
blocks, of which there are 41 [21]:

NumSearchPositions = 41423, +1)X253, +1)

4.2.2 Local Memory Requirement

The local memory requirement must include storage for the original macroblock, for which
the motion estimation is being performed, and storage for the reference data. The storage for
the original macroblock is constant regardless of the motion estimation algorithms — 256
pixels are required. The actual reference memory requirement is dependent on the specific
VLS| design of a motion estimation module. However, the minimum requirement is the
memory needed for the estimation of the largest block of pixels, which is 16x16. The size of
the reference area is given by (11). Since Nx and Ny, are both equal to 16, the reference
memory sizeis only influenced by the search range.

4.2.31/0 Bandwidth

The 1/0O bandwidth of a motion estimation module is determined mainly by the pixel access
rate for loading the search window. The number of pixels required for full search block-
matching for a block of pixelsis given by (11). In the case where the centre position of the
search window (Xc,Yc) is block-adaptive, this many pixels are required to be loaded for each
block in the original image. In H.264, each macroblock has 41 blocks, as described in 2.4.2.
The total memory bandwidth requirement for motion estimation is:

MemBandwicth/ MB = 16 xArea(Sy , Sy .4,4) + 8xArea(Sy , S, 84) + 8xArealSy , S, 4.8)
+4 XArea(SX Sy ,8,8) +2 XArea(SX Sy ,16,8) +2 XArea(SX Sy ,8,16) (13)
+ Area(Sy .S, 16.16)
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For example, a search with (S, Sy) = (24,12) has a bandwidth requirement of :

MemBandwidth/ MB = 67456 pixel/MB

For the traditional full search, where the search window is centred on the collocated
macroblock, the required memory bandwidth is reduced for two reasons. Firstly, the search
area for each sub-block within a macroblock is contained within the search area of the 16x16
block. Secondly, there is a predictable overlap of the search windows of subsequent
macroblocks. Exploiting this means that only a stripe of new reference pixels must be loaded
for each macroblock, for which the reference window of the adjacent macroblock is loaded
into local memory. Assuming raster order macroblock processing, this benefit is applicable
to all macroblocks of a macroblock row except the left most. For a search with search range
(S Sy), the number of new pixels in each reference window is 16 ><(2>6Y +16). The total

memory bandwidth requirement for each macroblock row of aframe MB¢, columnswideis:

MemBandwidth/row = Area(S, , S, 16,16) + (MB, - 1)X6X2>S, +16)  (14)

A standard definition frame is 45 macroblocks wide [52]. The average bandwidth with a
search where (S, Sy) = (24,12) is.

MemBandwidth/ MB = [Area(Sx Sy '16'16) " '(\AMBB"O' - 1) 16 ><2 S+ 16)] (15)
col

MemBandwidth/ MB = 682.7 pixel/MB

The traditional full search agorithm obviousy has a significantly lower bandwidth
requirement as compared to the block-adaptive full search and is therefore better suited to
VLS| implementation.
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Figure 4-1 - Full Search Reference Window Overlap

4.2.4 Regularity of Execution flow

The efficiency of VLSl implementations is heavily reliant on concurrency of operations,
which is brought about through highly pipelined and parallelised architectures [42].
Pipelined and parallel architecture are suited to algorithms that minimise the interdependence
of computations.  The traditional full search block-matching agorithm has no
interdependence between steps in the motion estimation task. Specifically, there is neither
feedback between the motion estimation of successive macroblocks, nor feedback within the
block-matching of each macroblock. In [53], it was shown that the regularity of the
traditional full search algorithm allowed it to be mapped to an efficient array architecture. In
contrast, when the block-adaptive full search agorithm is used, the centre of each search
window can be chosen according to the motion estimation results of neighbouring
blockg[46]. This implies that the estimation of one block must be complete before the
motion estimation of the next block can begin. Thisin turn prevents an efficient parallel or
pipelined implementation, increasing the number of cycles required for the motion estimation
of each macroblock.
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4.3 Motion Characteristics of Video

The traditional full search block-matching algorithm involves a single rectangular search
window centred on the collocated macroblock position of the original macroblock. However,
all of the implementation advantages discussed in this section would be equally true of afull
search block-matching agorithm, where the search windows are not centred on the
collocated position, but at a constant offset from that position for all macroblocks in the
frame. The next section provides an investigation into the characteristics of the motion
parameters for typical video sequences. From this investigation, a modified block-matching
algorithm is proposed.

Motion Vector Histograrn for Football Sequence
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Figure4-2 - Histogram of Motion Vectorsfor Full Football Sequence
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Many of the fast search algorithms are based on the centre-biased nature of motion vectors.
For example, in [50], the authors observe that for many video sequences, including those
with high motion, the vast majority of motion vectors selected for motion compensation are
near zero. In the standard football sequence, for example, they observed that 80% of the
motion vectors used for motion compensation were enclosed in a 5x5 area centred on the
zero vectors. Figure 4-2 shows a histogram of the motion vectors for ‘football’ using the
VT reference encoder. It is clear that over the whole sequences, there is a heavy bias
towards the zero motion vector. This lends credibility to centre biased motion estimation

approaches, including the traditional full search.

Figure 4-3 - Figure 4-8 show a series of motion vector histograms for individual frames of
the ‘football’ sequence. In these, it is seen that the centre-bias is a motion characteristic that
istrue, on average, over the whole sequence, is not necessarily true for each frame. Instead,
it is observed that the motion vectors do vary widely over the course of the sequence. There
does appear, however, to be a clustering of motion vectors within each frame. In frames 55
to 58 the motion vectors are closely clustered around the vector (22,0) - this corresponds to
the pan at that instant of the sequence. If atraditional full search block-matching algorithm
were used for motion estimation, a search window with a horizontal search range of at least
+/- 24 would be required to identify these motion vectors. However, if afull search block-
matching algorithm were used, but centred on the dominant motion cluster, it would be
possible to perform equally effective motion estimation with a much smaller search range
than with the larger traditional full search. The challenge is then to identify the dominant
motion characteristic of the frame and using this information to perform motion estimation.

Nam et. al. [54] observe that the direction of motion of a block is highly related to the
direction of motion of the collocated block in the previous frame. We can aso observe this
temporal correlation of motion vectors in the series of motion histograms for ‘football’. For
example, in Figure 4-3 - Figure 4-6 it is seen that the location of the motion cluster in each
frame does not change significantly for several frames. When the pan stops from frame 58-
60 (Figure 4-6 - Figure 4-8), the cluster moves slowly back towards the centre.
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Figure 4-8 - Motion Vector Histogram for Football Frame 60
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In other sequences, the dominant motion characteristics of each frame are too complicated
to be well represented by a single cluster of motion vectors. Figure 4-9 to Figure 4-14 show
the motion vector histograms for several frames of ‘bus’. In each of these frames, there are
two distinct clusters of motion vectors. The cluster centred on (0,0) corresponds to the busin
the foreground of the video, while the cluster centred at (25,0) corresponds to the pan of the
scenery in the background of each frame. In order to identify these motion vectors using a
traditional full search with a horizontal search range of at least +/- 48 would be necessary.
However, two smaller windows centred on each cluster could provide equally effective
motion estimation, while requiring significantly fewer search positions.
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Figure4-9 - Motion Vector Histogram for Bus Frame 3
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Figure4-10 - Motion Vector Histogram for Bus Frame 4
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Figure4-11 - Motion Vector Histogram for Bus Frame 5
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Figure4-12 - Motion Vector Histogram for Bus Frame 6
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Figure 4-13 - Motion Vector Histogram for Bus Frame 7

40



botion “ector Histogram for Bus Frame 8

300,

200

ool e

My

s

Figure 4-14 - Motion Vector Histogram for Bus Frame 8

4.4 Proposed Motion Estimation

The fundamental approach of the proposed motion search agorithm is to perform the full
search algorithm on one or more independent search windows in each frame of the video
sequence. The centre of each window is determined by an offset that is constant over each
frame. The constant search offsets are determined from analysis of the motion vectors from
the previous frame. Figure 4-15 shows the motion estimation windows for the two search
window algorithm, for example. In this case, the positions of the search windows are defined
by two global motion vectors (GMV, and GMV3). The algorithm can be generalised to

support any number of search windows, the centre of each being defined by a constant global
motion vector.

In a VLSI implementation, this algorithm would be implemented using independent full
search modules, each using a different offset. Each such module has al the implementation
properties of the full search discussed in section 4.2. The regular data flow that allows
efficient variable block-size motion estimation is present, and from Figure 4-15, it can be
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seen that each window has the predictable overlap between consecutive macroblocks, giving
the memory bandwidth benefit. Since the size of each search window can be much smaller,
the total number of search positions, and therefore the overall memory bandwidth, is reduced.
The implemental benefits will be discussed in greater detail in the next section.

The proposed Constant Search Offset Motion Estimation algorithm (CSOME) is described
by the following steps:

1. Initialise the search modules with the globa motion components (GMV)).
2. For each macroblock in the frame:

a. Perform the full search algorithm for each global offset, where the centre of
each motion search:

(XC'YC) = (Xo + Xowvi Yo +YGM\A) (16)

where (Xo,Yo) is the position original block of pixels and Xemyi and Yomvi are
the horizontal and vertical components of the i global motion vector.

b. Compare the results of al the search modules, and choose the best motion

vectors for each block within the macroblock.
3. Store each best motion vector for use for motion compensation.

4. Analyse the set of chosen motion vectors to determine the global offsets for the
following frame. As motion estimation is performed on a pixel resolution reference
frame, the global offsets are integer resolution.

5. Repeat steps 1-4 for each inter-predicted frame in the video sequence.
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Figure 4-15 - Multiple Constant Offset Full Search Windows

4.4.1 Implemental Properties of Proposed Method

In this section, the proposed method will be examined with respect to the four VLSI
implemental properties discussed in section 4.2.

Number of Search Positions

This consideration is important for estimation of the execution time of the motion estimation
algorithm in the VLS| implementation. The proposed motion estimation algorithm requires
paralel execution of multiple full search estimation modules. The execution time is thus
dictated by the number of search positions tested in each module. The number of search
positionsis given by (12):

NumSearchPositions = (253, +1){2>S, +1) (12)
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The anaysis of the motion vectors between frames to determine the globa motion
components requires far less computation than the combined motion estimation for each
macroblock. Furthermore, this analysis would likely be executed on a CPU rather than
within the VLSl implementation. Accordingly, this computational expense will not be

considered in the discussion of execution time requirements.

L ocal Memory Requirement

The reference pixel memory requirement directly affects the size of the VLSI
implementation, and therefore its cost. The memory requirement for the overall algorithm is
the sum of the memory required for each parallel full search module, given by (12):

ReferenceMemory = Q¥2>S, +16)42xS, +16) (17)

where Sy and S, are the dimensions of each search window in the horizontal and vertica
directions respectively and Q is the number of search windows

/O Bandwidth

The overall reference pixel bandwidth of the proposed motion estimation algorithm is the

sum of the required bandwidth of each full search module:

JArea(s, s, 1616)+(MB, - 1)162>S, +16)]
MB,,

MemBandwidth/ MB = Q (18)

Regularity of Execution Flow

The proposed motion estimation exhibits the same properties as the traditional full search
algorithm in terms of regularity of execution flow. As with the traditional full search
algorithm, there is interdependence of execution path neither within the motion estimation of
each macroblock, nor between the motion estimation of successive macroblocks within the
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same frame. This property facilitates an efficient VLSI implementation, requiring a short

execution time.

In the next section, the analysis methods for determining the global offsets from the motion
vectors are described (step 4). In the following section, the details of the full search
algorithms will be discussed (step 2).

4.5 Motion Vector Analysis

The full search block-matching modules are initialised according to the dominant motion
components of the previous frame. These dominant motion components are identified by
identifying motion vector clustersin the set of motion vectors for aframe. The prototypes of
the clusters are then used as the dominant motion components. For the proposed algorithm,
two methods for identifying the motion vector clusters were used: the well-known k-means
clustering algorithm [55] and a histogram peak detection algorithm.

4.5.1 K-Means Clustering

The first clustering algorithm used is the k-means clustering algorithm [55]. In this iterative
method, each element is classified into one of k clusters. On convergence of the algorithms,
each cluster is represented by a prototype that is the mean of the cluster. These prototypes
are then used as the global motion offsets to initialise the motion search modules. The
algorithm is asfollows:

1. Initialise the k cluster prototypes to the global motion vector from the previous
frame.

2. For each 4x4 (inter-coded) block of the previous frame:

a. Classify its motion vector into one of the k clusters according to the
smallest distance to the cluster prototypes. The distance measure is
discussed below.
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b. Re-caculate the mean of the cluster members to update the cluster
prototype to reflect the cluster prototype.

3. Repeat step 2 until al cluster prototypes converge. Here convergence occurs when
the distance between the prototypes of the same cluster for consecutive iterations
has a value of less than 0.5 pixels. Since the global offsets used for initialising the
motion estimation are integer, further iterations to achieve more precise cluster
prototypes would be redundant.

One defining characteristic of the k-means algorithm is the distance measure used for
classification of each motion vector. A common approach is the Euclidean distance:

diSteuc = \/(XO - X )2 + (yO =Y )2 J (19)

where the cluster prototype is (Xo,Yo) and the candidate motion vector is (x;,yi). The distance
measure defines the shape of the equal probability contours of the clusters. The Euclidean
distance, for example, results in circular clusters. The clusters of motion vectors are not
expected to have a simple circular shape. In general, motion characteristics of video show
more horizontal motion than vertical. This is reflected in the fact that motion search

windows are often rectangular, with a greater horizontal dimension than vertical dimension.

In order to account for this asymmetry, two other distance measures were used to better
capture the nature of the motion vector clusters. Firstly, the Euclidean metric was
generalised to reflect the different dimension of the search windows:

. X 0 y, @
oo PP ®

where Sy and Sy are the dimensions of the search windows in the horizontal and vertica

directions respectively. This distance measure assumes elliptical clusters that are aligned
with the horizontal and vertical axes. The Euclidian distance measure can be generalised
further to allow clusters to be unaligned with the horizontal and vertical axes. In this
application, that would be inappropriate since it would be impractical to implement a search
window that is not aligned with these axes.
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The second distance measure for the clustering algorithm was designed to exactly reflect
the shape of the search windows. Specifically, this distance measure has equal probability
contours that are rectangular and similar to each search window. This measureis:

; — ¢>(O_Xi||y0_yi+
dlstm—\/maxé S, || s | (21)

It was found that the effectiveness of the proposed motion estimation was not greatly
affected by the distance measure, but of the three, the generalised Euclidean distance
measure (20) consistently resulted in a bitrate reduction of about 0.5% as compared to the
other two measures. The improvement over the simple Euclidean distance was expected
since it does not account for the expected shape of the motion vector clusters. The
rectangular distance measure was designed to reflect the shape of the search window. While
the relative dimensions of the search windows do reflect the expected shape of the motion
vector clusters, that the search windows are rectangular is a result of implementation
practicalities rather than the expectation of rectangular motion vector clusters. Asaresult, it
is reasonable that clustering based on the rectangular distance measure was outperformed by
the elliptical distance measure, since the latter better reflects the actual shape of the clusters.

4.5.2 Single Iteration K-Means Clustering

The above k-means algorithm is an iterative approach, which requires processing each
motion vector from the previous frame more than once to determine the final cluster
prototypes. There are two main disadvantages to this approach. Firstly, since it continues
until convergence of the prototypes, the amount of computation required for the clustering is
dependent on the video data. Secondly, it requires memory to store the motion vectors for
the entire frame.

A simplification to this algorithm that is worth evaluating is to only perform one iteration
of clustering. In this case, each motion vector is only referred to once, and can therefore be
discarded once clustered. This means that the motion vectors do not have to be stored in
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memory for the purpose of the global offset estimation. In addition, this implies a more
regular processing module with a constant latency, which is better suited to integration with a
VLSl implementation. It is expected that this clustering will result in less effective motion
estimation, but if the loss in encoding performance is sufficiently small, the implementation
benefit may be of greater importance.

4.5.3 Histogram Peak Detection

While the clustering methods described above do, somewhat, account for the nature of
motion vector clusters, they do not account for the details of the full search motion estimation
algorithm. The results of the above clustering could result in global motion vectors that may
accurately reflect the motion vector clusters, but are sub-optimal in terms of the motion
estimation for the next frame. One such problem may occur in a frame where there is really
asingle predominant cluster of motion vectors - the resultant global motion vectors are likely
to be close to each other. The result of this is that the search windows for the frame will

overlap significantly, thereby performing redundant block-matching calculations.

A second potential inadequacy of the k-means clustering is that while it accounts for the
shape of the search windows, is does not account for their size. This means that motion
vectors that are classified as belonging to a cluster, may not be within the search window
placed on the cluster centre. To provide a possible aternative motion vector analysis
algorithm to k-means clustering, a histogram peak detection agorithm was developed for the
motion vector analysis.

The method is defined by the following steps:

1. A two dimensional histogram of the previous frame motion vectors is generated with a
bin resolution of integer motion vector values. |.e. Hist[X,Y] is the number of

occurrences of motion vectors (Xwy, Ymv) Where

X-05£ X,, £ X +0.25 and

Y- 05£Y,, £Y+0.25
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2. The histogram is smoothed with an (S, +1)" (S, +1) averaging mask, where Sc and Sy

are the dimensions of the search windows;

Y
Histg, [X,Y] = 5 & Hist[X +i,Y + j] (22)
S _ S
==y

3. The bin with the maximum value in smoothed histogram is identified, and the motion
vector corresponding to that histogram bin is taken as a global motion component:
Define (X peac » Yoo ) SUCh that Histg, [X peac » Yeeax | = Max(Histg, [X,Y]). Then the
global motion component is

C;IVI\/I = (XGM\A ’YGMVi ) = (XPEAK ’YPEAK ) (23)

4. All motion vectors that lie within a search window centred on the global motion

component with search ranges S and Sy are removed from the original histogram:
Hist[X,Y] =0 for all (X,Y) such that

Xowi = Sy £ X £ X +S¢ and
YGM\A - SY £Y£YGM\A +SY

5. Steps 2-4 are repeated for each required global motion component.

There are several important features of this method that differentiate it from the k-means
clustering methods discussed in the previous sections. The first conceptual difference is the
way in which the quality of a cluster is measured. K-means clustering is a method that
reduces the sum of the distances of each data point to the prototype of the cluster to which it
belongs. The quality of a cluster is defined, therefore, by the average distance of the points
within the cluster to the cluster prototype. This means that the more narrow the distribution
of the cluster, the better. However, when using the results for placement of a block-matching
search window, what is important is the number of best block-matches that will be found

according to the window placement.
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The purpose of histogram smoothing of step 2 above is to count the number of motion
vectors that are within a certain area surrounding a cluster centre, without regard for the
distribution of the data within that area. The size of the smoothing window must necessarily
be smaler than the size of the search window to alow some tracking of the motion
characteristics of the frame. Using the full search algorithm to search around each global
motion component, all motion vectors found for a frame will be within the search window
area centred on each motion component. If the smoothing window were equal in size to the
search window, then the optimal solution according to the algorithm would be to not alter the
search window placement from frame to frame. This is clearly not reasonable since the
motion characteristics of a video sequence do change over time. The (S, +1)" (S, +1)
smoothing window size was chosen to balance the need to track changes in the motion
characteristics of the video sequence with increasing the number of data points that are used
to determine the global motion components.

The second differentiating feature of this histogram method to the k-means clustering is the
explicit reduction of redundant block-matching calculations. If the global motion
components used to initialise the full search block-matching modules are in close proximity,
then the resulting search windows for each macroblock will overlap. Where there are
overlapping search windows for a macroblock, some candidate motion vectors will be tested
in the course of multiple full search modules, hence redundant block-matching calculations
are performed. In step 4 of the histogram method, the motion vectors within a
neighbourhood, equivalent to the size of a search window, of the identified global motion
component are removed from the histogram. Therefore, al motion vectors that would be
candidate motion vectors in the full search module initialised with one global motion
component are removed from consideration when identifying remaining global motion
components. The result will be reduced overlap between different search windows.
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4.6 Full Search

Once the global motion components have been identified for each frame, the subsequent
frame is encoded using multiple full search motion estimation modules for each block. As
discussed in section 3.1, the full search block-matching algorithm is defined by the size and
placement of the search window and by the block-matching cost function used to evaluated
each candidate position. In the proposed method, the placement of the search windows is
defined by the global motion components. The size of the search window will be determined
with reference to the nature of the video compression application — for example, the larger
the frame resolution of the video sequence, the more likely the search window will be larger.

The block-matching cost function measures the distortion between the original pixel block
and the candidate predicted pixel block. Typically, the sum of absolute differences is used
for this measure. The recommended motion estimation algorithm provided in the reference
encoder uses the SAD measure, but also incorporates a penalty according to the bit-rate cost
of the motion vectors. Thisis based on a rate-distortion optimisation approach to the motion
estimation problem [56].

Sullivan and Wiegand [56] note that the goal of an encoder is to optimise the distortion, D,
of an encoded video sequence, subject to a constraint on the bit-rate, R. That is:

min{ D} ,subjecttoRE£ R_, (24)
where R; is the bit-rate constraint. This optimisation can by solved using the Langrangian
formulation of the minimisation problem given by:

min{J},where J =D +1| >R, (25)
where J is minimised for a particular value of the Langrangian multiplier | . For a given
value of | , the solution to (25) corresponds to an optimal solution to (24) for a particular

value of R.. This optimisation approach can be used for motion estimation by using a block-
matching cost function of the form:

JMOTION = D + l MOTION ><RMOTION ! (26)
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where Juorion IS the cost value associated with a candidate motion vector, D is the distortion
measure between the original pixel block and the reference block, and Ryorion is the bit-rate
associated with encoding the candidate motion vector. Assuming the SAD distortion
measure is used for the block-matching distortion measure, the appropriate value of | was

developed as afunction of the quantisation step-size (Q) [56]:
| vomion = +/0.85Q (27)

Using this block-matching cost results in greater compression efficiency over using only
the SAD distortion measure. As a result, this method has been incorporated into the H.264
reference encoder.

As discussed in section 2.4.2, predictive coding is used for encoding the motion vector
associated with each block. In order to estimate the Ryiotion, the differential motion vector is
calculated for each candidate motion vector during the motion estimation process:

dMV =CMV - predMV, (28)

where dMV is the differential motion vector, CMV is the candidate motion vector, and
predMV is the predicted motion vector. The bit-rate cost of the motion vectors is then
estimated by:

Rvonon = |ng|dMVx| + |ng|d|\/|VY| ) (29)

where dMV, and dMVy are the horizontal and vertical components of the differential motion
vector. Since this motion estimation approach uses the predicted motion vector for each
block, which is derived from the motion vectors of neighbouring blocks, it is necessary to
have made al encoding decisions for one block before performing motion estimation on the
next block. This approach is therefore ill-suited to an efficient VLSl implementation, as
explained in section 3.2.

For the full search motion estimation in the proposed method, the block-matching cost
function will still be in the form of (26). Since the true differential motion vector, cannot be
calculated for each block during estimation, it will be estimated using the global motion
vector corresponding to the search window:
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dMV » CMV - GMV, (30)

where GMV; is the global motion vector corresponding to the search window.

4.7 Experimental Setup

The proposed motion estimation algorithm was designed for use in a block-based transform
video encoder using variable block-size motion compensation. The proposed algorithm was
tested with the emerging H.264 video compression standard[21]. Specifically, the multiple
constant offset motion estimation algorithm was implemented in the VT H.264 reference
encoder [46]'. As this research was completed while the H.264 standard was under
development, an intermediate version of the standard is used — this is defined in [21].
However, the proposed motion estimation process will be equally applicable to the final
version of the standard as to the version used for testing.

4.7.1 Encoding Parameters

Several parameters define the encoding process used in the H.264 encoder. These control
the compression tools that are used for encoding and the encoding decisions that are made to
trade-off quality with compression efficiency.

GOP Structure. For these experiments, an infinite IPPP GOP structure is used for
encoding. This means that the first frame in each sequence is coded as an Intra-frame, and
each successive frame is coded as an inter-predicted frame. Bi-predictive frames are not
used in these experiments, but the proposed method is easily adapted to the bi-directional
motion searches.

Quality. The experiments were done using variable bit-rate (VBR) — constant quality.
Specificaly, the quantisation parameter (QP) is constant throughout each encoded sequence.
To assess the performance of the motion search across the range of quality supported by the
H.264 standard, each sequence was encoded using four QP values (20, 25, 30, 35).

! H.264 reference software available at standards.pictel.com
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Supported Motion Compensation Block-Sizes. All motion compensation block-sizes
supported by the H.264 standard were used for encoding each sequence.

4.7.2 Test Video Sequences

A set of six video sequencesis used for evaluating the performance of the proposed motion
estimation algorithm (Table 4-1). These video sequences are all commonly used for
evaluation of video compression tools and are publicly available through Video Quality
Experts Group (VQEG).

4.7.3 Motion Estimation Algorithms and Parameters

The benchmark motion estimation algorithm used for these experiments is the block adaptive
full search, where the search window for each block is centred according to the motion vector
predictor for that block. As discussed above, thisisinefficient for VLSI implementation, but
provides a suitable reference, against which to compare al other motion estimation
algorithms. A very large search window (+/-128x64) is used for each search to ensure near

optimal motion estimation.

A non-adaptive full search algorithm will also be used. For this agorithm, the placement
of the search window will be centred on the co-located block in the reference frame to the
block whose motion is being estimated. This is done to provide a comparison to a likely
VLSl implementation.

Several implementations of the CSOME were evaluated in the experiments. Specifically,
CSOME using one, two and four search offsets was performed. In addition, each of the three
motion vector clustering algorithms, described in 4.5, was used. Table 4-2 lists the motion
estimation a gorithms used and the total number of positions used for each search. In order to

provide afair comparison between motion estimation algorithms, the dimensions of the



search windows were chosen so that each method would use a similar total number of search

positions.

Name Resolution Number of Frames

Bus 720 x 240 75

Canoa 720 x 288 110

Ferris 720 x 240 60

Football 720 x 240 130

Mobile and Calendar 352 x 240 130

Rugby 720 x 288 110

Table4-1 - Video Sequences Used for Evaluation of Motion Estimation

Number of Search| Search | Total Number of
Name Windows Range Search Position | Search Window Centre

JVT 128 1 +-128x64 33153 Block-adaptive

JVT_16 1 +/-16x8 561 Block-adaptive

COL 16 1 +/-16x8 561 Colocated block
CSOME 1 16 1 +/-16x8 561 Single global offset
CSOME 2 11 2 +-11x5 506 Two global offsets
CSOME 4 8 4 +-8x4 612 Four global offsets

COL 24 1 +-24x12 1205 Colocated block
CSOME 1 24 1 +-24x12 1225 Single global offset
CSOME 2 16 2 +/-16x8 1122 Two global offsets
CSOME 4 11 4 +-11x5 1012 Four global offsets

Table 4-2 - Evaluated M otion Estimation Algorithms

Table 4-3 shows the implemental properties, discussed in section 4.2, of each of the motion
estimation algorithms to be evaluated in the experiments. It is important to note that the
implemental properties of the traditional full search algorithms (COL_16 and COL_24) are
identical to the single search window CSOME agorithms (CSOME_1 16 and
CSOME_1 24). The two search window CSOME algorithms (CSOME 2 11 and
CSOME_2 16) require about 45% of the consecutive number of search positions compared
to CSOME_1 16 and CSOME_1 24, which implies a faster execution. However, the
corresponding memory and 1/0O bandwidth requirements are about 20% and 60% higher
respectively. Similarly, the CSOME_4 8 and CSOME_4 11 further reduce the number of
consecutive search positions, while increasing the memory and 1/0 bandwidth requirements.
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Given a similar total number of search positions, CSOME seems to provide a reasonable
overal trade-off between execution time and memory and 1/O bandwidth requirements.
Accordingly, the evaluated motion estimation algorithms have been grouped according the
total number of search position. Most compression efficiency comparisons will be made
within these groups. The correct trade-off between the implemental properties and coding
efficiency will be determined according to the specific application for which these motion

estimation algorithms are being considered.

Number of Search |Reference Memory| Reference I/O
Name Positions / FS Module Requirement Bandwidth / MB
JVT 128 33153 39168 1443584

JVT_16 561 1536 35072
COL_16 561 1536 534.8
CSOME_1 16 561 1536 534.8
CSOME 2 11 253 1976 857.4
CSOME_4_8 153 3072 1570.1
COL 24 1225 2560 682.7
CSOME_1 24 1225 2560 682.7
CSOME 2 16 561 3072 1069.5
CSOME_4 11 253 3952 1714.8

Table 4-3 - Implemental Properties of Evaluated Motion Estimation Algorithms
4.7.4 Measures of Performance

The performance of a video compression tool is typically evaluated through the use of Rate-
Distortion (R-D) curves. In these curves, the bitrate of the video sequence is plotted against
the compression distortion, typically measured in PSNR of the luminance channel. The
relative performance of two encoders is represented by the distance between the two curves.
In [57], Bjontegaard proposes a method for analysing the R-D curves to provide a single
value that represents the average performance difference of two encoders over a range of QP
values. By estimating the integral of the difference between the R-D plots, a single value
representing the average bit-rate or distortion improvement over the QP range can be

calculated. These values are called the Bjontegaard Delta values. In the analysis of the
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compression performance of the CSOME motion estimation algorithms, both the R-D curves
and the Bjontegard Delta bit-rate values will be considered.

4.8 Experimental Results

Throughout this section, summary results and specific results will be presented as the
discussion warrants. Full tabulated results and R-D curves are provided in Appendix B.

4.8.1 Performance of Collocated Search

Figure 4-16 shows the performance of the collocated search full search agorithms, as
compared to the benchmarks motion estimator. On average, the COL_16 search yields a
compression performance loss equivalent to 20.2% compared to the JVT_128 benchmark
motion estimator. The larger search range of the COL_16 search yields a smear average loss
of 12.0%. Predictably, the greatest loss was observed for the Bus sequence, as it has
consistent high motion from frame to frame. The smallest loss was observed in the Mobile
and Calendar sequence, which has interframe motion that is small in magnitude.

Figure 4-17 shows the R-D curves of the JVT_128 motion estimation encoder and the two
collocated motion estimation encoders for the Canoa sequence. It is observed that the
vertical distance between the VT 128 R-D curve and the COL_16 and COL_24 R-D curves
issmaller at higher bit-rates. Thisis because at higher bit-rates, lower QP values are used for
guantisation. The smaller resulting quantisation step-size means that even with a small
prediction residual, more coefficients are non-zero and must be encoded in the compressed
bitstream. Asaresult, accurate motion estimation has a greater impact on video compression
performance at lower bit-rate, where less prediction residual information is encoded. This
observation was consistent for all tested video sequences.
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Figure 4-17 - R-D Perfomance of Collocated Motion Search
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4.8.2 Motion Vector Clustering Methods

Figure 4-18 shows the relative performance of the three motion vector clustering methods
for the CSOME agorithm for one, two and four search windows. For the single window
implementation, the performance of the single iteration k-means algorithms is identical to
that of the full k-means algorithm, since both reduce to a simple mean of all motion vectors.
For the other cases, there is no significant difference in the performance from the full k-
means clustering to the single iteration k-means. Since the single iteration method clearly
requires less computation, it is the better practical method. The remainder of the discussion
of the experimental results will not distinguish between these two methods.

On average, the k-means approach resulted in marginally better compression performance
(less than 1% on overal) than the histogram peak detection method. The difference in
performance between the clustering methods was most evident for the Mobile and Calendar
sequence. The overall Bjontegaard BR delta between these two methods for this sequence is
2.1%. The Mobile and Calendar sequence has severa objects each moving in a different
direction, but the magnitude of the inter-frame motion for each object is small. The k-means
algorithm may have accurately identified each of the motion components corresponding to an
object (or the pan) and centred a search window accordingly. The histogram peak detection
algorithm prevents significantly overlapping clusters, so could not have centred the search
windows with the accuracy of the k-means clustering. Since all of the correct motion vectors
for each frame are small, they all would be covered by the first the search window. Any
additional search windows would be at best irrelevant, and may result in a few sub-optimal
motion vectors to be chosen. Figure 4-19 shows the R-D curves for the k-means clustering
and the histogram peak detection method, when using the CSOME_2 16 motion estimation

It is again observable that the compression performance impact of the motion estimation is
greater at lower bit-rates. At low bit-rates, the proportion of the bit-rate that is due to coding
the motion vector is greater, so any sub-optimal motion vectors that are chosen in motion
estimation have a greater relative impact on the compression performance.
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Performance of MV clustering methods
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Figure 4-18 - Performance of MV Clustering M ethods
4.8.3 CSOME vs Collocated Search

The experiments are divided into two groups. All motion estimation mechanisms within
each group have approximately equal numbers of search positions, and are therefore fairly
compared. Figure 4-20 shows the relative performance of the motion estimation algorithms
that are comparable in size to a +/-16x8 search window. The performance isindicated by the
Bjontegaard BR Delta value as compared to the JVT_128 motion estimator.

Overall, the VT_16 method is the best motion estimation algorithm, in terms of the R-D
performance. However, this method is ill-suited to VLS| implementation. The CSOME_2
algorithm is 1.1 % less efficient than this algorithm, and is only 4.0% worse than the
benchmark JVT_128 motion estimator. Referring to Table 4-3, the local reference memory
requirement of the VT _16 method is about 25% less than that of the CSOME_2 algorithm.
However, the VT _16 method requires more than twice the number of consecutive search
positions and more than 40 times the reference memory bandwidth per macroblock than the
CSOME_2 algorithm.
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For the Bus sequence, the CSOME_2 algorithm is particularly effective, giving superior R-
D performance to the VT _16 algorithm. In this sequence, there are two motion components:
the near-zero inter-frame motion of the bus, and the fast pan of the background. The
CSOME_2 was able to accurately identify these motion characteristics and place the search
windows accordingly. CSOME_1 was able to provide a significant improvement over
COL_16 with the same implemental properties, but the spread of the motion throughout each
frame was too great to be fully captured by a single search window. The performance of
COL_16 was 70% worse than the benchmark JVT_128 agorithm. The performance of
CSOME_2 was only 7.7% worse than JVT_128, using fewer total search positions than
COL_16. In comparison to CSOME_2, COL_16 requires 23% less local memory and 38%

less 1/0 bandwidth, but more than double the number of consecutive search positions.

Clustering Methods for CSOME_2_16
Mobile and Calendar
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Figure 4-19 - Clustering M ethods for M obile and Calendar
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CSOME_4 was dlightly less effective (~1%) than CSOME_2 for the Bus sequence and
overall. This is because for the sequences used and the search dimensions chosen, two
search windows is adequate to capture most of the dominant characteristics of inter-frame
motion. The exception is Mobile, where CSOME_4 outperformed CSOME_2 by 0.5%.
There are several moving objects in Mobile, and these motion characteristics are accurately
represented by four identified GMVs. However, while there are severa moving objects in
this sequence, the magnitude of the inter-frame motion is small. As a result, all tested
algorithms are able to accurately capture the motion; none having a performance loss of more
than 3.3% compared to VT _128.

Figure 4-21 shows the relative performance of the group of motion estimation agorithms
with the larger search areas. Asfor thefirst group, the best performing VL SI-suitable motion
estimator is CSOME_2 with the k-means clustering algorithm. For the larger search areas,
CSOME_1 givesonly a0.2% loss from CSOME_2. Thisis because the single large search
window is able to capture as many of the optimal motion vectors as the two search windows.
For sequences such as Bus and Canoa, where there are two distinct motion clusters, this
implies that many motion vectors that are never chosen are aso being tested for each block,
which is wasted computation. Overall, the performance of CSOME_2_16 isonly 1.6% better
than the performance of CSOME_2_11, with more that twice the number of search positions.
The CSOME_2 11 with the k-means clustering algorithm appears to be the best motion
estimation algorithm, considering the compression performance and the computational
expense of block-matching.
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Chapter 5

Conclusion

Modern practical video encoders employ block-based motion compensated transform coding
to achieve the necessary compression ratios needed for many applications. This approach
uses several compression tools to exploit the various forms of information redundancy that
exists in typical video sequences. The most significant tool is motion compensation, which
reduces the temporal redundancy of video through a differential coding scheme using
previously coded pixels as predictors for later frames. Estimation of the best motion
parameters for block based motion estimation has been shown to require between 60 - 80%
of the total computation resources in order to achieve adequate compression performance.
Recent standardisation efforts have incorporated variable block-size motion compensation,
which has further complicated the motion estimation process. Since motion estimation is
such a computationally demanding process, for many applications, it is necessary to have a
VLS| implementation achieve real-time video compression.

The efficiency of motion estimation is an important differentiating feature in commercial
implementations of video encoders. As aresult, much research has been undertaken into fast
motion estimation algorithms. Many fast motion estimation algorithms have been proposed
that are able to achieve adequate compression performance with few search block-matching
positions. Many of these algorithms, however, require irregular memory accesses and
execution paths, and so areill-suited for implementation in aVVLS| system.

The traditional full search block-matching algorithm lends itself well to efficient VLSI
implementation, due to the independence of successive execution stages and the regularity of
memory access. Additionally, since the block-matching search path is not data dependent,
estimation for different block sizes is easily performed in paralel, further contributing to
implementation efficiency. However, in order to achieve adequate motion estimation, alarge
search window is required. This large search window results in increased size, power
consumption, and ultimately increased cost of encoder implementation.

Motion in video exhibits spatial correlation. Often, motion vectors for a frame are tightly

clustered around a global motion component for the frame. In cases of more complex
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motion, several distinct clusters of motion vectors are evident. The motion estimation
algorithm proposed in this thesis attempts to take advantage of this clustering of motion
vectors. The proposed algorithm employs multiple full search estimation modules, placing
each search window at a constant offset for each frame. The offsets chosen are based on

estimates of the global motion components for the frame.

The motion characteristics of video are also temporaly well correlated — the motion
characteristics for consecutive frames are similar. This tempora correlation is exploited in
the estimation of the global motion components for a frame. Specifically, the motion vectors
for one frame are clustered into a fixed number of clusters. The prototype motion vector of
each cluster is then used as a constant search offset for the next frame. Two clustering
methods were used in the evaluation of this motion estimation algorithm: K-means
clustering, and a histogram peak detection algorithm.

The constant search offset motion estimation (CSOME) algorithm has similar properties to
the traditional full search agorithm that facilitates more efficient VLSI implementation than
many other motion estimation algorithms. The implemental properties that affect the quality
and cost of a VLSI implementation include execution time, memory size requirements and
I/O bandwidth. It was shown that better coding performance was achieved using CSOME
than the traditiona full search algorithm, with the same time, memory and I/O bandwidth
requirements. On average, using a single search window, a compression gain of more than
5% was achieved using a frame adaptive search offset over centring a full search on the
collocated position. CSOME with a single search window provides more effective motion
estimation with the same implemental quality as the traditional full search block matching.

For different specific video coding applications, different trade-offs between the
implemental properties of the motion estimation are appropriate. For the proposed CSOME,
increasing the number of search windows reduces the execution time of the motion
estimation, while increasing the memory and bandwidth requirements. In terms of coding
performance, using two search offsets resulted in improved results compared to the single
search window CSOME with a similar total number of search position. CSOME with two

search windows provided a 15% compression improvement over the traditional full search
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algorithms when approximately 600 total search positions were used. Expanding the
algorithm to four search offsets resulted in an overall deterioration of performance, as
compared to the single or two search offset CSOME. This implies that, for the video
sequences evaluated, two global motion components are often sufficient to characterise the

motion parameters of avideo frame.

The selection of clustering method for estimation of the global motion component did not
have a significant impact on the overall coding efficiency resulting from the motion
estimation; however, the K-means clustering did consistently provide a dlight (~1%)
improvement over the histogram method. A simplification of the K-means clustering
resulted in a negligible impact on compression performance, while reducing the complexity

of the global motion component estimation.

5.1 Future Enhancements

There are several possible enhancements to the CSOME algorithm that may be worth
investigating in the future. As it has been proposed, the number of search windows used for
block-matching must be known before estimating global motion components. For some
sequences, a CSOME using a single search window achieved greater compression
performance over CSOME using two search windows. For other sequences, using two
search windows provided gains over using a single search window. A possible enhancement
to the CSOME method would be adaptive selection of the number of CSOME search
windows to be used for block matching.

As proposed in this thesis, the estimates of the global motion components for a frame are
the identified components of the previous frame. Estimates that are more accurate may be
possible with consideration of a longer history of motion vectors — i.e. using the motion
vectors identified in more previously encoded frames
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ITU-T:

MPEG:

VT:

DVD:

MPEG-2:

4:2:0 Subsampling:

D1 Resolution:

Appendix A — Glossary of Terms

International Telecommunication Union Telecommunication
Standardi zation Sector

Motion Pictures Experts Group

Joint Video Team — The collaborative group from MPEG and ITU-T
working on the H.264/MPEG-4 part 10 video compression standard

Digital Video Disc
A widely used block-based motion compensated transform coding
video compression standard developed by MPEG

Term for method of subsampling a three channel (Y,Cb,Cr) colour
video signal. Each chrominance channel is subsampled by two in each
gpatial direction.

Refersto standard broadcast resolution of digital video signals. |.E.
720x480 at 30 frames per second or 720x576 at 25 frames per second
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Appendix B — Full Experimental Results

Performance of COL_16 compared to JVT_128

JVT 128 COL_16
) Number . ) .. | Bjontegaard | Bjontegaard
Video 70 op | wbis | PSNRY | PSNRU | PSNRV  Computation] ) w | sy | psry | psry | Computation) Totalbit f Fep b | pNSR Detta
Sequence (IVT_128)| (VT_128)] (JVT_128)] Time (sec) Time (sec) saving .
Frames saving (dB)
20 1 22.29 40.69 41.74 43.38 11586.032 | 31.31 4050 | 4173 | 4332 466.11 -40.4%
BUS 75 25 1 1170 36.97 38.75 40.96 10897.74 18.25 36.73 | 38.65 | 40.85 486.15 -56.0% 69.97% 324
30 5.56 32.99 36.71 39.11 8901.60 9.53 32.74 | 36.48 | 38.89 450.61 -71.3%
35 2.67 29.40 35.40 37.39 7820.72 4.84 29.15 | 35.18 | 37.19 397.31 -81.3%
20 | 35.88 41.60 43.29 43.63 23232.25 40.35 4159 | 4332 | 4371 865.96 -12.5%
Canoa 110 25 | 21.09 38.09 40.91 41.34 22128.64 25.40 38.06 | 40.86 | 4145 916.69 -20.4% 27.78% 144
30 | 11.07 34.30 38.92 39.48 17839.20 14.76 3426 | 3887 | 39.57 791.44 -33.4%
35 6.02 30.77 36.97 37.45 15889.67 8.57 30.73 | 36.90 | 37.58 810.74 -42.3%
20 | 15.73 42.27 42.17 42.68 717091 16.46 4223 | 4216 | 4268 268.40 -A4.7%
Ferris 60 25 9.08 38.86 38.50 39.14 6824.36 9.69 38.80 | 3850 | 39.12 291.45 -6.6% 9.86% 051
30 4.75 34.99 35.29 36.39 5574.78 5.22 3491 | 3526 | 36.32 23591 -10.0%
35 243 3131 32.77 34.61 4881.84 2.76 3125 | 3264 | 3448 224.55 -13.5%
20 | 3753 40.95 4142 42.28 22921.70 36.91 41.00 | 4153 | 4237 831.85 1.7%
Football | 130 25| 2021 37.71 39.05 40.01 21491.59 20.83 37.79 | 39.20 | 40.13 846.84 -3.1% 6.63% 029
30 | 10.06 34.27 37.04 38.26 17484.31 11.15 3423 | 3718 | 38.37 74347 -10.9%
35 5.23 31.25 35.11 36.79 14986.00 5.95 3113 | 3531 | 36.86 665.81 -13.7%
20 | 3294 40.09 40.63 40.73 11973.89 32.89 40.08 | 40.65 | 40.73 296.35 0.2%
Mobile 130 25 | 1942 35.83 36.61 36.67 11726.43 19.51 3580 | 36.60 | 36.66 300.97 -0.4% 1.70% 010
30 | 10.18 3117 33.37 33.34 9982.05 10.36 3114 | 3337 | 3332 281.38 -1.7%
35 4.64 26.69 30.76 30.58 8969.22 4381 26.66 | 30.73 | 30.58 281.64 -3.7%
20 | 49.46 40.97 42.37 43.20 26423.16 48.63 4099 | 4251 | 43.36 846.34 1.7%
Rugby 110 25 | 28.82 37.24 39.77 40.73 25192.61 29.32 37.28 | 39.86 | 40.83 854.78 -1.7% 5200 027
30 | 1460 3341 37.69 38.87 20043.00 15.97 3344 | 3760 | 38.82 772.84 -9.4%
35 744 30.07 35.82 37.11 17910.82 8.59 30.07 35.67 | 37.06 720.38 -15.5%
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Performance of COL 24 compared to JVT_ 128

JVT 128 COL 24
) Number . . .| Bjontegaard | Bjontegaard
Video . PSNRY | PSNRU | PSNRV | Computation . Computation] Total bit
Sequence of QP | Moits (QVT_128)| (JVT_128)| (JVT_128)] Time (sec) Mbits | PSNRY | PSNRU | PSNRY Time (sec) saving BR pelta PNSR Defta
Frames saving (dB)
2] 2229 | 4069 41.74 4338 | 11586.032 | 2595 | 4061 | 4174 | 4337 805.466 -16.4%
BUS 75 251 1170 | 3697 38.75 4096 | 10897.736 | 1443 | 3685 | 38.72 | 40.96 864.456 -23.3% 30.37% 153
30 ] 556 32.99 36.71 39.11 8901.597 7.32 3286 | 36.62 | 39.02 709.819 -31.5% ' '
3B | 267 29.40 35.40 37.39 7820.718 3.69 2922 | 3529 | 37.34 644.424 -38.2%
20 | 3588 | 4160 43.29 43,63 2323225 | 4000 | 4159 | 4331 | 4371 | 1564572 -11.5%
25 1 21.09 38.09 4091 4134 | 22128641 | 2501 | 3807 | 4087 | 4144 1567 -18.6% 0
Canoa 10 30 | 11.07 34.30 38.92 3948 | 17839197 | 1434 | 3426 | 3889 | 3956 | 1350.892 -29.6% 24.86% 129
3B | 602 30.77 36.97 3745 | 15889673 | 828 3072 | 3693 | 3757 | 1225442 -37.4%
2| 1573 | 4227 4217 4268 7170907 | 1610 | 4225 | 4216 | 4269 440.842 2.3%
. 251 9.08 38.86 3850 39.14 6824.357 941 3882 | 3849 | 3911 456.921 -35% 0
Ferms | 80 30T a5 [ 3499 | 3529 | 3630 | 5574777 | 501 | 3494 | 3527 | 3636 | 3230 | sow | > | 0%
3B | 243 3131 32.77 34.61 4881.838 2.63 3127 | 3270 | 3453 349.385 -8.2%
20 | 3753 | 4095 41.42 42.28 229217 3718 | 4100 | 4152 | 4235 | 1453629 0.9%
251 2021 37.71 39.05 4001 | 21491589 | 2080 | 37.78 | 39.18 | 40.11 | 1467.924 -2.9% .
Footbal | 130 30 | 10.06 34.27 37.04 3826 | 17484307 | 1094 | 3424 | 3717 | 3836 | 1237.863 -8.8% 5:50% 024
3B ] 523 31.25 35.11 36.79 | 14986.002 | 581 3115 | 3529 | 3688 | 1127.764 -10.9%
20 | 3294 | 4009 40.63 4073 | 11973894 | 3292 | 4007 | 4065 | 40.72 527953 0.1%
) 25 | 1942 35.83 36.61 3667 | 11726425 | 1952 | 3581 | 36,60 | 36.66 586.436 0.5% .
Mobile 130 30| 1018 | 3117 33.37 33.34 9982.049 | 10.35 | 3115 | 3337 | 3332 493223 -1.6% 166% 0.0
3B | 464 26.69 30.76 30.58 8969.222 481 26.66 | 30.73 | 3059 486.78 -3.8%
20 | 4946 | 4097 4237 4320 | 26423156 | 48.79 | 4099 | 4248 | 4333 | 1488.853 1.4%
25 ] 2882 | 3724 39.77 4073 | 25192607 | 2921 | 3728 | 39.84 | 4084 | 1509.339 -1.3% 0
Rugby 1o 30 | 1460 | 3341 37.69 38.87 | 20042996 | 15.65 | 3343 | 3763 | 3885 | 1334.215 -1.2% 3.95% 021
B 744 30.07 35.82 3711 | 17910821 | 8.33 3006 | 3570 | 37.09 | 1218.696 -11.9%
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Performance of JVT 16 compared to JVT 128

JVT 128 JVT 16
Video | NUmPer | psnrY | PsnRU | PSRV | computation| Computation| Totalbit | Eiontegaard | Bjontegaard
Sequence of QP | Mbits (IVT_128)] (IVT_128)] (IVT_128) TimFe) (sec) Moits | PSNRY | PSNRU | PSNRV Timz (sec) saving BR D_elta PNSR Defia
Frames saving (dB)
20 | 2229 | 4069 4174 4338 | 11586032 | 2303 | 4068 | 4176 | 4341 363.85 -3.3%
25| 1170 | 3697 38.75 4096 | 10897.736 | 1236 | 3693 | 38.75 | 40.99 360.33 5.7%
Bus ) -8.48% 0.45
30| 556 32.99 36.71 39.11 8901.597 6.07 3295 | 3668 | 39.05 334.55 9.1%
3B | 267 29.40 3540 37.39 7820.718 3.04 29.32 | 3530 | 37.30 330.36 -13.9%
20 | 3588 | 4160 43.29 43,63 2323225 | 3574 | 4162 | 4337 | 4375 743.66 0.4%
Canoa 110 25| 2109 | 3809 4091 4134 | 22128641 | 2147 | 3809 | 4095 | 4150 730.35 -1.8% 519% 06
30 | 1107 ] 3430 38.92 3948 | 17839197 | 1196 | 3428 | 3892 | 39.56 676.16 -8.1%
3B | 602 30.77 36.97 3745 | 15889673 | 6.67 3075 | 3692 | 37.56 642.14 -10.8%
20 | 1573 | 4227 4217 4268 7170907 | 1589 | 4226 | 4218 | 4270 260.23 -1.0%
Ferris 60 251 9.08 38.86 38.50 39.14 6824.357 9.23 3883 | 3851 | 39.12 254.82 -1.7% 289% 015
0| 475 34.99 35.29 36.39 5574777 4.88 3495 | 3528 | 36.37 226.81 2.1%
3B | 243 3131 32.77 34.61 4881.838 253 3128 | 3272 | 3456 216.82 -4.0%
20 | 3753 | 409 4142 42.28 22921.7 3645 | 4099 | 4150 | 4235 769.60 2.9%
25| 2021 37.71 39.05 4001 | 21491589 | 2009 | 3777 | 3917 | 40.10 757142 0.6%
Footbal | - 130 30 | 1006 | 34.27 37.04 3826 | 17484307 | 1042 | 3425 | 3714 | 3835 686.70 -3.6% L2 005
3B | 523 31.25 35.11 36.79 | 14986.002 | 550 3116 | 3528 | 36.89 639.76 -5.1%
20 | 3294 | 4009 40,63 40,73 | 11973894 | 3267 | 4009 | 4065 | 40.73 290.56 0.8%
. 251 1942 1 3583 36.61 36.67 | 11726425 ] 1930 | 3583 | 36.61 | 36.68 290.11 0.6%
Mobile 130 30| 1018 | 3117 33.37 33.34 9982049 | 1017 | 3117 | 3338 | 3332 273.22 0.2% 0.39% 0.02
3B | 464 26.69 30.76 30.58 8969.222 463 2668 | 30.76 | 30.59 27346 0.2%
20 | 4946 | 4097 42,37 4320 | 26423156 | 4762 | 4098 | 4247 | 43.34 771.25 3.7%
25| 2882 | 3724 39.77 40.73 | 25192607 | 2819 | 3726 | 3983 | 40.84 761.15 2.2%
Rughy 10 30 | 1460 | 3341 37.69 3887 | 20042996 | 1487 | 3341 | 3762 | 38389 702.19 -1.9% 0.16% 0.00
B | 14 30.07 35.82 3711 | 17910821 | 7.84 3005 | 3569 | 37.09 672.05 -5.4%
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Performance of CSOME_1 16 with Histogram Peak Detection compared to JVT 128

JVT 128 CSOME _1 16 with Histogram Peak Detection
Video | NUmPer | PsnrY | Ps\RU | PSR | computation] Computation| Total bie | Biontegaard | Blontegaard
Sequence of QP | Mbits (IVT_128)] (IVT_128)] (IVT_128) TimFe) (sec) Moits | PSNRY | PSNRU | PSNRV Timz (sec) saving BR D_elta PNSR Defia
Frames saving (dB)
20 | 2229 | 40.69 4174 4338 | 11586.032 | 28.16 | 4059 | 41.75 | 43.35 506.161 -26.3%
25 | 1170 | 3697 38.75 4096 | 10897.736 | 1589 | 36.82 | 3870 | 40.89 | 480.083 -35.8%
Bus 75 -41.22% -2.20
30 | 556 32.99 36.71 30.11 8901.597 7.60 3283 | 3659 | 39.00 | 446.141 -36.6%
3B | 267 29.40 3540 37.39 7820.718 416 2021 | 3521 | 3724 | 425143 -55.9%
20 | 3588 | 4160 4329 43.63 2323225 | 3575 | 4159 | 4339 | 43.78 934.144 0.4%
canca | 110 25| 2109 | 38.09 4091 4134 | 22128641 | 2184 | 3806 | 4095 | 4150 905.25 -3.6% 9.43% 050
30 | 1107 | 3430 38.92 3948 | 17839.197 | 1250 | 3425 | 3891 | 39.55 853.155 -12.9%
3B | 602 30.77 36.97 3745 | 15889673 | 7.29 30.74 | 3689 | 3752 816.323 -21.1%
20 | 1573 | 4227 42.17 4268 | 7170907 | 1647 | 4225 | 4218 | 4271 321.657 -4.7%
Ferris 60 25| 9.08 38.86 3850 39.14 | 6824.357 9.69 3882 | 3852 | 39.16 | 304.716 -6.7% 9.48% 048
30| 475 34.99 35.29 36.39 S574.777 5.23 3494 1 3529 | 36.35 271.624 -10.2%
3B | 243 3131 32.77 3461 | 4881838 2.76 3128 | 3268 | 3449 266.745 -13.5%
20 | 3753 | 4095 4142 42.28 22921.7 3667 | 4098 | 4153 | 4237 952.993 2.3%
25| 2021 | 3771 39.05 4001 | 21491589 | 2043 | 37.76 | 3921 | 4013 912.893 -1.1%
Football | - 130 30 | 1006 | 34.27 37.04 3826 | 17484307 | 1084 | 3423 | 37.18 | 38.36 836.092 -1.7% 459% 020
3B | 523 31.25 3511 36.79 | 14986.002 | 5.89 3118 | 3532 | 36.87 753537 -12.5%
20 | 3294 | 40.09 40.63 40.73 | 11973894 | 3308 | 4006 | 4065 | 40.72 | 418397 -0.4%
. 25 | 1942 | 3583 36.61 3667 | 11726425 | 1966 | 3579 | 3660 | 3667 | 387.952 -1.2%
Mobile {130 30 | 1018 | 3117 33.37 3334 ] 9982049 | 1051 | 3112 | 3335 | 3331 392.798 -3.2% 329% 020
3B | 464 26.69 30.76 3058 | 8969.222 496 2665 | 3073 | 3058 385.301 -1.0%
20 | 4946 | 4097 42.37 4320 | 26423156 | 4833 | 4099 | 4252 | 43.36 935.906 2.3%
Rughy | 110 25 | 2882 | 3724 39.77 40.73 | 25192607 | 2908 | 37.29 | 39.85 | 40.85 905.093 -0.9% 430% 023
30 | 1460 | 3341 37.69 3887 | 20042996 | 1578 | 3341 | 3754 | 3881 848.138 -8.1%
S| 744 30.07 35.82 3711 | 17910821 | 844 3005 | 3558 | 37.03 798.268 -13.5%
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Performance of CSOME_1 16 with K-Means Clustering compared to JVT 128

JVT 128 CSOME_1 16 with K-Means Clustering
Video | NUmber | ps\Ry | Ps\RU | PSNRV | computation| . Computation| Total i | Biontegeard | Bjontegaard
Sequence of QP | Mbits (IVT_128)] (IVT_128)] (IVT_128) TimFe) (sec) Moits | PSNRY | PSNRU | PSNRV Timz (sec) saving BR D_elta PNSR Defia
Frames saving (dB)
20 | 2229 | 40.69 4174 4338 | 11586.032 | 26.94 | 4060 | 41.75 | 43.38 433514 -20.9%
25 | 1170 | 3697 38.75 4096 | 10897.736 | 1507 | 36.84 | 38.70 | 40.90 429.705 -28.8%
Bus 75 -34.59% -1.72
30 | 556 32.99 36.71 30.11 8901.597 746 3284 | 3661 | 3899 401.136 -34.2%
3B | 267 29.40 3540 37.39 7820.718 373 2022 | 3524 | 37.30 391.596 -39.8%
20 | 3588 | 4160 4329 43.63 2323225 | 3570 | 4159 | 4340 | 43.79 844.189 0.5%
canca | 110 25| 2109 | 38.09 4091 4134 | 22128641 | 2182 | 3806 | 4096 | 4150 839.284 -3.5% 947% 050
30 | 1107 | 3430 38.92 3948 | 17839.197 | 1253 | 3425 | 3891 | 3954 808.127 -13.1%
3B | 602 30.77 36.97 3745 | 15889673 | 7.29 3073 | 3683 | 3751 771.756 -21.1%
20 | 1573 | 4227 42.17 42,68 7170907 | 1643 | 4226 | 4220 | 4270 275515 -4.5%
Ferris 60 25| 9.08 38.86 3850 39.14 6824.357 9.67 3883 | 3851 | 39.14 269.765 -6.5% 9.01% 046
30| 475 34.99 35.29 36.39 S574.777 5.20 3494 1 3529 | 36.:4 243.784 -9.6%
3B | 243 3131 32.77 3461 4831838 2.75 3128 | 3267 | 3451 232.45 -13.0%
20 | 3753 | 4095 4142 42.28 22921.7 3645 | 4099 | 4153 | 4237 839.814 2.9%
25| 2021 | 3771 39.05 4001 | 21491589 | 2033 | 37.76 | 3921 | 4013 838.793 -0.6%
Football | 130 30 | 1006 | 34.27 37.04 3826 | 17484307 | 1084 | 3423 | 37.17 | 38.38 762.91 -1.8% 4320 019
3B | 523 31.25 3511 36.79 | 14986.002 | 5.87 3118 | 3531 | 36.86 704.847 -12.2%
20 | 3294 | 40.09 40.63 40.73 | 11973894 | 3282 | 4008 | 4065 | 40.73 291247 0.4%
. 25 | 1942 | 3583 36.61 3667 | 11726425 | 1946 | 3582 | 3661 | 36.66 291240 -0.2%
Mobile {130 30 | 1018 | 3117 33.37 33.34 9982049 | 1031 | 3115 | 3335 | 3332 275.046 -1.2% L12% o7
3B | 464 26.69 30.76 30.58 8969.222 4.76 2666 | 3072 | 3057 215347 -2.6%
20 | 4946 | 4097 42.37 4320 | 26423156 | 4839 | 4098 | 4249 | 43.36 851,537 2.2%
Rughy | 110 25 | 2882 | 3724 39.77 40.73 | 25192607 | 2908 | 37.27 | 39.82 | 40.84 847.563 -0.9% A45% 023
30 | 1460 | 3341 37.69 3887 | 20042996 | 1580 | 3342 | 3755 | 3882 796.349 -8.3%
S| 744 30.07 35.82 3711 | 17910821 | 846 3005 | 3561 | 37.05 757.607 -13.7%
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Performance of CSOME_1 24 with Histogram Peak Detection compared to JVT 128

JVT 128 CSOME_1 24 with Histogram Peak Detection
Video | NUmPer | PsnrY | Ps\RU | PSR | computation] Computation| Total bie | Biontegaard | Blontegaard
Sequence of QP | Mbits (IVT_128)] (IVT_128)] (IVT_128) TimFe) (sec) Moits | PSNRY | PSNRU | PSNRV Timz (sec) saving BR D_elta PNSR Defia
Frames saving (dB)
20 | 2229 | 40.69 4174 4338 | 11586.032 | 22.84 | 4066 | 41.76 | 4341 832.048 -2.5%
BUS 75 25 | 1170 | 3697 38.75 4096 | 10897736 | 12.33 | 3691 | 38.75 | 40.98 806.873 -5.4% 967% 051
30 | 556 32.99 36.71 30.11 8901.597 6.13 3291 | 3667 | 39.04 746.781 -10.2%
3B | 267 29.40 3540 37.39 7820.718 3.09 2026 | 3531 | 37.30 715.252 -15.9%
20 | 3588 | 4160 4329 43.63 2323225 | 3555 | 4159 | 43.36 | 43.75 | 1659482 0.9%
canca | 110 25| 2109 | 38.09 4091 4134 | 22128641 | 2152 | 3806 | 4094 | 4150 1589.04 -2.0% 703% 037
30 | 1107 | 3430 38.92 3948 | 17839197 ] 1215 | 3425 | 3888 | 3956 | 1475.889 9.7%
3B | 602 30.77 36.97 3745 | 15889673 | 7.01 3072 | 3686 | 3751 | 1389.316 -16.4%
20 | 1573 | 4227 42.17 4268 | 7170907 | 16.11 | 4226 | 4219 | 4271 531,673 -2.4%
Ferris 60 25| 9.08 38.86 3850 39.14 | 6824.357 9.40 3883 | 3850 | 39.14 509.814 -3.5% 562% 029
30| 475 34.99 35.29 36.39 S574.777 5.03 3495 | 3530 | 3637 | 458858 -5.9%
3B | 243 3131 32.77 3461 | 4881838 2.64 3129 | 3273 | 3457 | 439513 -8.6%
20 | 3753 | 4095 4142 42.28 22921.7 3625 | 4096 | 4151 | 4236 | 1668.909 34%
25| 2021 | 3771 39.05 4001 | 21491589 | 1990 | 37.74 | 3919 | 4013 | 1611.809 15%
Football | - 130 30 | 1006 | 34.27 37.04 3826 | 17484307 | 1046 | 3422 | 3715 | 3836 | 1456.264 -4.0% L 008
3B | 523 31.25 3511 36.79 | 14986.002 | 5.70 3120 | 3529 | 3684 | 1343683 -8.9%
20 | 3294 | 40.09 40.63 40.73 | 11973894 | 3318 | 4007 | 4065 | 40.72 736.702 -0.7%
. 25 | 1942 | 3583 36.61 3667 | 11726425 | 1969 | 3579 | 3661 | 36.66 705.184 -1.4%
Mobile {130 30 | 1018 | 3117 33.37 3334 | 9982049 | 1055 | 3112 | 3336 | 3332 697.081 -3.6% 366% b2
3B | 464 26.69 30.76 3058 | 8969.222 5.00 2664 | 3071 | 3058 702.202 -1.7%
20 | 4946 | 4097 42.37 4320 | 26423156 | 4842 | 4097 | 4245 | 4332 | 1660475 2.1%
Rughy | 110 25 | 2882 | 3724 39.77 40.73 | 25192607 | 2880 | 37.26 | 39.79 | 4085 | 1618.151 0.1% 287% 015
30 | 1460 | 3341 37.69 3887 | 20042996 | 1540 | 3341 | 3756 | 3885 | 1494.074 -5.5%
S| 744 30.07 35.82 3711 | 17910821 | 817 3003 | 3561 | 37.06 | 1388217 -9.8%
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Performance of CSOME_1 24 with K-Means Clustering compared to JVT 128

JVT_128 CSOME_1 24 with K-Means Clustering
Video | Numper | ps\ry | PsnRU | PSRV | computation| Computation| Total bit | Eiontegaard | Bjontegaard
Sequence of QP | Mbits (QVT_128)| (JVT_128)] (IVT_128) Timz (sec) Mbits | PSNRY | PSNRU | PSNRV Timz (sec) saving BR pelta PNSR Defta
Frames saving (dB)
20 | 2229 | 4069 41.74 4338 | 11586.032 | 22.75 | 4067 | 4177 | 4342 | 715.266 -2.0%
Bus 75 25| 1170 | 36.97 38.75 4096 | 10897736 | 12.17 | 3693 | 3876 | 41.00 | 706.781 -4.0% 7 64% 040
30| 556 3299 36.71 39.11 | 8901.597 6.03 | 3293 | 3669 | 39.05 | 676.183 -8.5%
3B | 267 29.40 3540 37.39 | 7820.718 300 | 2928 | 3534 | 3734 | 627.783 -12.4%
20 | 3588 | 4160 4329 4363 | 2323225 | 3599 | 4158 | 4335 | 4374 | 1471656 -0.3%
canca | 110 25| 21.09 | 38.09 4091 4134 | 22128641 | 2182 | 3806 | 4093 | 4148 | 1459.033 -3.4% 778% 040
30 | 1107 | 3430 3892 3948 | 17830197 | 1223 | 3425 | 3891 | 3954 | 1349484 -10.5%
3B | 602 30.77 36.97 3745 | 15889673 | 690 | 30.72 | 36.84 | 3750 | 1287.335 -14.5%
20 | 1573 | 4227 4217 4268 | 7170907 | 16.06 | 4228 | 4219 | 4270 | 447.954 -2.1%
Ferris 60 25| 9.08 38.86 3850 39.14 | 6824.357 938 | 3884 | 3851 | 39.14 | 438111 -3.3% 4.80% 025
30| 475 3499 35.29 36.39 | 5574.777 500 | 3496 | 3529 | 3636 | 390.814 -5.3%
3B | 243 3131 32.77 3461 | 4881.838 262 | 3129 | 3273 | 3457 | 368.358 -1.7%
20 | 3753 | 4095 4142 42.28 22921.7 36.15 | 4096 | 4151 | 4236 | 1488443 3.7%
25| 2021 | 3771 39.05 4001 | 21491589 | 19.83 | 37.73 | 39.19 | 40.13 | 1466439 1.9%
Footbal | 130 30 | 1006 | 34.27 37.04 38.26 | 17484307 | 1041 | 3422 | 37.16 | 3838 | 1331482 -3.6% 152% 007
3| 523 31.25 35.11 36.79 | 14986.002 | 570 | 3120 | 3530 | 36.88 | 1188.208 -8.8%
20 | 3294 | 40.09 40.63 40.73 | 11973894 | 3285 | 40.08 | 4064 | 40.72 | 519.745 0.3%
. 25| 1942 | 3583 36.61 36.67 | 11726425 | 1947 | 3582 | 3661 | 3667 | 517.389 -0.2%
Mobie {130 30 | 1018 | 3117 3337 3334 | 9982049 | 1030 | 3115 | 3337 | 3333 | 479.309 -1.2% L07% 006
3B | 464 26.69 30.76 3058 | 8969.222 | 475 | 2667 | 30.75 | 3059 | 469.832 -2.5%
20 | 4946 | 4097 4237 4320 | 26423156 | 4839 | 4097 | 4246 | 4332 | 1511314 2.2%
Rughy | 110 25| 2882 | 3724 39.77 40.73 | 25192607 | 2874 | 3725 | 39.80 | 4083 | 1501419 0.3% 243% 013
30 | 1460 | 3341 37.69 3887 | 20042996 | 1531 | 3340 | 3756 | 3884 | 1384.153 -4.9%
3B| 744 30.07 35.82 3711 | 17910821 | 807 | 3004 | 3563 | 37.07 | 1300.49 -8.5%
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Performance of CSOME 2 11 with Histogram Peak Detection compared to JVT 128

JVT 128 CSOME_2 11 with Histogram Peak Detection
Video | NUmPer | psnrY | PsnRU | PSRV | computation| Computation| Totalbit | Eiontegeard | Bjontegaard
Sequence of QP | Mbits (QVT_128)] (IVT_128)] (IVT_128) TimFe) (sec) Mbits | PSNRY | PSNRU | PSNRY Timz (sec) saving BR D_elta PNSR Delta
Frames saving (dB)
20 | 2229 | 40.69 4174 4338 | 11586.032 | 2270 | 4068 | 4175 | 4341 393.08 -1.8%
Bus 75 25 ] 1170 | 3697 38.75 4096 | 10897.736 | 1221 | 3694 | 3875 | 41.00 429.72 -4.4% 795% 041
30 | 556 32.99 36.71 39.11 8901.597 6.05 3292 | 3669 | 39.07 407.80 -8.7%
3B | 267 29.40 3540 37.39 7820.718 3.03 2927 | 3536 | 37.3H 399.08 -13.4%
20 | 3588 ] 4160 4329 43,63 2323225 | 3545 | 4160 | 4338 | 43.76 805.78 1.2%
canoa | 110 25 | 2109 | 38.09 4091 4134 | 22128641 | 2156 | 3807 | 4094 | 4148 851.33 -2.2% 5.90% 028
30| 1107 ] 3430 38.92 3948 | 17830197 | 1181 | 3427 | 3892 | 3954 798.33 -6.7%
3B | 602 30.77 36.97 3745 | 15889673 | 6.78 30.74 | 3692 | 3751 774.16 -12.6%
20 | 1573 | 4227 4217 42.68 7170907 | 1652 | 4225 | 4216 | 4268 277.78 -5.0%
Feris 60 251 9.08 38.86 3850 39.14 6824.357 9.82 3883 | 3851 | 39.14 298.01 -8.0% 1111% 057
30| 475 34.99 35.29 36.39 5574.777 532 3494 1 36528 | 36.35 27464 -12.0%
3B | 243 3131 32.77 3461 4881.8338 2.84 3129 | 3267 | 3449 263.26 -16.9%
20 | 3753 1 4095 4142 42.28 22921.7 36.63 | 4098 | 4152 | 42.36 818.24 2.4%
25| 2021 | 3771 39.05 4001 | 21491589 | 2048 | 37.76 | 39.20 | 40.12 865.56 -1.3%
Footbal | - 130 30 | 1006 | 34.27 37.04 3826 | 17484307 | 1092 | 3421 | 3715 | 3835 806.72 -8.6% 553% 025
3B | 523 31.25 3511 36.79 | 14986.002 | 6.06 3118 | 3528 | 36.84 745,00 -15.7%
20 | 3294 | 40.09 40.63 40.73 | 11973894 | 32.88 | 4008 | 4065 | 40.73 389.59 0.2%
. 251 1942 1 3583 36.61 36.67 | 11726425 | 1956 | 3581 | 36.62 | 36.66 335.78 0.7%
Mobie |~ 130 30 ] 1018 | 3117 33.37 3334 0982.049 | 1043 | 3114 | 3336 | 3332 330.82 -2.5% 229 014
3B | 464 26.69 30.76 30.58 8969.222 489 2665 | 3073 | 3057 340.17 -5.4%
20 | 4946 | 4097 42.37 4320 | 26423156 | 4819 | 4098 | 4250 | 43.36 864.36 2.6%
Rugoy | 110 25 | 2882 | 3724 39.77 40.73 | 25192607 | 2896 | 37.27 | 39.84 | 40.85 883.00 -0.5% 437% 023
30 | 1460 | 3341 37.69 3887 | 20042996 | 1587 | 3342 | 3760 | 3884 834.58 -8.7%
3B | 74 30.07 35.82 3711 | 17910821 | 847 30.06 | 3565 | 37.07 788.06 -13.8%
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Performance of CSOME_2 11 with K-Means Clustering compared to JVT 128

JVT 128 CSOME_2 11 with K-Means Clustering
Video | NUmPer | psnrY | PsnRU | PSRV | computation| Computation| Totalbit | Eiontegeard | Bjontegaard
Sequence of QP | Mbits (QVT_128)] (IVT_128)] (IVT_128) TimFe) (sec) Mbits | PSNRY | PSNRU | PSNRY Timz (sec) saving BR D_elta PNSR Delta
Frames saving (dB)
20 | 2229 | 40.69 4174 4338 | 11586.032 | 2270 | 4068 | 4175 | 4341 393.079 -1.8%
Bus 75 25 ] 1170 | 3697 38.75 4096 | 10897.736 | 1218 | 3694 | 3875 | 41.00 392.643 -4.1% 765% 040
30 | 556 32.99 36.71 39.11 8901.597 6.04 3292 | 3669 | 39.05 414,657 -8.6%
3B | 267 29.40 3540 37.39 7820.718 2.99 2929 | 3534 | 3735 372.172 -12.2%
20 | 3588 ] 4160 4329 43,63 2323225 | 3545 | 4160 | 4338 | 43.76 805.779 1.2%
canoa | 110 25 | 2109 | 38.09 4091 4134 | 22128641 | 2197 | 3807 | 4093 | 4147 809.528 -4.2% 581% 030
30| 1107 ] 3430 38.92 3948 | 17830197 | 1183 | 3427 | 3893 | 3954 775.324 -6.8%
3B | 602 30.77 36.97 3745 | 15889673 | 6.69 30.73 | 3692 | 3754 745.163 -11.1%
20 | 1573 | 4227 4217 42.68 7170907 | 1652 | 4225 | 4216 | 4268 271.782 -5.0%
Feris 60 251 9.08 38.86 3850 39.14 6824.357 9.77 3882 | 3850 | 39.14 274.029 -1.5% 210.94% 056
30| 475 34.99 35.29 36.39 5574.777 5.29 3491 | 3627 | 36.35 281453 -11.4%
3B | 243 3131 32.77 3461 4881.8338 2.84 3126 | 3264 | 3447 240.982 -16.5%
20 | 3753 1 4095 4142 42.28 22921.7 36.63 | 4098 | 4152 | 42.36 818.242 2.4%
25| 2021 | 3771 39.05 4001 | 21491589 | 2049 | 37.76 | 3919 | 4011 857.564 -1.3%
Footbal | - 130 30 | 1006 | 34.27 37.04 3826 | 17484307 | 1090 | 3422 | 3715 | 3835 778.993 -8.4% 536% 02
3B | 523 31.25 3511 36.79 | 14986.002 | 6.01 3116 | 3529 | 36.83 696.02 -14.8%
20 | 3294 | 40.09 40.63 40.73 | 11973894 | 32.88 | 4008 | 4065 | 40.73 389.593 0.2%
. 251 1942 1 3583 36.61 36.67 | 11726425 | 1949 | 3582 | 36.62 | 36.66 353591 -0.4%
Mobie |~ 130 30 ] 1018 | 3117 33.37 3334 0982.049 | 1032 | 3115 | 3337 | 3333 274.867 -1.3% 123 o7
3B | 464 26.69 30.76 30.58 8969.222 477 2667 | 30.76 | 3058 273408 -2.9%
20 | 4946 | 4097 42.37 4320 | 26423156 | 4819 | 4098 | 4250 | 43.36 864.358 2.6%
Rughy 110 25 | 2882 | 3724 39.77 40.73 | 25192607 | 2887 | 3728 | 39.85 | 40.86 865.374 -0.2% 346% 019
30 | 1460 | 3341 37.69 3887 | 20042996 | 1562 | 3343 | 3761 | 3885 820.569 -1.0%
3B | 74 30.07 35.82 3711 | 17910821 | 843 30.06 | 3567 | 37.08 764971 -13.3%
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Performance of CSOME_2 11 with Single Iteration K-Means Clustering compared to JVT 128

JVT 128 CSOME_2 11 with Single Iteration K-Means Clustering
Video | NUmPer | psnrY | PsnRU | PSRV | computation| Computation| Totalbit | Eiontegaard | Bjontegaard
Sequence of QP | Mbits (IVT_128)] (IVT_128)] (IVT_128) TimFe) (sec) Moits | PSNRY | PSNRU | PSNRV Timz (sec) saving BR D_elta PNSR Defia
Frames saving (dB)
20 | 2229 | 40.69 4174 4338 | 11586.032 | 22.74 | 4068 | 4176 | 4341 407.268 -2.0%
25 ] 1170 | 3697 38.75 4096 | 10897.736 | 1221 | 3694 | 3875 | 40.99 423,626 -4.4%
Bus | 75 773% | 040
30 | 556 32.99 36.71 39.11 8901.597 6.04 3293 | 3669 | 39.05 412,627 -8.6%
3B | 267 29.40 3540 37.39 7820.718 2.99 2929 | B34 | 373 | 373077 -12.2%
20 | 3588 ] 4160 4329 43.63 2323225 | 3543 | 4160 | 4338 | 43.76 804.67 1.3%
canca | 110 251 2109 1 3809 4091 4134 | 22128641 2139 | 3808 | 4095 | 4149 829.251 -1.4% 468% 024
30 | 1107 | 3430 38.92 3948 | 17830197 | 1181 | 3427 | 3893 | 3954 755.663 -6.7%
3B | 602 30.77 36.97 3745 | 15889673 | 6.69 30.73 | 3692 | 3754 746.308 -11.1%
20 | 1573 | 4227 4217 4268 | 7170907 | 1653 | 4225 | 4216 | 4269 296.314 -5.1%
Fertis 60 25| 9.08 38.86 38.50 39.14 | 6824.357 9.77 3882 | 3851 | 39.13 293.766 -1.6% 10.91% 056
0| 475 34.99 35.29 36.39 5574.777 5.29 3492 | 3526 | 36.35 272905 -11.4%
3B | 243 3131 32.77 3461 | 4881838 2.84 3127 | 3267 | 3449 255.034 -16.7%
20 | 3753 | 4095 4142 42.28 22921.7 3668 | 4098 | 4152 | 42.36 817.973 2.3%
251 2021 | 37.71 39.05 4001 | 21491589 | 2047 | 37.76 | 39.20 | 40.12 811.685 -1.3%
Fooball | 130 30 | 1006 | 34.27 37.04 3826 | 17484307 | 1089 | 3422 | 3715 | 38.36 765.765 -8.3% o3 02
3B | 523 31.25 35.11 36.79 | 14986.002 | 6.01 3116 | 3529 | 36.82 696.923 -14.8%
20 | 3294 1 4009 40.63 40.73 | 11973894 | 3283 | 40.09 | 4064 | 40.72 380.905 0.2%
. 25| 1942 | 3583 36.61 36.67 | 11726425 1949 | 3582 | 3661 | 3667 | 353656 -0.4%
Mobie |~ 130 30 ] 1018 | 3117 33.37 3334 0982.049 | 1032 | 3116 | 3339 | 3332 268.005 -1.3% L19% o7
3B 464 26.69 30.76 30.58 8969.222 477 26.66 | 30.74 | 3058 274.645 -2.8%
20 | 4946 | 4097 42.37 4320 | 26423156 | 4817 | 4098 | 4250 | 4335 873578 2.6%
Rugy | 110 25 ] 2882 | 3724 39.77 40.73 | 25192607 | 2883 | 37.28 | 39.85 | 40.85 866.062 -0.2% 351% 019
30 ] 1460 | 3341 37.69 3887 | 20042996 | 1562 | 3343 | 3762 | 3885 795.999 -1.0%
B | 744 30.07 35.82 3711 | 17910821 | 845 3006 | 3567 | 3707 759.182 -13.5%
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Performance of CSOME 2 16 with Histogram Peak Detection compared to JVT 128

JVT 128 CSOME_2 16 with Histogram Peak Detection
Video | NUmPer | PsnrY | Ps\RU | PSR | computation] Computation| Total bie | Biontegaard | Blontegaard
Sequence of QP | Mbits (IVT_128)] (IVT_128)] (IVT_128) TimFe) (sec) Moits | PSNRY | PSNRU | PSNRV Timz (sec) saving BR D_elta PNSR Defia
Frames saving (dB)
20 | 2229 | 40.69 4174 4338 | 11586.032 | 2253 | 4067 | 4177 | 4342 759.52 -1.1%
25 | 1170 | 3697 38.75 4096 | 10897736 | 1203 | 3694 | 38.76 | 4102 742.015 -2.8%
Bus 75 6.27% -0.33
30 | 556 32.99 36.71 30.11 8901.597 5.96 3293 | 3670 | 39.09 706.76 -1.1%
3B | 267 29.40 3540 37.39 7820.718 298 2030 | 3535 | 37.37 681.039 -11.5%
20 | 3588 | 4160 4329 43.63 2323225 | 3513 | 4160 | 4337 | 43.74 | 1457.564 2.1%
canca | 110 25| 2109 | 38.09 4091 4134 | 22128641 | 2103 | 3809 | 4096 | 4147 142522 0.3% 287% 015
30 | 1107 | 3430 38.92 3948 | 17839197 | 1159 | 3427 | 3894 | 3954 | 1347488 -4.6%
3B | 602 30.77 36.97 3745 | 15889673 | 6.56 30.70 | 3693 | 3753 | 1284.049 -8.9%
20 | 1573 | 4227 42.17 4268 | 7170907 | 1633 | 4226 | 4219 | 42.70 506.646 -3.8%
Ferris 60 25| 9.08 38.86 3850 39.14 | 6824.357 9.62 3883 | 3850 | 39.13 505.045 -5.9% 789% 041
30| 475 34.99 35.29 36.39 S574.777 5.14 3496 | 3529 | 3637 | 443835 -8.2%
3B | 243 3131 32.77 3461 | 4881838 213 3129 | 3275 | 3456 | 425451 -12.2%
20 | 3753 | 4095 4142 42.28 22921.7 3699 | 4098 | 4151 | 4235 | 1552.306 14%
25| 2021 | 3771 39.05 4001 | 21491589 | 2030 | 37.74 | 3917 | 4011 | 1510574 -0.5%
Football | - 130 30 | 1006 | 34.27 37.04 3826 | 17484307 | 1071 | 3422 | 3714 | 3836 | 1375.032 -6.5% A15% 019
3B | 523 31.25 3511 36.79 | 14986.002 | 5.87 3119 | 3529 | 3688 | 1273266 -12.2%
20 | 3294 | 40.09 40.63 40.73 | 11973894 | 3311 | 4007 | 4064 | 40.73 663.081 -0.5%
. 25 | 1942 | 3583 36.61 3667 | 11726425 | 1965 | 3579 | 3661 | 36.66 629.528 -1.2%
Mobile {130 30 | 1018 | 3117 33.37 3334 | 9982049 | 1053 | 3113 | 3336 | 3332 622.842 -3.4% 330% 020
3B | 464 26.69 30.76 3058 | 8969.222 497 2665 | 3072 | 3057 63197 -1.1%
20 | 4946 | 4097 42.37 4320 | 26423156 | 4885 | 4098 | 4247 | 43.33 1546.43 1.2%
Rughy | 110 25 | 2882 | 3724 39.77 40.73 | 25192607 | 29.12 | 3726 | 39.83 | 4084 | 1508.875 -1.0% 387% 020
30 | 1460 | 3341 37.69 3887 | 20042996 | 1555 | 3342 | 37.61 | 3886 | 1407.307 -6.5%
S| 744 30.07 35.82 3711 | 17910821 | 835 3005 | 3566 | 37.09 | 1320943 -12.2%
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Performance of CSOME_2 16 with K-Means Clustering compared to JVT 128

JVT 128 CSOME_2 16 with K-Means Clustering
Video | NUmber | ps\Ry | Ps\RU | PSNRV | computation| . Computation| Total i | Biontegeard | Bjontegaard
Sequence of QP | Mbits (IVT_128)] (IVT_128)] (IVT_128) TimFe) (sec) Moits | PSNRY | PSNRU | PSNRV Timz (sec) saving BR D_elta PNSR Defia
Frames saving (dB)
20 | 2229 | 40.69 4174 4338 | 11586.032 | 2246 | 4068 | 41.76 | 4341 651.59 -0.7%
BUS 75 25 | 1170 | 3697 38.75 4096 | 10897.736 | 1197 | 3694 | 38.75 | 4101 648.984 -2.3% 5300 028
30 | 556 32.99 36.71 30.11 8901.597 592 3294 1 3671 | 39.07 677.561 -6.5%
3B | 267 29.40 3540 37.39 7820.718 291 2030 | 3536 | 37.39 594,517 -9.0%
20 | 3588 | 4160 4329 43.63 2323225 | 3528 | 4160 | 4336 | 43.74 | 1341.125 17%
canca | 110 25| 2109 | 38.09 4091 4134 | 22128641 | 2111 | 3808 | 4096 | 4147 | 1328265 -0.1% 274% 014
30 | 1107 | 3430 38.92 3948 | 17839.197 | 1153 | 3427 | 3893 | 39.55 1249.61 -4.1%
3B | 602 30.77 36.97 3745 | 15889673 | 6.0 3072 | 3695 | 3752 | 1198.898 -8.0%
20 | 1573 | 4227 42.17 42,68 7170907 | 1629 | 4226 | 4218 | 4269 507.578 -3.6%
Ferris 60 25| 9.08 38.86 3850 39.14 6824.357 954 3884 | 3848 | 39.12 456.077 -5.0% 757% 039
30| 475 34.99 35.29 36.39 S574.777 5.14 3493 | 3527 | 36.35 409.722 -8.3%
3B | 243 3131 32.77 3461 4831838 2.71 3130 | 3271 | 3455 39147 -11.2%
20 | 3753 | 4095 4142 42.28 22921.7 3658 | 4096 | 4150 | 4235 | 1414.273 2.5%
25| 2021 | 3771 39.05 4001 | 21491589 | 2023 | 37.73 | 39.16 | 40.10 1506.77 -0.1%
Football | - 130 30 | 1006 | 34.27 37.04 3826 | 17484307 | 1061 | 3423 | 3714 | 3836 | 1256424 -5.5% 346% 016
3B | 523 31.25 3511 36.79 | 14986.002 | 5.86 3119 | 3527 | 3684 | 1243587 -11.9%
20 | 3294 | 40.09 40.63 40.73 | 11973894 | 3287 | 4009 | 4064 | 40.72 643547 0.2%
. 25 | 1942 | 3583 36.61 3667 | 11726425 | 1947 | 3582 | 3661 | 36.66 470.345 -0.2%
Mobile {130 30 | 1018 | 3117 33.37 33.34 9982049 | 1033 | 3116 | 3337 | 3332 444.378 -1.4% L% o7
3B | 464 26.69 30.76 30.58 8969.222 479 2667 | 30.76 | 3058 465,582 -3.2%
20 | 4946 | 4097 42.37 4320 | 26423156 | 4864 | 4098 | 4247 | 4333 | 1472025 1.7%
Rughy | 110 25 | 2882 | 3724 39.77 40.73 | 25192607 | 2906 | 37.27 | 39.83 | 4083 | 1543201 -0.8% 3500 019
30 | 1460 | 3341 37.69 3887 | 20042996 | 1550 | 3342 | 37.62 | 38.86 1387.55 -6.2%
S| 744 30.07 35.82 3711 | 17910821 | 830 3004 | 3569 | 37.09 | 1261772 -11.6%
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Performance of CSOME_2 16 with Single Iteration K-Means Clustering compared to JVT_ 128

JVT 128 CSOME_2 16 with Single Iteration K-Means Clustering
Video | NUmPer | psnrY | PsnRU | PSRV | computation| Computation| Totalbit | Eiontegaard | Bjontegaard
Sequence of QP | Mbits (IVT_128)] (IVT_128)] (IVT_128) TimFe) (sec) Moits | PSNRY | PSNRU | PSNRV Timz (sec) saving BR D_elta PNSR Defia
Frames saving (dB)
20 | 2229 | 40.69 4174 4338 | 11586.032 | 2245 | 4068 | 4176 | 4342 666.844 -0.7%
25 ] 1170 | 3697 38.75 4096 | 10897.736 | 1199 | 3695 | 3876 | 41.03 680.937 -2.5%
Bus I6 -5.40% -0.28
30 | 556 32.99 36.71 39.11 8901.597 592 3295 | 36.72 | 39.08 674.358 -6.5%
3B | 267 29.40 3540 37.39 7820.718 2.92 2929 | 3536 | 3737 599.53 -9.3%
20 | 3588 ] 4160 4329 43.63 2323225 | 3515 | 4160 | 4337 | 4375 | 1371666 2.0%
canca | 110 251 2109 1 3809 4091 4134 | 22128641 | 2112 | 3808 | 4096 | 4147 | 1327.923 -0.1% 27% 014
30 | 1107 | 3430 38.92 3948 | 17830197 | 1154 | 3428 | 3893 | 3955 1249.76 -4.2%
3B | 602 30.77 36.97 3745 | 15889673 | 6.50 30.73 | 3693 | 3753 | 1200.798 -8.0%
20 | 1573 | 4227 4217 42.68 7170907 | 1628 | 4226 | 4219 | 4269 47181 -3.5%
Fertis 60 25| 9.08 38.86 38.50 39.14 | 6824.357 957 3883 | 3847 | 30.11 493,982 -5.4% 27% 039
0| 475 34.99 35.29 36.39 5574.777 5.14 3494 | 3628 | 36.35 411,184 -8.4%
3B | 243 3131 32.77 3461 | 4881838 2.71 3129 | 3273 | 3454 | 391987 -11.2%
20 | 3753 | 4095 4142 42.28 22921.7 3659 | 4096 | 4150 | 4235 | 1401.028 2.5%
251 2021 | 37.71 39.05 4001 | 21491589 | 2018 | 37.73 | 39.16 | 40.10 | 1450.557 0.2%
Foobal | 130 30 | 1006 | 34.27 37.04 3826 | 17484307 | 1062 | 3423 | 3714 | 3835 | 1323697 -5.5% 4% 015
3B | 523 31.25 35.11 36.79 | 14986.002 | 5.86 3120 | 3529 | 3686 | 1218999 -12.0%
20 | 3294 1 4009 40.63 40.73 | 11973894 | 3283 | 40.09 | 4065 | 40.73 478.92 0.3%
. 25| 1942 | 3583 36.61 36.67 | 11726425 1947 | 3582 | 3661 | 3667 | 471809 -0.3%
Mobie |~ 130 30 ] 1018 | 3117 33.37 3334 0982.049 | 1032 | 3116 | 3337 | 3332 445,309 -1.3% L19% o7
3B 464 26.69 30.76 30.58 8969.222 480 26.68 | 30.73 | 3058 571.169 -3.6%
20 | 4946 | 4097 42.37 4320 | 26423156 | 4862 | 4098 | 4247 | 4333 | 1470627 1.7%
Rugy | 110 25 ] 2882 | 3724 39.77 40.73 | 25192607 | 29.01 | 3727 | 39.83 | 4083 | 1458401 -0.6% 3.46% 018
30 ] 1460 | 3341 37.69 3887 | 20042996 | 1553 | 3342 | 3762 | 3886 | 1382985 -6.4%
B | 744 30.07 35.82 3711 | 17910821 | 831 3006 | 3570 | 37.11 | 1284.853 -11.6%
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Performance of CSOME_4 8 with Histogram Peak Detection compared to JVT 128

JVT_128 CSOME_4_8 with Histogram Peak Detection
) Number ) ) .. | Bjontegaard| Bjontegaard
Video ) PSNRY | PSNRU | PSNRV |Computation . Computation] Total bit
of | op| wbis _ Mbits | PSNRY | Psnru | PSRy | ) BR Delta | PNSR Delta
Sequence (IVT_128)| (VT _128)| (IVT_128)| Time (sec) Time (sec) saving .
Frames saving (dB)
20 | 2229 | 2069 | 4174 | 4338 | 11566.032 | 2288 | 4067 | 4174 | 4340 | 535350 | -2.6%
25 | 1070 | 3697 | 3875 | 20.96 | 10897.736 | 1231 | 36.93 | 38.75 | 4101 | 523.185 | -5.3%
Bus | 75 034% | -049
30 | 556 | 3299 | 3671 | 3941 | 8901597 | 613 | 3293 | 3669 | 39.06 | 50638 | -102%
35 | 267 | 2940 | 3540 | 37.39 | 7820718 | 309 | 2927 | 3537 | 37.44 | 501879 | -15.9%
20 | 3588 | 4160 | 4329 | 2363 | 2323225 | 38.41 | 4158 | 4333 | 43.71 | 1074066 | -6.2%
25 | 21.09 | 3800 | 40901 | 4134 | 22128641 | 2265 | 38.06 | 4092 | 4145 | 1033597 | -7.4%
Canoa | 110 =0 1ro7 | 3230 | 3892 | 2948 | 17830.107 | 1242 | 3426 | 3891 | 3952 | or605 | 122w | 227 00
35 | 602 | 3077 | 3697 | 37.45 | 15889.673 | 7.9 | 30.70 | 3690 | 3748 | 97835 | -194%
20 | 1573 | 4227 | 4217 | 2268 | 7170907 | 1656 | 4227 | 4218 | 4270 | 391355 | 5.2%
. 25 | 908 | 3886 | 3850 | 29.14 | 6824357 | 986 | 3884 | 3850 | 39.13 | 376.968 | -85%
Fermis | 80 0T 275 | 3499 | 3520 | 3639 | 5574777 | 535 | 34.96 | 3528 | 3636 | 340767 | 1260 | 1°2° | 0O
35 | 243 | 3131 | 3277 | 3461 | 4881838 | 289 | 31.30 | 3272 | 3457 | 354112 | -188%
20 | 3753 | 4095 | 4142 | 2228 | 229217 | 37.80 | 40.98 | 4151 | 4235 | 1120556 | -0.7%
25 | 2021 | 37.71 | 3905 | 2001 | 21491589 | 21.21 | 37.76 | 3917 | 4010 | 1072806 | -2.9%
Football {130 =251 1006 | 3427 | 37.04 | 3820 | 17284307 | 11390 | 3422 | 37.3 | 3835 | toitesr | 33w | 4% | 04
35 | 523 | 3125 | 3511 | 3679 | 14986.002 | 634 | 3121 | 3524 | 3684 | 110807 | -212%
20 | 3204 | 2000 | 4063 | 2073 | 11973894 | 3292 | 4008 | 4064 | 20.72 | 457971 | 01%
. 25 | 1942 | 3583 | 3661 | 3667 | 11726425 | 1957 | 35.81 | 3662 | 36.67 | 428569 | -0.8%
Mobile 130 =0T 7018 | 3107 | 3337 | 3334 | 9982040 | 1045 | 3L15 | 3338 | 3332 | 220820 | 20% | 2270 | O
35 | 264 | 2669 | 3076 | 3058 | 8969222 | 488 | 2667 | 3074 | 3057 | 471678 | 5.3%
20 | 4946 | 2097 | 4237 | 4320 | 26423156 | 49.33 | 4097 | 4247 | 4332 | 1126251 | 02%
25 | 2882 | 37.24 | 3977 | 20.73 | 25192607 | 29.85 | 37.26 | 3982 | 40.83 | 1084899 | -3.6%
Rugby [ 110 o1 Ta60 | 3341 | 37.60 | 3887 | 20042.996 | 1631 | 3341 | 3761 | 3883 | t0areis | 7o | °%% | 04
35 | 744 | 3007 | 3582 | 37.11 | 17910821 | 900 | 3004 | 3567 | 37.08 | 1076539 | -21.0%




Performance of CSOME_4 8 with K-Means Clustering compared to JVT_ 128

JVT 128 CSOME_4 8 with K-Means Clustering
. Number . . . | Bjontegaard | Bjontegaard
Video . PSNRY | PSNRU | PSNRV | Computation . Computation| Total bit
Sequence of QP | Mbits (IVT_128)] (IVT_128)] (JVT_128)] Time (sec) Moits | PSNRY | PSNRU | PSNRV Time (sec) saving BR D_elta PNSR Defia
Frames saving (dB)

20 | 2229 | 4069 | 4174 4338 | 11586.032 | 22.98 | 40.6781] 41.7404] 434031] 566.14 -3.1%
Bus 75 25 | 1170 | 3697 38.75 4096 | 10897.736 | 12.36 | 36.9297] 38.7475] 40.9964] 550.691 5.7% 961% 050
30 | 55 | 3299 36.71 3911 | 8901597 | 6.16 |329362) 36.691 | 39.0342] 495.619 -10.8% ' '

35| 267 | 2940 | 3540 | 3739 | 7820718 | 309 |29.2865] 35.3493] 37.3646] 498.463 -15.6%

20 | 3588 | 4160 | 4329 4363 | 2323225 | 36.50 | 41.5864] 43.3498] 43.7307] 988.462 -L7%
canca | 110 251 2109 | 3809 | 4091 4134 | 22128641 | 2247 | 38.0567] 40.9298] 41.4472] 1010.719 -6.5% 10.36% 054
30 | 1107 | 3430 3892 3048 | 17839.197 | 1248 | 34.2655] 38.9127] 305214] 995.66 -12.7% ' '

35| 602 | 3077 36.97 3745 | 15889673 | 7.12 |30.7218] 36.9554] 37.5166] 933.949 -18.3%

€8

2| 1573 4227 4217 42.68 7170907 | 1656 | 42.2579] 42.1493] 42.6643] 336484 -5.3%
. 25| 9.08 38.86 38,50 39.14 6824.357 9.82 38.83 | 38.4739] 39.0979] 381.765 -8.1%
Ferris 60 -11.53% 0.59
0| 475 34.99 35.29 36.39 5574777 534 | 34.9324] 35.2551] 36.3432] 347.459 -12.6%

35| 243 | 3131 | 3277 | 3461 | 4881838 | 286 |31.2685] 32.6823] 345113] 292.191 -17.6%

20 | 3753 | 4095 | 4142 | 4228 22921.7 | 37.70 | 40.981 | 415141 42.3589] 1023.607 -0.4%
25| 2021 | 3771 3005 | 4001 | 21491589 | 21.18 ]37.7633] 39.171 | 40.101 | 1066.653 -4.8% )
Footsal | - 130 30 | 1006 | 3427 | 3704 | 3826 | 17484307 ]| 1137 |34.2146] 37.1322] 38.3357| 946,557 -13.0% 945% 04

35| 523 | 3125 | 3511 | 3679 | 14986002 | 633 |311788] 35275 | 36.8123| 861575 -20.9%

20 | 3294 | 4009 | 4063 40.73 | 11973894 | 32.81 ]40.0938] 40.6466] 40.7288] 431.306 04%
. 25| 1942 | 3583 36.61 36.67 | 11726425 ] 1949 |35.8294] 36.6244] 36.6709| 459.373 -0.4%
Mobile | 130 -1.06% -0.06
30 | 1018 | 3L17 33.37 3334 | 9982049 | 1033 |311721) 33.3794] 33.3375] 384535 -1.5%

35| 464 | 2669 30.76 3058 | 8969.222 | 478 |26.6818] 30.7478] 30.5809] 367.46 -3.0%

20 | 4946 | 4097 | 4237 | 4320 | 26423156 | 49.31 | 409791] 42.4762] 43.3353] 1066.125 | 0.3%

25 | 2882 | 3724 | 3977 | 4073 | 25192607 | 29.76 | 37.2621] 39.8208] 408332] 1121.139 | -3.2%

Rughy | 110 698% | 036
30 | 1460 | 3341 | 3769 | 3887 | 20042.996 | 1610 | 33406 | 37.6223| 388442 988941 | -10.3%

35| 744 | 3007 | 358 | 3711 | 17910821 | 879 |30.0576] 35.7031] 37.0805| 965.398 -18.1%




Performance of CSOME_4 8 with Single Iteration K-Means Clustering compared to JVT 128

JVT 128 CSOME_4 8 with Single Iteration K-Means Clustering
Video | NUmPer | psnrY | PsnRU | PSRV | computation| Computation| Totalbit | Eiontegaard | Bjontegaard
Sequence of QP | Mbits (IVT_128)] (IVT_128)] (IVT_128) TimFe) (sec) Moits | PSNRY | PSNRU | PSNRV Timz (sec) saving BR D_elta PNSR Defia
Frames saving (dB)
20 | 2229 | 40.69 4174 4338 | 11586.032 | 2300 | 4067 | 4174 | 4340 609.122 -3.2%
Bus 75 25 ] 1170 | 3697 38.75 4096 | 10897.736 | 1237 | 3694 | 3874 | 4098 478454 5.7% 9.76% 051
30 | 556 32.99 36.71 39.11 8901.597 6.16 3293 | 36.70 | 39.07 551.415 -10.7%
3B | 267 29.40 3540 37.39 7820.718 312 2929 | 3536 | 3735 | 487528 -16.7%
20 | 3588 ] 4160 4329 43.63 2323225 | 3660 | 4159 | 4335 | 4373 991.708 -2.0%
canca | 110 251 2109 1 3809 4091 4134 | 22128641 | 2240 | 3807 | 4093 | 4146 | 1037.718 -6.2% 985% 052
30 | 1107 | 3430 38.92 3948 | 17830197 | 1238 | 34.27 | 3892 | 3953 948.902 -11.8%
3B | 602 30.77 36.97 3745 | 15889673 | 7.13 30.72 | 3695 | 3752 896.043 -18.4%
20 | 1573 | 4227 4217 4268 | 7170907 | 1658 | 4226 | 4215 | 4267 | 349.033 -5.4%
Fertis 60 25| 9.08 38.86 38.50 39.14 | 6824.357 9.76 3882 | 3848 | 30.11 329.744 -1.4% 11.32% 059
0| 475 34.99 35.29 36.39 5574.777 5.33 3493 | 3627 | 36.35 347547 -12.3%
3B | 243 3131 32.77 3461 | 4881838 2.88 3127 | 3267 | 3450 | 301687 -18.2%
20 | 3753 | 4095 4142 42.28 22921.7 3781 | 4099 | 4152 | 4236 | 1062.781 -0.7%
251 2021 | 37.71 39.05 4001 | 21491589 | 2122 | 37.76 | 39.18 | 40.09 1023.84 -5.0%
Fooball | 130 30 | 1006 | 34.27 37.04 3826 | 17484307 | 1136 | 3422 | 3715 | 3835 946.672 -12.9% 959 R
3B | 523 31.25 35.11 36.79 | 14986.002 | 6.35 3116 | 3524 | 36.84 887.634 -21.4%
20 | 3294 1 4009 40.63 40.73 | 11973894 | 3275 | 4009 | 4066 | 40.73 349.713 0.6%
. 25| 1942 | 3583 36.61 36.67 | 11726425 1945 | 3583 | 36.62 | 3666 | 378.966 -0.2%
Mobie |~ 130 30 ] 1018 | 3117 33.37 3334 0982.049 | 1035 | 3117 | 3336 | 3333 394.624 -1.7% L01% 006
3B 464 26.69 30.76 30.58 8969.222 477 26.69 | 30.75 | 30.60 345.436 -2.8%
20 | 4946 | 4097 42.37 4320 | 26423156 | 4954 | 4098 | 4247 | 4333 | 1071627 -0.2%
Rugy | 110 25 ] 2882 | 3724 39.77 40.73 | 25192607 | 2970 | 3727 | 39.82 | 4083 | 1029.373 -3.0% 756% 039
30 ] 1460 | 3341 37.69 3887 | 20042996 | 16.30 | 3341 | 3761 | 3883 | 1027.942 -11.6%
B | 744 30.07 35.82 3711 | 17910821 | 8489 3005 | 3571 | 3706 949.366 -19.5%
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Performance of CSOME _4 11 with Histogram Peak Detection compared to JVT 128

JVT 128 CSOME_4 11 with Histogram Peak Detection
Video | NUmPer | PsnrY | Ps\RU | PSR | computation] Computation| Total bie | Biontegaard | Blontegaard
Sequence of QP | Mbits (IVT_128)] (IVT_128)] (IVT_128) TimFe) (sec) Moits | PSNRY | PSNRU | PSNRV Timz (sec) saving BR D_elta PNSR Defia
Frames saving (dB)
20 | 2229 | 40.69 4174 4338 | 11586.032 | 2258 | 4068 | 41.75 | 4341 703675 -1.3%
BUS 75 25 | 1170 | 3697 38.75 4096 | 10897736 | 12.11 | 3695 | 38.73 | 4100 685.841 -3.5% 6.82% 036
30 | 556 32.99 36.71 30.11 8901.597 599 3294 1 3670 | 39.10 659.495 -1.7%
3B | 267 29.40 3540 37.39 7820.718 3.02 2031 | 3638 | 3741 674.79 -13.0%
20 | 3588 | 4160 4329 43.63 2323225 | 3639 | 4159 | 43.36 | 43.72 | 1400.032 -1.4%
canca | 110 25| 2109 | 38.09 4091 4134 | 22128641 | 2228 | 3806 | 4094 | 4144 | 1393638 -5.7% 950% 049
30 | 1107 | 3430 38.92 3948 | 17839197 | 1235 | 3426 | 3892 | 3952 | 1293436 -11.5%
3B | 602 30.77 36.97 3745 | 15889673 7.00 3068 | 3692 | 3751 | 1252.857 -16.3%
20 | 1573 | 4227 42.17 4268 | 7170907 | 1650 | 4228 | 4217 | 4271 502.737 -4.9%
Ferris 60 25| 9.08 38.86 3850 39.14 | 6824.357 9.77 3884 | 3849 | 39.12 | 484547 -1.6% 1047% 053
30| 475 34.99 35.29 36.39 S574.777 5.28 3495 | 3528 | 3640 | 442395 -11.2%
3B | 243 3131 32.77 3461 | 4881838 2.83 3130 | 3275 | 3456 | 449546 -16.2%
20 | 3753 | 4095 4142 42.28 22921.7 3729 | 4097 | 4150 | 4234 | 1479.976 0.6%
25| 2021 | 3771 39.05 4001 | 21491589 | 2089 | 37.73 | 39.14 | 40.09 | 1448.004 -3.3%
Football | 130 30 | 1006 | 34.27 37.04 3826 | 17484307 | 1116 | 3422 | 3713 | 3834 | 1343.754 -10.9% 1% 03
3B | 523 31.25 3511 36.79 | 14986.002 | 6.22 3120 | 3521 | 3684 | 1279816 -18.8%
20 | 3294 | 40.09 40.63 40.73 | 11973894 | 3296 | 4008 | 4064 | 40.73 596.422 -0.1%
. 25 | 1942 | 3583 36.61 3667 | 11726425 | 1958 | 3581 | 3660 | 36.65 566.403 -0.8%
Mobile {130 30 | 1018 | 3117 33.37 3334 | 9982049 | 1045 | 3115 ) 3336 | 3332 555.703 -2.6% 243% 01
3B | 464 26.69 30.76 3058 | 8969.222 491 2666 | 30.72 | 3059 579.078 -5.8%
20 | 4946 | 4097 42.37 4320 | 26423156 | 4960 | 4097 | 4245 | 4331 | 1505.469 -0.3%
Rughy | 110 25 | 2882 | 3724 39.77 40.73 | 25192607 | 29.95 | 3725 | 39.80 | 4081 | 1470591 -3.9% 766% 039
30 | 1460 | 3341 37.69 3887 | 20042996 | 1622 | 3341 | 3762 | 3884 1383.27 -11.1%
S| 744 30.07 35.82 3711 | 17910821 | 873 3004 | 3568 | 37.08 | 1313933 -17.3%
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Performance of CSOME_4 11 with K-Means Clustering compared to JVT 128

JVT 128 CSOME_4 11 with K-Means Clustering
Video | NUmber | ps\Ry | Ps\RU | PSNRV | computation| . Computation| Total i | Biontegeard | Bjontegaard
Sequence of QP | Mbits (IVT_128)] (IVT_128)] (IVT_128) TimFe) (sec) Moits | PSNRY | PSNRU | PSNRV Timz (sec) saving BR D_elta PNSR Defia
Frames saving (dB)
20 | 2229 | 40.69 4174 4338 | 11586.032 | 22.70 | 4068 | 41.75 | 4340 765.221 -1.8%
BUS 75 25 | 1170 | 3697 38.75 4096 | 10897.736 | 12.09 | 3695 | 38.76 | 4101 651.232 -3.4% £.92% 037
30 | 556 32.99 36.71 30.11 8901.597 6.01 3295 | 3670 | 39.09 664.378 -1.9%
3B | 267 29.40 3540 37.39 7820.718 3.04 2032 | 3537 | 31.34 647.186 -13.7%
20 | 3588 | 4160 4329 43.63 2323225 | 3604 | 4159 | 4335 | 43.74 | 1405072 -0.5%
canca | 110 25| 2109 | 38.09 4091 4134 | 22128641 | 2182 | 3807 | 4094 | 4144 | 1420241 -3.4% 7.04% 037
30 | 1107 | 3430 38.92 3948 | 17839197 | 1206 | 3427 | 3893 | 3952 | 1310.263 -8.9%
3B | 602 30.77 36.97 3745 | 15889673 | 6.88 30.70 | 3698 | 3751 | 1304.722 -14.3%
20 | 1573 | 4227 42.17 42,68 7170907 | 1643 | 4226 | 4215 | 4268 495.267 -4.5%
Ferris 60 25| 9.08 38.86 3850 39.14 6824.357 9.67 3884 | 3848 | 39.11 490.795 -6.5% 10.18% 052
30| 475 34.99 35.29 36.39 S574.777 5.32 3493 | 3527 | 3631 433516 -12.0%
3B | 243 3131 32.77 3461 4831838 2.80 3129 | 3273 | 3455 398.95 -15.2%
20 | 3753 | 4095 4142 42.28 22921.7 3712 | 4097 | 4149 | 4234 138552 1.1%
25| 2021 | 3771 39.05 4001 | 21491589 | 2085 | 37.73 | 3915 | 40.09 | 1419.243 -3.2%
Football | - 130 30 | 1006 | 34.27 37.04 3826 | 17484307 | 1108 | 3422 | 3711 | 3833 | 1312.169 -10.1% 1A% 034
3B | 523 31.25 3511 36.79 | 14986.002 | 6.20 3119 | 3523 | 3684 | 1224014 -18.4%
20 | 3294 | 40.09 40.63 40.73 | 11973894 | 32.78 | 40.09 | 4065 | 40.73 524436 0.5%
. 25 | 1942 | 3583 36.61 3667 | 11726425 | 1946 | 3583 | 3662 | 36.67 465.607 -0.2%
Mobile {130 30 | 1018 | 3117 33.37 33.34 9982.049 | 1030 | 3117 | 3339 | 33.33 446.154 -1.1% 081% 00
3B | 464 26.69 30.76 30.58 8969.222 477 2669 | 30.76 | 3059 476.625 -2.8%
20 | 4946 | 4097 42.37 4320 | 26423156 | 4948 | 4098 | 4245 | 4331 | 1484679 0.0%
Rughy | 110 25 | 2882 | 3724 39.77 40.73 | 25192607 | 29.78 | 3725 | 39.81 | 4082 | 1492.972 -3.3% 6.63% 035
30 | 1460 | 3341 37.69 3887 | 20042996 | 1597 | 3341 | 37.63 | 3884 1369.02 -9.4%
S| 744 30.07 35.82 3711 | 17910821 | 868 3005 | 3573 | 3710 | 1320338 -16.6%
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Performance of CSOME_4 11 with Single Iteration K-Means Clustering compared to JVT 128

JVT 128 CSOME_4 11 with Histogram Peak Detection
Video | NUmPer | PsnrY | Ps\RU | PSR | computation] Computation| Total bie | Biontegaard | Blontegaard
Sequence of QP | Mbits (IVT_128)] (IVT_128)] (IVT_128) TimFe) (sec) Moits | PSNRY | PSNRU | PSNRV Timz (sec) saving BR D_elta PNSR Defia
Frames saving (dB)
20 | 2229 | 40.69 4174 4338 | 11586.032 | 22.65 | 4068 | 41.74 | 4340 733.004 -1.6%
25 | 1170 | 3697 38.75 4096 | 10897736 | 12.17 | 3695 | 38.75 | 4100 730.14 -4.1%
Bus 75 -1.02% -0.37
30 | 556 32.99 36.71 30.11 8901.597 599 3294 1 3671 | 39.09 651.784 -1.6%
3B | 267 29.40 3540 37.39 7820.718 3.02 2030 | 3538 | 37.38 669.507 -13.3%
20 | 3588 | 4160 4329 43.63 2323225 | 3599 | 4159 | 4335 | 43.73 | 1384.939 -0.3%
canca | 110 25| 2109 | 38.09 4091 4134 | 22128641 | 2180 | 3807 | 4094 | 4145 142194 -3.3% 714% 038
30 | 1107 | 3430 38.92 3948 | 17839197 | 1209 | 3427 | 3894 | 3951 | 1310548 -9.2%
3B | 602 30.77 36.97 3745 | 15889673 | 6.90 3070 | 3697 | 3752 | 1215623 -14.6%
20 | 1573 | 4227 42.17 4268 | 7170907 | 1635 | 4225 | 4216 | 4267 | 468.721 -3.9%
Ferris 60 25| 9.08 38.86 3850 39.14 | 6824.357 9.64 3883 | 3847 | 3911 462.402 -6.2% 9.92% 050
30| 475 34.99 35.29 36.39 S574.777 531 3494 1 3530 | 3636 | 422061 -11.9%
3B | 243 3131 32.77 3461 | 4881838 2.78 3128 | 3274 | 3456 | 373276 -14.3%
20 | 3753 | 4095 4142 42.28 22921.7 3714 | 4097 | 4149 | 4234 1438.72 11%
25| 2021 | 3771 39.05 4001 | 21491589 | 2081 | 37.74 | 3915 | 4009 | 1384.755 -3.0%
Football | - 130 30 | 1006 | 34.27 37.04 3826 | 17484307 | 1106 | 3422 | 3711 | 3833 | 1296.607 -10.0% 736% 034
3B | 523 31.25 3511 36.79 | 14986.002 | 6.22 3118 | 3526 | 36583 | 1223935 -18.9%
20 | 3294 | 40.09 40.63 40.73 | 11973894 | 32.74 | 4009 | 4065 | 40.73 | 471827 0.6%
. 25 | 1942 | 3583 36.61 3667 | 11726425 | 1946 | 3582 | 3661 | 3668 | 464.872 -0.2%
Mobile {130 30 | 1018 | 3117 33.37 3334 ] 9982049 | 1030 | 3117 | 3338 | 3333 | 458157 -1.1% 086% 00
3B | 464 26.69 30.76 3058 | 8969.222 4.78 2669 | 3076 | 3058 | 465581 -3.1%
20 | 4946 | 4097 42.37 4320 | 26423156 ] 4956 | 4098 | 4246 | 4331 | 1477.968 -0.2%
Rughy | 110 25 | 2882 | 3724 39.77 40.73 | 25192607 | 29.76 | 37.26 | 39.81 | 4081 | 1451.681 -3.3% 6.64% 035
30 | 1460 | 3341 37.69 3887 | 20042996 | 1595 | 3340 | 37.63 | 3885 | 1380.205 -9.3%
S| 744 30.07 35.82 3711 | 17910821 | 871 3005 | 3572 | 3710 | 1319436 -17.0%
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