
A New Fast Motion Search Algorithm for

Block Based Video Encoders

by

Simon Peter William Booth

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Masters of Applied Science
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2003

©Simon Peter William Booth, 2003

 ii

I hereby declare that I am the sole author of this thesis.
I authorize the University of Waterloo to lend this thesis to other institutions or individuals
for the purpose of scholarly research

Signature

I further authorize the University of Waterloo to reproduce this thesis by photocopying or by
other means, in total or in part, at the request of other institutions or individuals for the
purpose of scholarly research.

Signature

 iii

Borrower’s Page

The University of Waterloo requires the signatures of all persons using or photocopying this

thesis. Please sign below, and give address and date.

 iv

Acknowledgements

I would like to extend my gratitude to all those who helped and supported me while

preparing this thesis. Firstly, I would like to thank my supervisor Prof. D. Clausi for his

support and guidance – both technical and otherwise over the last three years. I would like to

thank my co-supervisor Prof. M. E. Jernigan for his guidance and for first introducing me to

the area of Image Processing.

I would like to thank Dr. M. Gallant, Dr. G. Coté and especially Dr. L. Winger at

VideoLocus Inc. for providing me with the resources for this research, and for sharing with

me their considerable expertise in the field of video compression.

Finally, I would like to thank my fiancée, Nazreen Perris, whose love and support have

been invaluable.

 v

Abstract

Block-based motion compensated transform coding is a ubiquitous paradigm for video

compression systems. In such video encoders, block-based motion estimation is a significant

tool for the reduction of redundant information. In a typical video encoder, motion

estimation is the most computationally expensive process, accounting for 60-80% of

computational resources. Many fast block-matching techniques have been proposed,

however, few are well suited to implementation in a VLSI system. In this thesis, a novel

motion estimation algorithm is proposed that exhibits some properties that facilitate efficient

VLSI implementation, while providing an average compression performance increase of up

to 15%, over the traditional full search block-matching algorithm.

 vi

Table of Contents

Chapter 1 Introduction .. 1

1.1 Video Compression ... 1

1.2 Exploiting Pixel Redundancy in Video Coding .. 3

1.3 Block Based Motion Compensation and Estimation .. 4

1.4 Contribution .. 5

Chapter 2 Block-Based Motion Compensated Transform Coding ... 6

2.1 Video Compression Standardisation ... 6

2.2 Encoder-Decoder System Overview ... 6

2.3 Colour Image Representation.. 7

2.4 Motion Compensation ... 8

2.4.1 Intraframe prediction .. 9

2.4.2 Interframe prediction .. 9

2.4.3 Video Sequence Structure .. 13

2.5 Transform Coding ... 14

2.6 Quantisation .. 15

2.7 Entropy Coding ... 16

Chapter 3 Motion Estimation.. 18

3.1 Block-matching ... 18

3.1.1 Matching cost functions.. 19

3.1.2 Full Search Block-matching ... 21

3.2 Fast Block-Matching Algorithms.. 23

3.3 Summary ... 25

Chapter 4 Constant Search Offset Motion Estimation.. 27

4.1 Full Search Block-Matching Motion Estimation .. 27

4.2 VLSI Implemental Considerations.. 28

4.2.1 Number of Search Positions ... 29

 vii

4.2.2 Local Memory Requirement... 30

4.2.3 I/O Bandwidth .. 30

4.2.4 Regularity of Execution flow ... 32

4.3 Motion Characteristics of Video ... 33

4.4 Proposed Motion Estimation... 41

4.4.1 Implemental Properties of Proposed Method ... 43

4.5 Motion Vector Analysis .. 45

4.5.1 K-Means Clustering.. 45

4.5.2 Single Iteration K-Means Clustering.. 47

4.5.3 Histogram Peak Detection .. 48

4.6 Full Search... 51

4.7 Experimental Setup ... 53

4.7.1 Encoding Parameters .. 53

4.7.2 Test Video Sequences... 54

4.7.3 Motion Estimation Algorithms and Parameters ... 54

4.7.4 Measures of Performance ... 56

4.8 Experimental Results... 57

4.8.1 Performance of Collocated Search ... 57

4.8.2 Motion Vector Clustering Methods.. 59

4.8.3 CSOME vs Collocated Search.. 60

Chapter 5 Conclusion.. 65

5.1 Future Enhancements .. 67

Appendix A – Glossary of Terms ... 68

Appendix B – Full Experimental Results ... 69

Chapter 6 Bibliography... 94

 viii

List of Figures

Figure 1-1 - Digital signal transmission system ... 2

Figure 2-1 - Block diagram of the hybrid video encoding scheme... 7

Figure 2-2 - Predictive Coding ... 8

Figure 2-3 - Block Motion Compensation .. 11

Figure 2-4 - Neighbouring blocks (A-D) used for motion vector prediction of X 12

Figure 2-5 – Macroblock Partitioning for Motion Compensation in H.264 12

Figure 2-6 - Typical frame ordering of a group of pictures.. 13

Figure 2-7 - Zig-Zag Scan Order for Coefficients .. 16

Figure 3-1 - Block-matching... 19

Figure 3-2 - Full search block-matching search window.. 22

Figure 4-1 - Full Search Reference Window Overlap .. 32

Figure 4-2 - Histogram of Motion Vectors for Full Football Sequence 33

Figure 4-3 - Motion Vector Histogram for Football Frame 55... 35

Figure 4-4 - Motion Vector Histogram for Football Frame 56... 35

Figure 4-5 - Motion Vector Histogram for Football Frame 57... 36

Figure 4-6 - Motion Vector Histogram for Football Frame 58... 36

Figure 4-7 - Motion Vector Histogram for Football Frame 59... 37

Figure 4-8 - Motion Vector Histogram for Football Frame 60... 37

Figure 4-9 - Motion Vector Histogram for Bus Frame 3.. 38

Figure 4-10 - Motion Vector Histogram for Bus Frame 4.. 39

Figure 4-11 - Motion Vector Histogram for Bus Frame 5.. 39

Figure 4-12 - Motion Vector Histogram for Bus Frame 6.. 40

Figure 4-13 - Motion Vector Histogram for Bus Frame 7.. 40

Figure 4-14 - Motion Vector Histogram for Bus Frame 8.. 41

Figure 4-15 - Multiple Constant Offset Full Search Windows... 43

Figure 4-16 - Bjontegaard BR Delta performance of collocated searchs 58

 ix

Figure 4-17 - R-D Perfomance of Collocated Motion Search .. 58

Figure 4-18 - Performance of MV Clustering Methods.. 60

Figure 4-19 - Clustering Methods for Mobile and Calendar .. 61

Figure 4-20 - Performance Comparison of Motion Estimation (Small Search Areas)........... 63

Figure 4-21 - Performance Comparison of Motion Estimation (Large Search Areas)........... 64

 x

List of Tables

Table 4-1 - Video Sequences Used for Evaluation of Motion Estimation 55

Table 4-2 - Evaluated Motion Estimation Algorithms ... 55

Table 4-3 - Implemental Properties of Evaluated Motion Estimation Algorithms................. 56

 1

Chapter 1

Introduction

A vast array of applications involves the transmission or storage of video sequences.

Recent advances in digital technologies have created heightened interest in digital formats of

video. The advent of the Internet has enabled digital video applications such as video-

conferencing, and, with the ubiquity of personal computers, has created a demand for

consumer multimedia applications. Television broadcasting is also moving towards the use

of digital broadcasting technologies with the introduction of satellite, digital subscriber layer

(DSL) and other digital service providers. Emerging technologies, such as digital cinema,

continue to create further demand for digital video.

Raw digital video is a sequence of digital frames. In a typical television application, each

frame would be comprised of 720 rows and 480 columns of pixels (picture elements), and the

video sequence would have 30 frames per second. With 24 bits of information per pixel,

transmission of such video would result in a data rate of over 248 Mbps. Emerging high-

definition television standards would require over 1.5 Gbps. With the limited bandwidth of

today’s networks and storage media, there is a clear need for effective video compression

technologies. For example, a DSL network connection has a typical data bandwidth of 6

mbps, far below the required data rate for uncompressed video.

1.1 Video Compression

Digital video signals contain redundant and irrelevant information [1]. Redundancy in

video can be of many forms: spatial redundancy, due to the correlation of neighbouring

pixels; temporal redundancy, due to the correlation between video frames [2]; and coding

redundancy, due to other statistical redundancies that occur throughout the encoding process.

Digital video signals can also include data that are imperceptible to the human visual system

- this data can be considered irrelevant in most applications. Because of these properties, it is

possible to compress video signals to manageable data rates without introducing significant

quality degradation.

 2

The video compression application can be viewed as a traditional digital signal

transmission system, the basic components of which are shown in Figure 1-1. For video

compression applications, the transmitter would include the functionality of a video encoder;

the channel could take the form of a digital broadcast or storage medium; the receiver would

include the functionality of a video decoder corresponding to the encoder. The efficiency of

a video compression system is defined by two measurements: the data rate through the

channel and the error or distortion between the source video signal and the decoded signal.

Content
Provider

Encoder
Encoder
Transport
System

Transmitter

Transmission
Channel

End
User Decoder

Decoder
Transport
System

Receiver

Figure 1-1 - Digital signal transmission system

There are two fundamental approaches to video compression systems. Lossless, or

reversible compression [3], requires that there be zero error between the source video and the

decoded video signals. The efficiency of the system is then only defined by the data rate.

Compression systems of this kind are typically able to achieve compression ratios of between

2 and 5 times [4,5]. This form is usually found in specialised application areas such as

remote sensing or medical imaging [6]. The majority of video compression applications can

tolerate some degradation between source and decoded video signals. Such lossy

compression systems are able to achieve much higher compression ratios depending on the

tolerance for signal degradation.

 3

1.2 Exploiting Pixel Redundancy in Video Coding

An observation fundamental to video compression is that successive frames of a video

sequence are often very similar. As well, pixel values within a region of the same frame are

also quite similar. The high correlation of pixel values between frames and within the same

frame implies significant redundant information for encoding. Modern video compression

systems have several mechanisms for exploiting this redundant information to achieve data

rate reductions. Among them, one of the most significant such mechanisms is called motion

compensation [3].

The purpose of motion compensation is to decorrelate pixel values. This is done by

creating a predicted value for each pixel in a frame with respect to pixels in past, current, or

future frames. The aggregation of the predicted pixel values for a video frame is called the

predicted frame. The predicted frame is subtracted from the original frame to be encoded,

creating a prediction residual frame. With a perfect motion compensation system, the pixels

in this residual frame would be completely uncorrelated.

Ultimately, the goal of motion compensation is to reduce the required data transmission

rate for the compressed video sequence. Data rate reduction is possible through motion

compensation in video coding systems through the syntax defined for the compressed stream,

which is known to the encoder and the decoder. The syntax defines a set of parameters that

is used to generate predicted pixel values for the current frame based on previously encoded

pixel values. In general, it is possible to find appropriate prediction parameters, such that the

data rate for encoding the prediction parameters and the residual pixel information is

significantly less than the data rate that would be required to encode the original pixel values.

A very simple form of motion compensation would be to use a previous frame as the

predicted frame – the predicted value for each pixel is the co-located pixel value in a

previous frame. In this case, the prediction parameters would simply signal the previous

frame to be used for prediction, and the pixel information to be coded would be the

difference between the two frames. As is true for most video sequences, when successive

 4

frames are very similar, this approach would be effective at decorrelating the pixel value, and

reducing the encoded data rate.

1.3 Block Based Motion Compensation and Estimation

Various video coding systems allow different prediction models. These can vary widely in

complexity from the simple frame difference model, discussed in the previous section, to far

more complex models where the prediction model is better able to accurately predict the

pixel values. In the latter case, the proportion of the data rate allocated to the prediction

parameters is greater, but the portion allocated to the pixel data is far less – resulting in

overall compression gains.

The process by which the best prediction parameters are identified for each video frame is

called motion estimation. As the complexity of the prediction model increases, so too does

the required complexity of the motion estimation process, and therefore the computational

resources required for implementation. There is therefore a trade-off in the determination of

the complexity of the prediction model used for motion compensation. There is an obvious

need to achieve significant compression of video sequences. However, this must be balanced

against the implied complexity and feasibility of implementation.

In practice, the most common prediction model used for video coding is block translation

[3]. In this model, video frames are divided into rectangular blocks of pixels. For each block

of pixels, a similar block of pixels is identified in a previously encoded video frame. The

pixels in this block of the previous frame are then used as the predicted values for the pixels

in the current frame. The difference in location of the pixel blocks in the previous and

current frame is called motion. This motion is coded as the motion vector that defines the

location of the prediction block in the previous frame, with respect to the block in the current

frame. In most cases, for each block in a video frame, it is possible to find a block in a

previous frame where the data rate to encode the motion information and the pixel residual

information for the block is less than the data rate that would be required to encode the

original pixel information.

 5

1.4 Contribution

In modern incarnations of video compression systems that use block based motion

compensation, the motion estimation task is often the most computationally expensive

component of the encoding process. Recent complexity advances, such as variable block

size compensation and sub-pixel motion vector resolution, have further highlighted the need

for efficient block based motion estimation.

In recent years, much research has been done to improve the efficiency of motion

estimation algorithms [7-16]. Many of the approaches use complex procedural strategies that

are far more appropriate to software implementations than to efficient hardware very large

scale integration (VLSI) implementation. This thesis proposes a novel method for efficient

motion estimation within the context of a block translation prediction model. This method is

aimed at addressing some of the issues associated with a VLSI implementation of a video

encoder.

The next chapter will describe the theory and structure that is common to most modern

video compression systems. Particular reference will be made to recent standardisation

efforts, specifically International Telecommunication Union Telecommunication

Standardization Sector (ITU-T) recommendation H.264. The following chapters will discuss

the motion estimation problem, and a variety of motion estimation techniques. Several fast

motion estimation algorithms proposed in the literature will be described and their suitability

for hardware implementation will be considered. Chapter four will then describe the

proposed motion estimation algorithm, and its performance will be evaluated. Chapter five

concludes the thesis and provides recommendations for future enhancements to the proposed

algorithm.

 6

Chapter 2

Block-Based Motion Compensated Transform Coding

2.1 Video Compression Standardisation

Wide interest in video compression throughout various industries and academia has led to

the standardisation of video compression. Several successful video compression standards

have emerged over recent years – largely falling within the Motion Pictures Experts Groups

MPEG, or ITU-T H.26x groups of standards[17-20]. The most common of these standards is

MPEG-2[18], which has become ubiquitous within the television broadcasting and DVD

industries. The most recent emerging standard is the ITU-T recommendation H.264 [21].

While H.264 offers much advancement over MPEG-2, both video standards are examples of

Block Based Motion Compensated Transform Coding. This chapter will provide an

overview of the basic structure and each of the compression tools of the H.264 compression

standard. While many of the details are specific to H.264, much of the general theoretical

discussion will be equally applicable to any of the aforementioned standards.

2.2 Encoder-Decoder System Overview

Standard video compression techniques[17-21] are often referred to as hybrid techniques

because they make use of several compression tools simultaneously. Each such tool can be

used independently, or in conjunction with the other methods. The methods common to all

standards video encoding systems are colour sub-sampling, motion compensation, frequency

transform, quantisation, and lossless or entropy encoding. Figure 2-1 shows the structure and

interconnections of the hybrid coding scheme used by H.264 and other video compression

standards.

 7

Transformation
and Quantization

Entropy Coding

Motion
Compensation

Motion
Estimation

Inverse
Transformation

and
Inverse

Quantization

+

+

_

Input

Output

Figure 2-1 - Block diagram of the hybrid video encoding scheme

2.3 Colour Image Representation

A digital video sequence can be viewed as a series of 2-D colour images or frames.

Frames are represented by a luminance signal (luma Y) and two chrominance signals

(chroma Cr and Cb). The human psycho-visual perception system exhibits much greater

sensitivity to high frequency variations in the brightness or luminance of an image that in the

chrominance components [22]. The MPEG video compression standards[18,20,21] exploit

this aspect of the psycho-visual system by reducing the resolution of the chrominance

components of a video signal. Specifically, in H.264, the two chrominance signals are

represented with half the vertical and horizontal resolution of the luminance signal (4:2:0

sub-sampling). This generates a 2:1 compression ratio with minimal visual quality

degradation [23].

 8

2.4 Motion Compensation

The most important feature of video compression systems is the ability to exploit the

spatial and temporal redundancies inherent in all video sequences. Largely, this is

accomplished through predictive coding. In this scheme, a predicted value is estimated for

each pixel of a video frame, and the difference between the predicted and actual values of

each pixel is the only pixel information required to be encoded (Figure 2-2):

 [] [] []yxRyxPyxP ,,ˆ, += , (1)

where P is the original pixel value, P̂ is the predicted value of the pixel, and R is the

prediction error or residual, at position (x,y). If the predicted pixel value is derived from

other pixels from the same video frame, the effect of this technique is to reduce the spatial

redundancy of the video. If the prediction is derived from other video frames of the

sequence, the temporal redundancy is reduced.

Pixel
Prediction

P[x,y]R[x,y]

P[x,y]

Figure 2-2 - Predictive Coding

The MPEG/ITU video compression standards referred to in section 2.1 allow many

prediction models to be used to estimate pixel values. As a result, the encoded stream must

also contain a set of prediction parameters that define the prediction model, and therefore,

estimate the pixel using previously decoded pixels. When considering the data rate cost of

encoding, it is important to consider both the amount of data required for the pixel

information and for the prediction parameters. The MPEG/ITU video compression

standards[17-21] divide each frame into blocks of pixels and define the estimates of the

entire block through one set of prediction parameters. These blocks are called macroblocks

and for H.264 [21] they have a size corresponding to 16x16 luma pixels and two fields of 8x8

 9

chroma pixels. For each macroblock, there are two types of prediction models used by the

video compression standards: Intraframe estimation, and Interframe estimation. These are

discussed in the next sections.

2.4.1 Intraframe prediction

In each frame of a video sequence there is a high spatial correlation. This implies that it is

possible to calculate reasonable estimates of the values of a block of pixels based on a set of

neighbouring pixels. H.264 defines intra prediction modes that generate a 16x16 predictive

block of pixels based on the neighbouring pixels above and to the left of the macroblock.

Also, H.264 allows for intra prediction on a 4x4 pixel block level using a similar set

neighbouring pixels. There are four directional intra prediction modes for 16x16 intra

prediction and nine directional 4x4 intra prediction modes. These are described in full detail

in [21].

The estimation strategies used for intraframe prediction are typically an exhaustive

evaluation of the available prediction modes for each block [15]. The resource requirements

for this are far less than for interframe estimation. As a result, this thesis focuses on

interframe estimation.

2.4.2 Interframe prediction

The most significant video compression tool is interframe prediction. Also called motion

compensation, this form of prediction is used to remove temporal redundancies in video data.

Motion compensation attempts to model the motion of objects within a video sequence over

time. This corresponds to a mapping of pixels in one frame to pixels in a previously coded

frame.

 10

Referring to Eq. (1), the predicted value of a pixel in the current frame []yxPk ,ˆ is estimated

from the previously coded frame 1−kP , using prediction model PRED(), and a set of motion

parameters:

 [] ()1},_{,ˆ
−= kk PparametersmotionPREDyxP (2)

The aggregation of this mapping will be a predictive frame, kP̂ , as indicated in (1). The

residual frame, Rk, is produced by the subtraction of the predictive frame from the original

frame:

 kkk PPR ˆ−= (3)

The residual frame will contain much less information than the original frame therefore

reducing the data rate required for the pixel information. When the data rate required to

encode the motion parameters that define the motion-based prediction and the residual frame

is less than the data rate that would required to encode the original frame directly, motion

compensation provides compression gain.

Motion in a video sequence can be of several different types – an object can undergo any

combination of rotation, zoom and translational motion in any direction. Many research

papers in the literature have proposed motion compensation models to precisely describe the

motion of groups of pixels. In [24] and [25], for example, arbitrarily shaped object models

are defined to describe the shape of moving objects in video. In [26], a method for

describing macroblock block motion as a generalised spatial transformation is presented.

Many of these motion models, and others that exist like them, pose too great a challenge in

estimation of the best parameters to be practical for most video encoding applications. As a

result, simpler motion models are more appropriate for most video compression applications.

The motion compensation used in most MPEG/ITU video compression standards is limited

to translational motion of blocks[17-21]. For each block of pixels, a similar block of pixels is

identified in a previously encoded frame, and is used for prediction. The difference between

the position of the predictive block of pixels in the previous frame and the position of the

original pixel block can be represented by a motion vector with horizontal and vertical

 11

components: XMV and YMV. For translational motion model, the prediction for each pixel

within the block is formed with the following equation:

 [] []MVMVkk YYXXPYXP ++= − 00100 ,,ˆ
 (4)

where (X0,Y0) is the position of the original pixel. The residual between the original block

and the predictive block is encoded, as well as the motion vector that defines the difference

between the positions of blocks in their respective respective frames. Figure 2-3 illustrates

this motion compensation.

Motion Vector

Frame N

Frame N+1

Figure 2-3 - Block Motion Compensation

Motion vectors used for motion compensation show a high degree of correlation, with

motion vectors of neighbouring blocks [23]. For this reason, it is reasonable to use predictive

coding for the motion vectors as well as the pixel information. In MPEG-2, a motion vector

was predicted from the motion vector of the macroblock immediately to the left – the

differential motion vector between two successive motion vectors was encoded. In H.264,

additional neighbouring blocks are used for prediction. Referring to Figure 2-4, the predicted

 12

motion vector for block of pixels X is calculated from the vectors that have been applied to

blocks A,B,C and D.

Early MPEG compression standards [18,20] used a fixed block-size for motion

compensation. It has been shown that compression gains can be achieved with adaptive

block size motion compensation [27]. Allowing variable block sizes allows better prediction

in areas where image detail does not align with macroblock boundaries. H.264 supports

seven block sizes for motion compensation: 4x4, 4x8, 8x4, 8x8, 8x16, 16x8 and 16x16. The

resulting possible macroblock configurations are shown in Figure 2-5.

A B

C X

D

Figure 2-4 - Neighbouring blocks (A-D) used for motion vector prediction of X

16x16 16x8 8x16 8x8

8x4 4x8 4x4
Figure 2-5 – Macroblock Partitioning for Motion Compensation in H.264

 13

2.4.3 Video Sequence Structure

In the MPEG/ITU video compression standards[17-21], video frames are typically encoded

as a series of groups of pictures (or GOPs). Each frame within a GOP is encoded as one of

three types, according to the type of prediction used in encoding. Figure 2-6 shows a typical

arrangement of video frames within a GOP. The frames are shown in the order that they

would be displayed. The order that the frames are encoded in is determined by the inter

estimation dependencies.

Intra Frames

The first frame of a GOP is an Intraframe (or I-frame). I-frames are encoded using only intra

methods pixel prediction. Since all predictive pixels are from the same frame, they are coded

independently of all other frames.

I P P PB B BFrame Type

Display Index 0 1 432 65

Figure 2-6 - Typical frame ordering of a group of pictures

 14

Predictive Frames

Predictive frames (or P-frames) use interframe prediction methods as well as intraframe

methods. For P-frame motion compensation, only forward prediction is supported – frames

used for prediction must temporally precede the encoded frame. In H.264, multiple reference

frame prediction is permitted, i.e. P-frames pixel blocks may be predicted from any

preceding I-frame or P-frame. This feature is useful for encoding transitionally covered

background and periodic non-translational motion [2].

Bi-Predictive Frames

Bi-predictive frames (or B-frames) use an expanded set of inter-prediction methods

compared to P-frames. Specifically, B-frames support forward and backward prediction for

motion compensation – reference frames may occur before or after the encoded frame in the

display order of the video sequence. In addition, H.264 B-frames support bi-predictive block

compensation[21]. In this method, the predictive blocks may be calculated as a combination

of blocks that occur in different frames. In early video compression standards, B-frames

were predicted from previously encoded I-frames or P-frames as shown in Figure 2-6. The

H.264 standard allows motion compensating prediction from any previously encoded frame

in the video sequence, including prior B-frames.

2.5 Transform Coding

Block based transform coding is ubiquitous in the area of image and video coding. The

purpose of transform coding is to express pixel information in a way in which it can be more

efficiently encoded. This is done by selecting a transform that will decorrelate the elements

of the block and compress as much of the energy of the block into as few coefficients as

possible. The optimum transform for spatial decorrelation is the Karhunen-Loeve transform

(KLT), however, it is unsuitable for practical encoder implementations, because the basis

functions of the transform are image dependent [3]. The Discrete Cosine Transform (DCT)

 15

is the most commonly used transform for video coding because its performance is close to

the KLT, and there are efficient hardware and software implementations. In the H.264

standard, a 4x4 integer “pseudo-DCT” transform [2] is used for transform coding of the

prediction residuals.

The main disadvantage of the block-based transform coding approach is that it can result in

perceptually significant artefacts at block boundaries [28]. To correct for this phenomenon in

H.264 a deblocking filter has been defined for the frame reconstruction and decoding paths.

2.6 Quantisation

To this stage, none of the compression tools discussed so far have been inherently lossy.

Information loss is introduced to the encoded video through quantisation. Quantisation is the

process through which data values are expressed with a lower degree of precision. In this

case, the pixel block coefficient values are to be quantised. The extent of information loss is

determined by the quantisation step-size – a larger step-size implies fewer unique values that

a coefficient can take, and therefore greater information loss.

In H.264, the transform representation of a pixel block will contain one DC and fifteen AC

coefficients. Very little of the energy of the block will be contained in the high frequency

coefficients- these coefficients will normally be near zero. As a result, these coefficients can

be quantised heavily with little impact on the quality of the encoded video sequences. In

practice, many AC coefficients are quantised to zero, and therefore this frequency

information is discarded.

In early video compression standards, the quantisation step-size was adaptive over

frequency components. The purpose of this adaptivity was to exploit a reduced sensitivity of

the human visual systems of higher frequency components – information loss at high

frequencies is less perceptually significant than at lower frequencies. However, due to the

smaller transform size and better pixel prediction, a flat quantisation matrix is used for

H.264.

 16

2.7 Entropy Coding

The final video compression component used in the hybrid encoding scheme is entropy

coding [28]. The purpose of this compression tool is to exploit the statistical redundancies

that exist in the sequence of syntax elements (i.e. coefficients, motion vectors, etc) to be

encoded to the bitstream. An entropy encoder provides a mapping between input symbols

(i.e. syntax elements) and codewords to be written to the coded bitstream. The fundamental

idea is to use shorter codewords for more frequent symbols and longer codewords for less

frequent symbols. The entropy decoder is able to perform the inverse mapping, and recreate

the original sequence of symbols. As no information is lost through this process, it is often

called lossless encoding.

 0 1 5 6
2 4 7 12
3 8 11 13
9 10 14 15

Figure 2-7 - Zig-Zag Scan Order for Coefficients

The efficiency of the entropy coding is closely related to the transform and quantisation

steps. As described above, many of the quantised AC coefficients of the residual pixel data

will be zero. Each video compression standard defines a scan pattern that defines the order

that the coefficients are encoded into the bitstream. The scan patterns are roughly designed

to increase monotonically in frequency, so there will be a series of consecutive zeroes. Such

symbol sequences can be very efficiently coded by an entropy coder. Figure 2-7 shows the

zig-zag coefficient scan pattern used in H.264 [21]. The goal of motion compensation is then

to reduce the magnitude of the coefficients that result from the prediction residual,

particularly in the high frequency components, since these are more expensive to encode

The H.264 standard supports two versions of entropy coding: Universal Variable Length

Coding (UVLC) and Context-Based Adaptive Binary Arithmetic Coding (CABAC). UVLC

 17

[29] uses a fixed codebook that is based on prior probability models for each symbol.

CABAC [30] adapts the probability model for each symbol according to the context of the

symbol and the frequency of occurrence in the previously encoded bitstream. CABAC

entropy coding requires a more complex implementation than UVLC, but it has been shown

to provide a coding efficiency gain of 9-27% [30].

 18

Chapter 3

Motion Estimation

Video compression standards define a syntax that allows a motion model based on

translational block motion to be used for pixel prediction. Effective use of the motion

compensation tools provided for by the standards definitions requires that the encoding

process identify appropriate prediction parameters. Specifically this requires that the

encoding process identify the best, or at least good, prediction modes and motion vectors for

each block in each inter-predicted frame. The process of determining the best motion

parameter is called motion estimation. The accuracy of motion estimation has a significant

impact on the effectiveness of motion compensation block prediction, and ultimately the

compression efficiency of video encoder. In addition, as the motion estimation process is not

defined by the syntax of a video standard, its effectiveness is the main distinguishing feature

in assessing the quality of a standards-based video encoder.

The goal of motion estimation is to identify the motion parameters that will result in an

encoded stream with the lowest possible data rate and the best visual quality. Several

approaches to motion estimation are explored in the literature, including image feature-based

estimation techniques (e.g. [14]), and optimisation based on mean field theory (e.g. [31]). By

far the most common approach to motion estimation for video compression is block-

matching. This chapter will describe first block-matching motion estimation and discuss the

two features of a block-matching algorithm (BMA) – the matching cost function and the

search strategy. The well-known full search strategy as well as some fast BMAs will be

discussed in terms of coding performance and implementation considerations.

3.1 Block-matching

The purpose of block-matching is to match the current block of pixels with a similar block in

a reference frame. Each block of pixels in a reference frame is identified by the vector that

defines its position in the frame. For each candidate reference block there is a corresponding

candidate motion vector (CMV). Figure 3-1 shows the setup for a general block-matching

 19

algorithm. A cost function is defined that evaluates the match between the original block and
the candidate block: ()CMVJ . The block-matching algorithm then tries to find the motion

vector that gives the minimum cost value:

 () () ()dydxJdydxMV dydx ,minarg, ,== , (5)

where dx and dy are the horizontal and vertical components of the motion vector.

The brute force approach to block-matching would be to perform the cost calculation for

every possible block position in every possible reference frame. This approach is far too

computationally expensive, and is unnecessary to achieve good compression. Block-

matching algorithms instead perform the cost calculation for a subset of all possible motion

candidates. The defining characteristics of a block-matching algorithm are the selection

strategy for determining which positions to test, and the cost function that measures the

quality of a match.

X0

Y0

CMV = (dx, dy)

Reference Frame

Candidate
Position

Original Position

X0

Original Frame

Original MB

Y0

Figure 3-1 - Block-matching

3.1.1 Matching cost functions

Block-matching cost functions measure the difference between the candidate block and the

original block. This cost is to be minimised so that the prediction residual has less energy

 20

and therefore the cost of encoding pixel coefficients is minimised. A good overview of block

matching distortion measures is provided in [32]. By far the most commonly used distortion

measure is the Sum of Absolute Differences (SAD). For an NxM block of pixels, the SAD

cost function for the candidate block is defined as:

 () () () ()∑∑ −=
N

j

M

i
dydxSAD jiRjiOdydxJ ,,, , (6)

where O is the original block, and R(dx,dy) is the candidate block in the reference frame

corresponding to motion vector (dx,dy). This distortion measure is sometimes expressed as

Mean Absolute Difference (MAD), which is an equivalent measure where the SAD is

normalized by the number of pixels in the block.

An alternative to SAD is the Mean Squared Error (MSE):

 () () () ()[]
2

, ,,
1

, ∑∑ −
⋅

=
N

j

M

i
dydxMSE jiRjiO

MN
dydxJ (7)

MSE, or Euclidean distance, provides better coding performance than SAD, because it is a

closer measure to perceptual quality of the human visual systems. However, due to the need

for one multiplication per pixel, it has a significantly higher computationally complexity. As

a result, SAD is more commonly used.

Many distortion measures have been developed to reduce the computational complexity of

the SAD distortion measure. One approach to reduce complexity is the truncation of pixel

values to reduce the bit depth of the SAD measure [9,16,33,34]. SAD truncation does

provide computational efficiencies, especially for VLSI implementation, however, it does

result in non-trivial coding loss. Other approaches to complexity reduction include pixel sub-

sampling of the original and reference blocks [35,36], and integral projection matching

[8,37].

Block-matching cost functions have been proposed that provide compression

improvements at the expense of additional computational complexity. For example, [38]

presents the use of the Walsh-Hadamard transform (WHT) in the block-matching cost

calculation. The WHT is a frequency transform domain similar to the integer transform used

 21

in H.264, and has been used in transform coding image compression applications [39]. The

bases of the WHT use only 1/-1 values, so application of this transform requires only

addition and subtraction operations. When the WHT is applied to a block-matching residual,

the result approximates the frequency coefficients that would be produced by the integer

DCT. The quantisation operation can be approximated by removing near-zero coefficients.

Measuring the magnitude of the resultant coefficients provides an accurate indication of the

data rate cost associated each candidate position. This block-matching is used by the

reference encoding software for H.264 provided by Joint Video Team (JVT), and yields

substantial compression gains.

The distortion measures above measure the prediction error of block-based motion

compensation. A second factor to consider in block-matching cost evaluation is the amount

of data required to encode the prediction parameters – i.e. motion vectors. Rate-Distortion

optimal methods have been proposed to incorporate estimates of the bit-rate and distortion

[40]. This approach is especially beneficial at low bit-rates and for variable block-size

encoders, where the bit allocation for the prediction parameters becomes a significant part of

the overall bit-rate.

3.1.2 Full Search Block-matching

It is not feasible to evaluate the cost function for every possible set of prediction parameters

for any block of pixels. A subset of positions must chosen for this evaluation. The most

common approach in VLSI implementations is the well known full search block-matching

algorithm [41], where a rectangular window is defined in the reference frame, and block-

matching is performed at every position within that window (Figure 3-2). This algorithm is

used frequently because it is conceptually intuitive, and provides accurate motion estimation

results. The search window is typically centred on the co-located position in the reference

frame of the original block, and is defined by its dimensions. In most applications, search

ranges from 8 to 64 pixels in each dimension are used.

 22

This algorithm is used almost exclusively in VLSI applications because it provides many

implemental benefits [42,43]. Specifically, the regularity of operation and memory accesses

inherent in this algorithm translate into architectural efficiencies. In addition, this approach

is well suited to variable block size motion estimation. Since the data flow for each block of

all block sizes is the same, it is possible to compute the distortion for all block sizes in

parallel with minimal additional implementation cost [44,45].

Current Frame Reference Frame

Search Window

Figure 3-2 - Full search block-matching search window

Despite these implementation efficiencies for VLSI, full search block-matching is

computationally very expensive. Each pixel SAD requires three arithmetic operations:

subtraction, absolute value and addition. The total number of arithmetic operations per

second is then:

 23

 fWWFFnumOps YXYX ⋅⋅⋅⋅⋅= 3 (8)

where FX and FY are the dimensions of each video frame, WX and WY are the dimensions of

the full search window, and f is the frame rate. For a full D1 720x480 video sequence at 30

fps, using a search window with 32x32 search positions, the total number of arithmetic

operations per second is:

 101019.3 ×=numOps

In typical video encoders, the motion estimation is responsible for 60-80% of the

computational load. When considering the increasingly popular high-definition standards

(HDTV), this proportion is likely to be more. For this reason much work has been done

towards developing fast block-matching motion estimation techniques.

3.2 Fast Block-Matching Algorithms

Fast block-matching algorithms follow one of two distinct approaches. The first type are

guaranteed to produce the same result as the exhaustive full search algorithms but are

designed to find the optimal position with fewer calculations. The methods proposed in

[13,15] follow such an approach. In both cases, a “best-so-far” threshold is developed in

each case and the distortion calculation for each search position is stopped once the threshold

has been reached. This type of algorithm could be useful for statistical power savings within

a VLSI implementation, but it does not help the “worst-case” requirements for

implementation.

The second approach is to reduce the number of search positions in such a way that, on

average, the compression performance is not severely impacted. These techniques require

some level of adaptive control over the search path. Methods have been proposed that alter

the parameters of the search window on a block adaptive basis, for example, the method in

[7] proposes that the size of the search window be altered for each block. The JVT H.264

reference encoder motion estimation [46]provides block adaptive control over the placement

of the search window in the reference window to exploit the spatial correlation of motion

 24

vectors. In this algorithm, the search window is centred on the position corresponding to the

predicted motion vector for the block (recall from section 2.4.2. that the motion vector

predictor is calculated from neighbouring blocks). Due to the high spatial correlation of

motion vectors, using this approach, a smaller search window is needed to achieve equivalent

encoding performance to the non-adaptive full search algorithm.

For a VLSI implementation, this algorithm has some disadvantages. The efficiencies of

implementation described in [42] are dependent on the consistent overlapping of the search

window of two successive macroblocks. This was useful for management of the search

window buffer, reducing the memory bandwidth required for loading reference pixel data.

For block-adaptive search window the search window buffer must be able to be reloaded for

each block – significantly increasing the memory bandwidth requirement of the encoder.

These properties will be discussed further in section 4.2.

Many fast motion search strategies have been proposed that reduce the number of search

positions. These motion estimation methods require more low-level adaptive search control,

adapting the search path at each search position. Such block-matching algorithms include the

Logarithmic Search [10], the Three Step Search [47], the Four Step Search [48], the

Diamond Search [49], as well as others [11,12,50]. These block-matching algorithms follow

the same approach to block-matching that is characterised by the following steps:

1. Evaluate the block-matching cost function at a few positions (typically four)

surrounding the centre of the search window.

2. Compare the resultant costs and re-centre the search in the direction of the best

position (of the few).

3. Steps 1 and 2 are repeated either a fixed number of iterations, or until the algorithm

converges on a local minimum.

These algorithms assume a unimodal cost surface, and therefore that the local minimum is

actually the global minimum. Since this unimodal assumption is sometimes not valid, these

algorithms are susceptible to local minima, and as a result, do not achieve the same rate-

distortion performance as the full search. These algorithms drastically reduce the number of

 25

search position over the full search strategy. For software implementations, this results in a

substantial reduction in the computational load and so the implemental benefit is worth the

loss in compression efficiency for many applications. Kuhn [32] compares the

computational complexity and coding efficiency of the full search algorithms with the three-

step search. The three–step search resulted in an average bit-rate increase of 3.9%, while

reducing overall computational complexity by approximately 12 times. However, in

sequences with complex motion, the three-step search showed a coding efficiency

degradation of up to 26%.

The direct relationship between the number of search positions and the cost of

implementation that exists in a software implementation is not present in a VLSI

implementation. Due to the dependencies in execution from one stage of the motion search

to the next, and between macroblocks [12], these algorithms do not lend themselves to

parallel architectures. This problem is exacerbated with variable block-size motion

compensation. Since the search paths of each block of all sizes do not coincide, there is no

opportunity for parallel accumulation of the costs of different sized blocks. While efficient

architectures have been proposed for fast motion search algorithms, such as [41,51], none

address variable block-size estimation.

3.3 Summary

The most computationally intensive element of a video encoder is the motion estimation

module, requiring 60%-80% of the computational resources of typical implementations. The

most common motion estimation algorithm is full search block-matching. This algorithm is

exhaustive and is guaranteed to be optimal within a rectangular search window, but has a

high computational load. Several fast block-matching strategies have been proposed, which

are based on adaptive search paths. These methods do reduce the required computational

load, particularly for software implementations. However, due to its regular structure, simple

control overhead, and improved compression efficiency, full search block-matching is widely

used for VLSI encoder implementations.

 26

In the next chapter, a block-matching method is proposed that offers all of the

implementation benefits of the full search algorithm, while yielding comparable coding

performance with far fewer search positions.

 27

Chapter 4

Constant Search Offset Motion Estimation

In the previous chapter, the motion estimation problem was explained. The basic full

search block-matching algorithm was discussed, as well as several fast block-matching

algorithms. It was shown that while the fast block-matching algorithms do require fewer

search positions to achieve reasonable coding performance, they are generally ill suited to

VLSI implementation. Moreover, the full search block-matching algorithm is

computationally intensive, but it does lend itself well to efficient VLSI implementation. In

the next section, the full search block-matching algorithm will be formulated in detail. In

section 4.2, the suitability of the full search block-matching algorithm will be explained in

relation to three significant implemental considerations to the design of VLSI systems. For

comparison, the suitability of the block-adaptive full search algorithm will be discussed, and

shown to be far more expensive than the traditional full search algorithm. In section 4.3, the

motion characteristics of video will be examined. Sections 4.4 through 4.6 will present a

proposed motion estimation algorithm that provides many of the implemental advantages of

the traditional full search, while enabling a significant reduction in the implemental expense

required for good coding performance. Finally, experimental results will be presented in

section 4.7 and 4.8.

4.1 Full Search Block-Matching Motion Estimation

As described in section 3.1.2, the full search block-matching algorithm entails the matching

of the original block of pixels to blocks of pixels at every possible location with a rectangular

area within a reference frame. The rectangular area of the reference frame can be defined by

the location of the top-left and bottom-right pixel locations:

 () () ()YXCCTLTL SSYXYX ,,, −= (9)

 () () () ()1,1,,, −−++= YXYXCCBRBR NNSSYXYX (10)

 28

where (XTL ,YTL) and (XBR ,YBR) are the positions of the top-left and bottom-right pixels of the

reference area, SX and SY are the search ranges in the horizontal and vertical direction

respectively, NX and NY are the horizontal and vertical dimensions of the original block of

pixels and (XC ,YC) is the centre position of the motion search.

The number of pixels in the rectangular reference area is:

 () () ()YYXXYXYX NSNSNNSSArea +⋅⋅+⋅= 22,,, (11)

For the traditional full search, the centre position is co-located to the position of the

original block of pixels in the original frame. That is,

 () ()OOCC YXYX ,, =

where (XO,YO) is the position of the top-left pixel of the original block of pixels.

For variable block-size motion estimation, the traditional full search algorithm has the

property that the search area for each sub-block of a macroblock is contained within the

search area of the 16x16 block. In the block-adaptive full search algorithm, the search area

of each sub-block of the original macroblock is centred on a different position (XC ,YC).

Therefore each sub-block requires an independent search area.

4.2 VLSI Implemental Considerations

The three most significant properties to compare VLSI architectures or algorithms are time,

power consumption and required area [32,43]. In this case, time refers to the number of

clock cycles required to perform the motion estimation for each macroblock. The time

required for motion estimation of each macroblock is affected by the scope of the motion

search (i.e. the number of search positions) and amount of parallelisation that is possible in

the VLSI design due to the regularity of the execution flow [32]. Power consumption is

difficult to estimate prior to design of the VLSI architecture, but it has been shown that I/O

bandwidth is an important criterion to the power consumption of a VLSI implementation.

 29

The manufacturing cost of a chip is directly determined by its area [43]. While chip area is

difficult to determine precisely before a chip is fully designed [32], it is possible to consider

some of the factors. Specifically, the reference memory area typically represents a

significant proportion of the total area of a motion estimation module, and can be accurately

estimated according to the algorithm, prior to a detailed design of the VLSI architecture[32].

In addition, chip area is also impacted by the I/O bandwidth through the complexity of the

memory control system, and the area of the data buses[32].

A specific video compression application will dictate the appropriate trade-off between the

execution time, memory size and I/O bandwidth. It is important to consider these

implemental properties when selecting a motion estimation algorithm for implementation

within a VLSI architecture. In the rest of this section, each of these properties will be

discussed for the both the traditional full search motion estimation algorithm and the block-

adaptive full search motion estimation algorithm.

4.2.1 Number of Search Positions

To estimate the time required to perform block matching, we consider the total number of

consecutive search positions. For the traditional full search algorithm number of search

positions is given by:

 () ()1212 +⋅⋅+⋅= YX SSositionsNumSearchP (12)

Since the search paths of the sub-blocks is identical to the search path of the 16x16 block, the

SADs for all block-types can be calculated simultaneously. As a result, these sub-blocks do

not contribute to the time requirements of the motion estimation.

In the case of the block-adaptive full-search algorithm, the search paths or the sub-blocks

are generally not identical to that of the 16x16 block, so these block must be considered

separately. Furthermore, since the search path for each block is dependent on the estimation

results of the other blocks, the motion estimation must the done consecutively. The time

 30

required for each macroblock is related to the total number of search position for all sub-

blocks, of which there are 41 [21]:

 () ()121241 +⋅⋅+⋅⋅= YX SSositionsNumSearchP

4.2.2 Local Memory Requirement

The local memory requirement must include storage for the original macroblock, for which

the motion estimation is being performed, and storage for the reference data. The storage for

the original macroblock is constant regardless of the motion estimation algorithms – 256

pixels are required. The actual reference memory requirement is dependent on the specific

VLSI design of a motion estimation module. However, the minimum requirement is the

memory needed for the estimation of the largest block of pixels, which is 16x16. The size of

the reference area is given by (11). Since NX and NY, are both equal to 16, the reference

memory size is only influenced by the search range.

4.2.3 I/O Bandwidth

The I/O bandwidth of a motion estimation module is determined mainly by the pixel access

rate for loading the search window. The number of pixels required for full search block-

matching for a block of pixels is given by (11). In the case where the centre position of the

search window (XC ,YC) is block-adaptive, this many pixels are required to be loaded for each

block in the original image. In H.264, each macroblock has 41 blocks, as described in 2.4.2.

The total memory bandwidth requirement for motion estimation is:

() () ()
() () ()

()16,16,,

16,8,,28,16,,28,8,,4

8,4,,84,8,,84,4,,16/

YSXSArea

YSXSAreaYSXSAreaYSXSArea

YSXSAreaYSXSAreaYSXSAreaMBthMemBandwid

+

⋅+⋅+⋅+

⋅+⋅+⋅=

 (13)

 31

For example, a search with (SX, SY) = (24,12) has a bandwidth requirement of:

For the traditional full search, where the search window is centred on the collocated

macroblock, the required memory bandwidth is reduced for two reasons. Firstly, the search

area for each sub-block within a macroblock is contained within the search area of the 16x16

block. Secondly, there is a predictable overlap of the search windows of subsequent

macroblocks. Exploiting this means that only a stripe of new reference pixels must be loaded

for each macroblock, for which the reference window of the adjacent macroblock is loaded

into local memory. Assuming raster order macroblock processing, this benefit is applicable

to all macroblocks of a macroblock row except the left most. For a search with search range
(SX, SY), the number of new pixels in each reference window is ()16216 +⋅⋅ YS . The total

memory bandwidth requirement for each macroblock row of a frame MBcol columns wide is:

 () () ()16216116,16,,/ +⋅⋅⋅−+= YcolYX SMBSSArearowthMemBandwid (14)

A standard definition frame is 45 macroblocks wide [52]. The average bandwidth with a

search where (SX, SY) = (24,12) is:

() () ()[]

col

YcolYX

MB
SMBSSArea

MBthMemBandwid
16216116,16,,

/
+⋅⋅⋅−+

= (15)

 pixel/MB 7.682/ =MBthMemBandwid

The traditional full search algorithm obviously has a significantly lower bandwidth

requirement as compared to the block-adaptive full search and is therefore better suited to

VLSI implementation.

pixel/MB 67456/ =MBthMemBandwid

 32

Ref Window n Ref Window n+1

MBn MBn+1

Figure 4-1 - Full Search Reference Window Overlap

4.2.4 Regularity of Execution flow

The efficiency of VLSI implementations is heavily reliant on concurrency of operations,

which is brought about through highly pipelined and parallelised architectures [42].

Pipelined and parallel architecture are suited to algorithms that minimise the interdependence

of computations. The traditional full search block-matching algorithm has no

interdependence between steps in the motion estimation task. Specifically, there is neither

feedback between the motion estimation of successive macroblocks, nor feedback within the

block-matching of each macroblock. In [53], it was shown that the regularity of the

traditional full search algorithm allowed it to be mapped to an efficient array architecture. In

contrast, when the block-adaptive full search algorithm is used, the centre of each search

window can be chosen according to the motion estimation results of neighbouring

blocks[46]. This implies that the estimation of one block must be complete before the

motion estimation of the next block can begin. This in turn prevents an efficient parallel or

pipelined implementation, increasing the number of cycles required for the motion estimation

of each macroblock.

 33

4.3 Motion Characteristics of Video

The traditional full search block-matching algorithm involves a single rectangular search

window centred on the collocated macroblock position of the original macroblock. However,

all of the implementation advantages discussed in this section would be equally true of a full

search block-matching algorithm, where the search windows are not centred on the

collocated position, but at a constant offset from that position for all macroblocks in the

frame. The next section provides an investigation into the characteristics of the motion

parameters for typical video sequences. From this investigation, a modified block-matching

algorithm is proposed.

Figure 4-2 - Histogram of Motion Vectors for Full Football Sequence

 34

Many of the fast search algorithms are based on the centre-biased nature of motion vectors.

For example, in [50], the authors observe that for many video sequences, including those

with high motion, the vast majority of motion vectors selected for motion compensation are

near zero. In the standard football sequence, for example, they observed that 80% of the

motion vectors used for motion compensation were enclosed in a 5x5 area centred on the

zero vectors. Figure 4-2 shows a histogram of the motion vectors for ‘football’ using the

JVT reference encoder. It is clear that over the whole sequences, there is a heavy bias

towards the zero motion vector. This lends credibility to centre biased motion estimation

approaches, including the traditional full search.

Figure 4-3 - Figure 4-8 show a series of motion vector histograms for individual frames of

the ‘football’ sequence. In these, it is seen that the centre-bias is a motion characteristic that

is true, on average, over the whole sequence, is not necessarily true for each frame. Instead,

it is observed that the motion vectors do vary widely over the course of the sequence. There

does appear, however, to be a clustering of motion vectors within each frame. In frames 55

to 58 the motion vectors are closely clustered around the vector (22,0) - this corresponds to

the pan at that instant of the sequence. If a traditional full search block-matching algorithm

were used for motion estimation, a search window with a horizontal search range of at least

+/- 24 would be required to identify these motion vectors. However, if a full search block-

matching algorithm were used, but centred on the dominant motion cluster, it would be

possible to perform equally effective motion estimation with a much smaller search range

than with the larger traditional full search. The challenge is then to identify the dominant

motion characteristic of the frame and using this information to perform motion estimation.

Nam et. al. [54] observe that the direction of motion of a block is highly related to the

direction of motion of the collocated block in the previous frame. We can also observe this

temporal correlation of motion vectors in the series of motion histograms for ‘football’. For

example, in Figure 4-3 - Figure 4-6 it is seen that the location of the motion cluster in each

frame does not change significantly for several frames. When the pan stops from frame 58-

60 (Figure 4-6 - Figure 4-8), the cluster moves slowly back towards the centre.

 35

Figure 4-3 - Motion Vector Histogram for Football Frame 55

Figure 4-4 - Motion Vector Histogram for Football Frame 56

 36

Figure 4-5 - Motion Vector Histogram for Football Frame 57

Figure 4-6 - Motion Vector Histogram for Football Frame 58

 37

Figure 4-7 - Motion Vector Histogram for Football Frame 59

Figure 4-8 - Motion Vector Histogram for Football Frame 60

 38

In other sequences, the dominant motion characteristics of each frame are too complicated

to be well represented by a single cluster of motion vectors. Figure 4-9 to Figure 4-14 show

the motion vector histograms for several frames of ‘bus’. In each of these frames, there are

two distinct clusters of motion vectors. The cluster centred on (0,0) corresponds to the bus in

the foreground of the video, while the cluster centred at (25,0) corresponds to the pan of the

scenery in the background of each frame. In order to identify these motion vectors using a

traditional full search with a horizontal search range of at least +/- 48 would be necessary.

However, two smaller windows centred on each cluster could provide equally effective

motion estimation, while requiring significantly fewer search positions.

Figure 4-9 - Motion Vector Histogram for Bus Frame 3

 39

Figure 4-10 - Motion Vector Histogram for Bus Frame 4

Figure 4-11 - Motion Vector Histogram for Bus Frame 5

 40

Figure 4-12 - Motion Vector Histogram for Bus Frame 6

Figure 4-13 - Motion Vector Histogram for Bus Frame 7

 41

Figure 4-14 - Motion Vector Histogram for Bus Frame 8

4.4 Proposed Motion Estimation

The fundamental approach of the proposed motion search algorithm is to perform the full

search algorithm on one or more independent search windows in each frame of the video

sequence. The centre of each window is determined by an offset that is constant over each

frame. The constant search offsets are determined from analysis of the motion vectors from

the previous frame. Figure 4-15 shows the motion estimation windows for the two search

window algorithm, for example. In this case, the positions of the search windows are defined

by two global motion vectors (GMV0 and GMV1). The algorithm can be generalised to

support any number of search windows, the centre of each being defined by a constant global

motion vector.

In a VLSI implementation, this algorithm would be implemented using independent full

search modules, each using a different offset. Each such module has all the implementation

properties of the full search discussed in section 4.2. The regular data flow that allows

efficient variable block-size motion estimation is present, and from Figure 4-15, it can be

 42

seen that each window has the predictable overlap between consecutive macroblocks, giving

the memory bandwidth benefit. Since the size of each search window can be much smaller,

the total number of search positions, and therefore the overall memory bandwidth, is reduced.

The implemental benefits will be discussed in greater detail in the next section.

The proposed Constant Search Offset Motion Estimation algorithm (CSOME) is described

by the following steps:

1. Initialise the search modules with the global motion components (GMVi).

2. For each macroblock in the frame:

a. Perform the full search algorithm for each global offset, where the centre of

each motion search:

 () ()GMViOGMViOCC YYXXYX ++= ,, (16)

where (XO,YO) is the position original block of pixels and XGMVi and YGMVi are

the horizontal and vertical components of the ith global motion vector.

b. Compare the results of all the search modules, and choose the best motion

vectors for each block within the macroblock.

3. Store each best motion vector for use for motion compensation.

4. Analyse the set of chosen motion vectors to determine the global offsets for the

following frame. As motion estimation is performed on a pixel resolution reference

frame, the global offsets are integer resolution.

5. Repeat steps 1-4 for each inter-predicted frame in the video sequence.

 43

Search Window

MBn MBn+1

GMV0

GMV1

Search Window

Figure 4-15 - Multiple Constant Offset Full Search Windows

4.4.1 Implemental Properties of Proposed Method

In this section, the proposed method will be examined with respect to the four VLSI

implemental properties discussed in section 4.2.

Number of Search Positions

This consideration is important for estimation of the execution time of the motion estimation

algorithm in the VLSI implementation. The proposed motion estimation algorithm requires

parallel execution of multiple full search estimation modules. The execution time is thus

dictated by the number of search positions tested in each module. The number of search

positions is given by (12):

 () ()1212 +⋅⋅+⋅= YX SSositionsNumSearchP (12)

 44

The analysis of the motion vectors between frames to determine the global motion

components requires far less computation than the combined motion estimation for each

macroblock. Furthermore, this analysis would likely be executed on a CPU rather than

within the VLSI implementation. Accordingly, this computational expense will not be

considered in the discussion of execution time requirements.

Local Memory Requirement

The reference pixel memory requirement directly affects the size of the VLSI

implementation, and therefore its cost. The memory requirement for the overall algorithm is

the sum of the memory required for each parallel full search module, given by (12):

 () ()162162 +⋅⋅+⋅⋅= YX SSQemoryReferenceM (17)

where SX and SY are the dimensions of each search window in the horizontal and vertical

directions respectively and Q is the number of search windows

I/O Bandwidth

The overall reference pixel bandwidth of the proposed motion estimation algorithm is the

sum of the required bandwidth of each full search module:

() () ()[]

col

YcolYX

MB
SMBSSArea

QMBthMemBandwid
16216116,16,,

/
+⋅⋅⋅−+

⋅= (18)

Regularity of Execution Flow

The proposed motion estimation exhibits the same properties as the traditional full search

algorithm in terms of regularity of execution flow. As with the traditional full search

algorithm, there is interdependence of execution path neither within the motion estimation of

each macroblock, nor between the motion estimation of successive macroblocks within the

 45

same frame. This property facilitates an efficient VLSI implementation, requiring a short

execution time.

In the next section, the analysis methods for determining the global offsets from the motion

vectors are described (step 4). In the following section, the details of the full search

algorithms will be discussed (step 2).

4.5 Motion Vector Analysis

The full search block-matching modules are initialised according to the dominant motion

components of the previous frame. These dominant motion components are identified by

identifying motion vector clusters in the set of motion vectors for a frame. The prototypes of

the clusters are then used as the dominant motion components. For the proposed algorithm,

two methods for identifying the motion vector clusters were used: the well-known k-means

clustering algorithm [55] and a histogram peak detection algorithm.

4.5.1 K-Means Clustering

The first clustering algorithm used is the k-means clustering algorithm [55]. In this iterative

method, each element is classified into one of k clusters. On convergence of the algorithms,

each cluster is represented by a prototype that is the mean of the cluster. These prototypes

are then used as the global motion offsets to initialise the motion search modules. The

algorithm is as follows:

1. Initialise the k cluster prototypes to the global motion vector from the previous

frame.

2. For each 4x4 (inter-coded) block of the previous frame:

a. Classify its motion vector into one of the k clusters according to the

smallest distance to the cluster prototypes. The distance measure is

discussed below.

 46

b. Re-calculate the mean of the cluster members to update the cluster

prototype to reflect the cluster prototype.

3. Repeat step 2 until all cluster prototypes converge. Here convergence occurs when

the distance between the prototypes of the same cluster for consecutive iterations

has a value of less than 0.5 pixels. Since the global offsets used for initialising the

motion estimation are integer, further iterations to achieve more precise cluster

prototypes would be redundant.

One defining characteristic of the k-means algorithm is the distance measure used for

classification of each motion vector. A common approach is the Euclidean distance:

 () ()2
0

2
0 iieuc yyxxdist −+−= , (19)

where the cluster prototype is (xo,yo) and the candidate motion vector is (xi,yi). The distance

measure defines the shape of the equal probability contours of the clusters. The Euclidean

distance, for example, results in circular clusters. The clusters of motion vectors are not

expected to have a simple circular shape. In general, motion characteristics of video show

more horizontal motion than vertical. This is reflected in the fact that motion search

windows are often rectangular, with a greater horizontal dimension than vertical dimension.

In order to account for this asymmetry, two other distance measures were used to better

capture the nature of the motion vector clusters. Firstly, the Euclidean metric was

generalised to reflect the different dimension of the search windows:

2

0

2

0







 −
+







 −
=

Y

i

X

i
ged S

yy
S

xx
dist , (20)

where SX and SY are the dimensions of the search windows in the horizontal and vertical

directions respectively. This distance measure assumes elliptical clusters that are aligned

with the horizontal and vertical axes. The Euclidian distance measure can be generalised

further to allow clusters to be unaligned with the horizontal and vertical axes. In this

application, that would be inappropriate since it would be impractical to implement a search

window that is not aligned with these axes.

 47

The second distance measure for the clustering algorithm was designed to exactly reflect

the shape of the search windows. Specifically, this distance measure has equal probability

contours that are rectangular and similar to each search window. This measure is:

 






 −−
=

Y

i

X

i
rect S

yy
S

xx
dist 00 ,max (21)

It was found that the effectiveness of the proposed motion estimation was not greatly

affected by the distance measure, but of the three, the generalised Euclidean distance

measure (20) consistently resulted in a bitrate reduction of about 0.5% as compared to the

other two measures. The improvement over the simple Euclidean distance was expected

since it does not account for the expected shape of the motion vector clusters. The

rectangular distance measure was designed to reflect the shape of the search window. While

the relative dimensions of the search windows do reflect the expected shape of the motion

vector clusters, that the search windows are rectangular is a result of implementation

practicalities rather than the expectation of rectangular motion vector clusters. As a result, it

is reasonable that clustering based on the rectangular distance measure was outperformed by

the elliptical distance measure, since the latter better reflects the actual shape of the clusters.

4.5.2 Single Iteration K-Means Clustering

The above k-means algorithm is an iterative approach, which requires processing each

motion vector from the previous frame more than once to determine the final cluster

prototypes. There are two main disadvantages to this approach. Firstly, since it continues

until convergence of the prototypes, the amount of computation required for the clustering is

dependent on the video data. Secondly, it requires memory to store the motion vectors for

the entire frame.

A simplification to this algorithm that is worth evaluating is to only perform one iteration

of clustering. In this case, each motion vector is only referred to once, and can therefore be

discarded once clustered. This means that the motion vectors do not have to be stored in

 48

memory for the purpose of the global offset estimation. In addition, this implies a more

regular processing module with a constant latency, which is better suited to integration with a

VLSI implementation. It is expected that this clustering will result in less effective motion

estimation, but if the loss in encoding performance is sufficiently small, the implementation

benefit may be of greater importance.

4.5.3 Histogram Peak Detection

While the clustering methods described above do, somewhat, account for the nature of

motion vector clusters, they do not account for the details of the full search motion estimation

algorithm. The results of the above clustering could result in global motion vectors that may

accurately reflect the motion vector clusters, but are sub-optimal in terms of the motion

estimation for the next frame. One such problem may occur in a frame where there is really

a single predominant cluster of motion vectors - the resultant global motion vectors are likely

to be close to each other. The result of this is that the search windows for the frame will

overlap significantly, thereby performing redundant block-matching calculations.

A second potential inadequacy of the k-means clustering is that while it accounts for the

shape of the search windows, is does not account for their size. This means that motion

vectors that are classified as belonging to a cluster, may not be within the search window

placed on the cluster centre. To provide a possible alternative motion vector analysis

algorithm to k-means clustering, a histogram peak detection algorithm was developed for the

motion vector analysis.

The method is defined by the following steps:

1. A two dimensional histogram of the previous frame motion vectors is generated with a
bin resolution of integer motion vector values. I.e. []YXHist , is the number of

occurrences of motion vectors (XMV, YMV) where

25.05.0 +≤≤− XXX MV and

25.05.0 +≤≤− YYY MV

 49

2. The histogram is smoothed with an () ()11 +×+ YX SS averaging mask, where SX and SY

are the dimensions of the search windows:

 [] []∑ ∑
−= −=

++=
2

2

2

2

,,

X

X

Y

Y

S

S
i

S

S
j

SM jYiXHistYXHist (22)

3. The bin with the maximum value in smoothed histogram is identified, and the motion

vector corresponding to that histogram bin is taken as a global motion component:

Define ()PEAKPEAK YX , such that [] []()YXHistYXHist SMPEAKPEAKSM ,max, = . Then the

global motion component is

 () ()PEAKPEAKGMViGMVii YXYXGMV ,, == (23)

4. All motion vectors that lie within a search window centred on the global motion

component with search ranges SX and SY are removed from the original histogram:

[] 0, =YXHist for all (X,Y) such that

XGMViXGMVi SXXSX +≤≤− and

YGMViYGMVi SYYSY +≤≤−

5. Steps 2-4 are repeated for each required global motion component.

There are several important features of this method that differentiate it from the k-means

clustering methods discussed in the previous sections. The first conceptual difference is the

way in which the quality of a cluster is measured. K-means clustering is a method that

reduces the sum of the distances of each data point to the prototype of the cluster to which it

belongs. The quality of a cluster is defined, therefore, by the average distance of the points

within the cluster to the cluster prototype. This means that the more narrow the distribution

of the cluster, the better. However, when using the results for placement of a block-matching

search window, what is important is the number of best block-matches that will be found

according to the window placement.

 50

The purpose of histogram smoothing of step 2 above is to count the number of motion

vectors that are within a certain area surrounding a cluster centre, without regard for the

distribution of the data within that area. The size of the smoothing window must necessarily

be smaller than the size of the search window to allow some tracking of the motion

characteristics of the frame. Using the full search algorithm to search around each global

motion component, all motion vectors found for a frame will be within the search window

area centred on each motion component. If the smoothing window were equal in size to the

search window, then the optimal solution according to the algorithm would be to not alter the

search window placement from frame to frame. This is clearly not reasonable since the
motion characteristics of a video sequence do change over time. The () ()11 +×+ YX SS

smoothing window size was chosen to balance the need to track changes in the motion

characteristics of the video sequence with increasing the number of data points that are used

to determine the global motion components.

The second differentiating feature of this histogram method to the k-means clustering is the

explicit reduction of redundant block-matching calculations. If the global motion

components used to initialise the full search block-matching modules are in close proximity,

then the resulting search windows for each macroblock will overlap. Where there are

overlapping search windows for a macroblock, some candidate motion vectors will be tested

in the course of multiple full search modules, hence redundant block-matching calculations

are performed. In step 4 of the histogram method, the motion vectors within a

neighbourhood, equivalent to the size of a search window, of the identified global motion

component are removed from the histogram. Therefore, all motion vectors that would be

candidate motion vectors in the full search module initialised with one global motion

component are removed from consideration when identifying remaining global motion

components. The result will be reduced overlap between different search windows.

 51

4.6 Full Search

Once the global motion components have been identified for each frame, the subsequent

frame is encoded using multiple full search motion estimation modules for each block. As

discussed in section 3.1, the full search block-matching algorithm is defined by the size and

placement of the search window and by the block-matching cost function used to evaluated

each candidate position. In the proposed method, the placement of the search windows is

defined by the global motion components. The size of the search window will be determined

with reference to the nature of the video compression application – for example, the larger

the frame resolution of the video sequence, the more likely the search window will be larger.

The block-matching cost function measures the distortion between the original pixel block

and the candidate predicted pixel block. Typically, the sum of absolute differences is used

for this measure. The recommended motion estimation algorithm provided in the reference

encoder uses the SAD measure, but also incorporates a penalty according to the bit-rate cost

of the motion vectors. This is based on a rate-distortion optimisation approach to the motion

estimation problem [56].

Sullivan and Wiegand [56] note that the goal of an encoder is to optimise the distortion, D,

of an encoded video sequence, subject to a constraint on the bit-rate, R. That is:

 cRRD ≤ subject to},min{ , (24)

where Rc is the bit-rate constraint. This optimisation can by solved using the Langrangian

formulation of the minimisation problem given by:

 RDJJ ⋅+= λ where},min{ , (25)

where J is minimised for a particular value of the Langrangian multiplier λ . For a given

value of λ , the solution to (25) corresponds to an optimal solution to (24) for a particular

value of Rc. This optimisation approach can be used for motion estimation by using a block-

matching cost function of the form:

 MOTIONMOTIONMOTION RDJ ⋅+= λ , (26)

 52

where JMOTION is the cost value associated with a candidate motion vector, D is the distortion

measure between the original pixel block and the reference block, and RMOTION is the bit-rate

associated with encoding the candidate motion vector. Assuming the SAD distortion

measure is used for the block-matching distortion measure, the appropriate value of λ was

developed as a function of the quantisation step-size (Q) [56]:

 QMOTION 85.0=λ (27)

Using this block-matching cost results in greater compression efficiency over using only

the SAD distortion measure. As a result, this method has been incorporated into the H.264

reference encoder.

As discussed in section 2.4.2, predictive coding is used for encoding the motion vector

associated with each block. In order to estimate the RMOTION, the differential motion vector is

calculated for each candidate motion vector during the motion estimation process:

 predMVCMVdMV −= , (28)

where dMV is the differential motion vector, CMV is the candidate motion vector, and

predMV is the predicted motion vector. The bit-rate cost of the motion vectors is then

estimated by:

 YXMOTION dMVdMVR 22 loglog += , (29)

where dMVx and dMVy are the horizontal and vertical components of the differential motion

vector. Since this motion estimation approach uses the predicted motion vector for each

block, which is derived from the motion vectors of neighbouring blocks, it is necessary to

have made all encoding decisions for one block before performing motion estimation on the

next block. This approach is therefore ill-suited to an efficient VLSI implementation, as

explained in section 3.2.

For the full search motion estimation in the proposed method, the block-matching cost

function will still be in the form of (26). Since the true differential motion vector, cannot be

calculated for each block during estimation, it will be estimated using the global motion

vector corresponding to the search window:

 53

 iGMVCMVdMV −≈ (30)

where GMVi is the global motion vector corresponding to the search window.

4.7 Experimental Setup

The proposed motion estimation algorithm was designed for use in a block-based transform

video encoder using variable block-size motion compensation. The proposed algorithm was

tested with the emerging H.264 video compression standard[21]. Specifically, the multiple

constant offset motion estimation algorithm was implemented in the JVT H.264 reference

encoder [46]1. As this research was completed while the H.264 standard was under

development, an intermediate version of the standard is used – this is defined in [21].

However, the proposed motion estimation process will be equally applicable to the final

version of the standard as to the version used for testing.

4.7.1 Encoding Parameters

Several parameters define the encoding process used in the H.264 encoder. These control

the compression tools that are used for encoding and the encoding decisions that are made to

trade-off quality with compression efficiency.

GOP Structure. For these experiments, an infinite IPPP GOP structure is used for

encoding. This means that the first frame in each sequence is coded as an Intra-frame, and

each successive frame is coded as an inter-predicted frame. Bi-predictive frames are not

used in these experiments, but the proposed method is easily adapted to the bi-directional

motion searches.

Quality. The experiments were done using variable bit-rate (VBR) – constant quality.

Specifically, the quantisation parameter (QP) is constant throughout each encoded sequence.

To assess the performance of the motion search across the range of quality supported by the

H.264 standard, each sequence was encoded using four QP values (20, 25, 30, 35).

1 H.264 reference software available at standards.pictel.com

 54

Supported Motion Compensation Block-Sizes. All motion compensation block-sizes

supported by the H.264 standard were used for encoding each sequence.

4.7.2 Test Video Sequences

A set of six video sequences is used for evaluating the performance of the proposed motion

estimation algorithm (Table 4-1). These video sequences are all commonly used for

evaluation of video compression tools and are publicly available through Video Quality

Experts Group (VQEG).

4.7.3 Motion Estimation Algorithms and Parameters

The benchmark motion estimation algorithm used for these experiments is the block adaptive

full search, where the search window for each block is centred according to the motion vector

predictor for that block. As discussed above, this is inefficient for VLSI implementation, but

provides a suitable reference, against which to compare all other motion estimation

algorithms. A very large search window (+/-128x64) is used for each search to ensure near

optimal motion estimation.

A non-adaptive full search algorithm will also be used. For this algorithm, the placement

of the search window will be centred on the co-located block in the reference frame to the

block whose motion is being estimated. This is done to provide a comparison to a likely

VLSI implementation.

Several implementations of the CSOME were evaluated in the experiments. Specifically,

CSOME using one, two and four search offsets was performed. In addition, each of the three

motion vector clustering algorithms, described in 4.5, was used. Table 4-2 lists the motion

estimation algorithms used and the total number of positions used for each search. In order to

provide a fair comparison between motion estimation algorithms, the dimensions of the

 55

search windows were chosen so that each method would use a similar total number of search

positions.

Table 4-1 - Video Sequences Used for Evaluation of Motion Estimation

JVT_128 1 +/-128x64 33153 Block-adaptive
JVT_16 1 +/-16x8 561 Block-adaptive
COL_16 1 +/-16x8 561 Colocated block

CSOME_1_16 1 +/-16x8 561 Single global offset
CSOME_2_11 2 +/-11x5 506 Two global offsets
CSOME_4_8 4 +/-8x4 612 Four global offsets

COL_24 1 +/-24x12 1225 Colocated block
CSOME_1_24 1 +/-24x12 1225 Single global offset
CSOME_2_16 2 +/-16x8 1122 Two global offsets
CSOME_4_11 4 +/-11x5 1012 Four global offsets

Name
Search
Range

Total Number of
Search Position Search Window Centre

Number of Search
Windows

Table 4-2 - Evaluated Motion Estimation Algorithms

Table 4-3 shows the implemental properties, discussed in section 4.2, of each of the motion

estimation algorithms to be evaluated in the experiments. It is important to note that the

implemental properties of the traditional full search algorithms (COL_16 and COL_24) are

identical to the single search window CSOME algorithms (CSOME_1_16 and

CSOME_1_24). The two search window CSOME algorithms (CSOME_2_11 and

CSOME_2_16) require about 45% of the consecutive number of search positions compared

to CSOME_1_16 and CSOME_1_24, which implies a faster execution. However, the

corresponding memory and I/O bandwidth requirements are about 20% and 60% higher

respectively. Similarly, the CSOME_4_8 and CSOME_4_11 further reduce the number of

consecutive search positions, while increasing the memory and I/O bandwidth requirements.

Bus 720 x 240 75
Canoa 720 x 288 110
Ferris 720 x 240 60

Football 720 x 240 130
Mobile and Calendar 352 x 240 130

Rugby 720 x 288 110

Name Resolution Number of Frames

 56

Given a similar total number of search positions, CSOME seems to provide a reasonable

overall trade-off between execution time and memory and I/O bandwidth requirements.

Accordingly, the evaluated motion estimation algorithms have been grouped according the

total number of search position. Most compression efficiency comparisons will be made

within these groups. The correct trade-off between the implemental properties and coding

efficiency will be determined according to the specific application for which these motion

estimation algorithms are being considered.

Name
Number of Search

Positions / FS Module
Reference Memory

Requirement
Reference I/O

Bandwidth / MB
JVT_128 33153 39168 1443584
JVT_16 561 1536 35072
COL_16 561 1536 534.8

CSOME_1_16 561 1536 534.8
CSOME_2_11 253 1976 857.4
CSOME_4_8 153 3072 1570.1

COL_24 1225 2560 682.7
CSOME_1_24 1225 2560 682.7
CSOME_2_16 561 3072 1069.5
CSOME_4_11 253 3952 1714.8

Table 4-3 - Implemental Properties of Evaluated Motion Estimation Algorithms

4.7.4 Measures of Performance

The performance of a video compression tool is typically evaluated through the use of Rate-

Distortion (R-D) curves. In these curves, the bitrate of the video sequence is plotted against

the compression distortion, typically measured in PSNR of the luminance channel. The

relative performance of two encoders is represented by the distance between the two curves.

In [57], Bjontegaard proposes a method for analysing the R-D curves to provide a single

value that represents the average performance difference of two encoders over a range of QP

values. By estimating the integral of the difference between the R-D plots, a single value

representing the average bit-rate or distortion improvement over the QP range can be

calculated. These values are called the Bjontegaard Delta values. In the analysis of the

 57

compression performance of the CSOME motion estimation algorithms, both the R-D curves

and the Bjontegard Delta bit-rate values will be considered.

4.8 Experimental Results

Throughout this section, summary results and specific results will be presented as the

discussion warrants. Full tabulated results and R-D curves are provided in Appendix B.

4.8.1 Performance of Collocated Search

Figure 4-16 shows the performance of the collocated search full search algorithms, as

compared to the benchmarks motion estimator. On average, the COL_16 search yields a

compression performance loss equivalent to 20.2% compared to the JVT_128 benchmark

motion estimator. The larger search range of the COL_16 search yields a smear average loss

of 12.0%. Predictably, the greatest loss was observed for the Bus sequence, as it has

consistent high motion from frame to frame. The smallest loss was observed in the Mobile

and Calendar sequence, which has interframe motion that is small in magnitude.

Figure 4-17 shows the R-D curves of the JVT_128 motion estimation encoder and the two

collocated motion estimation encoders for the Canoa sequence. It is observed that the

vertical distance between the JVT_128 R-D curve and the COL_16 and COL_24 R-D curves

is smaller at higher bit-rates. This is because at higher bit-rates, lower QP values are used for

quantisation. The smaller resulting quantisation step-size means that even with a small

prediction residual, more coefficients are non-zero and must be encoded in the compressed

bitstream. As a result, accurate motion estimation has a greater impact on video compression

performance at lower bit-rate, where less prediction residual information is encoded. This

observation was consistent for all tested video sequences.

 58

Performance of Collocated Search

-80.00%

-70.00%

-60.00%

-50.00%

-40.00%

-30.00%

-20.00%

-10.00%

0.00%
Average Bus Canoa Ferris Football Mobile Rugby

Video Sequences
B

jo
n

te
g

aa
rd

 B
R

 D
el

ta

COL_16
COL_24

Figure 4-16 - Bjontegaard BR Delta performance of collocated searchs

Canoa

30.00

32.00

34.00

36.00

38.00

40.00

42.00

44.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

MBits

P
S

N
R

 L
u

m
a

JVT_128

COL_16

COL_24

Figure 4-17 - R-D Perfomance of Collocated Motion Search

 59

4.8.2 Motion Vector Clustering Methods

Figure 4-18 shows the relative performance of the three motion vector clustering methods

for the CSOME algorithm for one, two and four search windows. For the single window

implementation, the performance of the single iteration k-means algorithms is identical to

that of the full k-means algorithm, since both reduce to a simple mean of all motion vectors.

For the other cases, there is no significant difference in the performance from the full k-

means clustering to the single iteration k-means. Since the single iteration method clearly

requires less computation, it is the better practical method. The remainder of the discussion

of the experimental results will not distinguish between these two methods.

On average, the k-means approach resulted in marginally better compression performance

(less than 1% on overall) than the histogram peak detection method. The difference in

performance between the clustering methods was most evident for the Mobile and Calendar

sequence. The overall Bjontegaard BR delta between these two methods for this sequence is

2.1%. The Mobile and Calendar sequence has several objects each moving in a different

direction, but the magnitude of the inter-frame motion for each object is small. The k-means

algorithm may have accurately identified each of the motion components corresponding to an

object (or the pan) and centred a search window accordingly. The histogram peak detection

algorithm prevents significantly overlapping clusters, so could not have centred the search

windows with the accuracy of the k-means clustering. Since all of the correct motion vectors

for each frame are small, they all would be covered by the first the search window. Any

additional search windows would be at best irrelevant, and may result in a few sub-optimal

motion vectors to be chosen. Figure 4-19 shows the R-D curves for the k-means clustering

and the histogram peak detection method, when using the CSOME_2_16 motion estimation

It is again observable that the compression performance impact of the motion estimation is

greater at lower bit-rates. At low bit-rates, the proportion of the bit-rate that is due to coding

the motion vector is greater, so any sub-optimal motion vectors that are chosen in motion

estimation have a greater relative impact on the compression performance.

 60

Figure 4-18 - Performance of MV Clustering Methods

4.8.3 CSOME vs Collocated Search

The experiments are divided into two groups. All motion estimation mechanisms within

each group have approximately equal numbers of search positions, and are therefore fairly

compared. Figure 4-20 shows the relative performance of the motion estimation algorithms

that are comparable in size to a +/-16x8 search window. The performance is indicated by the

Bjontegaard BR Delta value as compared to the JVT_128 motion estimator.

Overall, the JVT_16 method is the best motion estimation algorithm, in terms of the R-D

performance. However, this method is ill-suited to VLSI implementation. The CSOME_2

algorithm is 1.1 % less efficient than this algorithm, and is only 4.0% worse than the

benchmark JVT_128 motion estimator. Referring to Table 4-3, the local reference memory

requirement of the JVT_16 method is about 25% less than that of the CSOME_2 algorithm.

However, the JVT_16 method requires more than twice the number of consecutive search

positions and more than 40 times the reference memory bandwidth per macroblock than the

CSOME_2 algorithm.

Performance of M V clustering methods

-20.00%

-18.00%

-16.00%

-14.00%

-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

One GMV
(+/-16x8)

One GMV
(+/-24x12)

Two GMVs
(+/-11x5)

Two GMVs
(+/-16x8)

Four GMVs
(+/-8x4)

Four GMVs
(+/-11x5)

B
jo

nt
eg

aa
rd

 B
R

 D
el

ta

His togram Peak Detection

K-Means

Single-Pass K-Means

 61

For the Bus sequence, the CSOME_2 algorithm is particularly effective, giving superior R-

D performance to the JVT_16 algorithm. In this sequence, there are two motion components:

the near-zero inter-frame motion of the bus, and the fast pan of the background. The

CSOME_2 was able to accurately identify these motion characteristics and place the search

windows accordingly. CSOME_1 was able to provide a significant improvement over

COL_16 with the same implemental properties, but the spread of the motion throughout each

frame was too great to be fully captured by a single search window. The performance of

COL_16 was 70% worse than the benchmark JVT_128 algorithm. The performance of

CSOME_2 was only 7.7% worse than JVT_128, using fewer total search positions than

COL_16. In comparison to CSOME_2, COL_16 requires 23% less local memory and 38%

less I/O bandwidth, but more than double the number of consecutive search positions.

Figure 4-19 - Clustering Methods for Mobile and Calendar

Clustering Methods for CSOME_2_16
Mobile and Calendar

25.00

27.00

29.00

31.00

33.00

35.00

37.00

39.00

41.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00

MBits

P
S

N
R

 L
u

m
a

Histogram Peak Detection

K-Means

 62

CSOME_4 was slightly less effective (~1%) than CSOME_2 for the Bus sequence and

overall. This is because for the sequences used and the search dimensions chosen, two

search windows is adequate to capture most of the dominant characteristics of inter-frame

motion. The exception is Mobile, where CSOME_4 outperformed CSOME_2 by 0.5%.

There are several moving objects in Mobile, and these motion characteristics are accurately

represented by four identified GMVs. However, while there are several moving objects in

this sequence, the magnitude of the inter-frame motion is small. As a result, all tested

algorithms are able to accurately capture the motion; none having a performance loss of more

than 3.3% compared to JVT_128.

Figure 4-21 shows the relative performance of the group of motion estimation algorithms

with the larger search areas. As for the first group, the best performing VLSI-suitable motion

estimator is CSOME_2 with the k-means clustering algorithm. For the larger search areas,

CSOME_1 gives only a 0.2% loss from CSOME_2. This is because the single large search

window is able to capture as many of the optimal motion vectors as the two search windows.

For sequences such as Bus and Canoa, where there are two distinct motion clusters, this

implies that many motion vectors that are never chosen are also being tested for each block,

which is wasted computation. Overall, the performance of CSOME_2_16 is only 1.6% better

than the performance of CSOME_2_11, with more that twice the number of search positions.

The CSOME_2_11 with the k-means clustering algorithm appears to be the best motion

estimation algorithm, considering the compression performance and the computational

expense of block-matching.

Figure 4-20 - Performance Comparison of Motion Estimation (Small Search Areas)

Performance of Motion Estimation Methods
(Small Search Windows)

-80.00%

-70.00%

-60.00%

-50.00%

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%
Average Bus Canoa Ferris Football Mobile Rugby

Sequences

B
jo

n
te

g
aa

rd
 B

R
 D

el
ta COL_16

JVT_16

CSOME_1_16 K-means

CSOME_1_16 Histogram

CSOME_2_11 K-means

CSOME_2_11 Histogram

CSOME_4_8 K-means

CSOME_4_8 Histogram

63

Figure 4-21 - Performance Comparison of Motion Estimation (Large Search Areas)

Performance of Motion Estimation Methods
(Large Search Windows)

-35.00%

-30.00%

-25.00%

-20.00%

-15.00%

-10.00%

-5.00%

0.00%
Average Bus Canoa Ferris Football Mobile Rugby

Sequences

B
jo

n
te

g
aa

rd
 B

R
 D

el
ta COL_24

CSOME_1_24 K-means

CSOME_1_24 Histogram

CSOME_2_16 K-means

CSOME_2_16 Histogram

CSOME_4_11 K-means

CSOME_4_11 Histogram

64

 65

Chapter 5

Conclusion

Modern practical video encoders employ block-based motion compensated transform coding

to achieve the necessary compression ratios needed for many applications. This approach

uses several compression tools to exploit the various forms of information redundancy that

exists in typical video sequences. The most significant tool is motion compensation, which

reduces the temporal redundancy of video through a differential coding scheme using

previously coded pixels as predictors for later frames. Estimation of the best motion

parameters for block based motion estimation has been shown to require between 60 - 80%

of the total computation resources in order to achieve adequate compression performance.

Recent standardisation efforts have incorporated variable block-size motion compensation,

which has further complicated the motion estimation process. Since motion estimation is

such a computationally demanding process, for many applications, it is necessary to have a

VLSI implementation achieve real-time video compression.

The efficiency of motion estimation is an important differentiating feature in commercial

implementations of video encoders. As a result, much research has been undertaken into fast

motion estimation algorithms. Many fast motion estimation algorithms have been proposed

that are able to achieve adequate compression performance with few search block-matching

positions. Many of these algorithms, however, require irregular memory accesses and

execution paths, and so are ill-suited for implementation in a VLSI system.

The traditional full search block-matching algorithm lends itself well to efficient VLSI

implementation, due to the independence of successive execution stages and the regularity of

memory access. Additionally, since the block-matching search path is not data dependent,

estimation for different block sizes is easily performed in parallel, further contributing to

implementation efficiency. However, in order to achieve adequate motion estimation, a large

search window is required. This large search window results in increased size, power

consumption, and ultimately increased cost of encoder implementation.

Motion in video exhibits spatial correlation. Often, motion vectors for a frame are tightly

clustered around a global motion component for the frame. In cases of more complex

 66

motion, several distinct clusters of motion vectors are evident. The motion estimation

algorithm proposed in this thesis attempts to take advantage of this clustering of motion

vectors. The proposed algorithm employs multiple full search estimation modules, placing

each search window at a constant offset for each frame. The offsets chosen are based on

estimates of the global motion components for the frame.

The motion characteristics of video are also temporally well correlated – the motion

characteristics for consecutive frames are similar. This temporal correlation is exploited in

the estimation of the global motion components for a frame. Specifically, the motion vectors

for one frame are clustered into a fixed number of clusters. The prototype motion vector of

each cluster is then used as a constant search offset for the next frame. Two clustering

methods were used in the evaluation of this motion estimation algorithm: K-means

clustering, and a histogram peak detection algorithm.

The constant search offset motion estimation (CSOME) algorithm has similar properties to

the traditional full search algorithm that facilitates more efficient VLSI implementation than

many other motion estimation algorithms. The implemental properties that affect the quality

and cost of a VLSI implementation include execution time, memory size requirements and

I/O bandwidth. It was shown that better coding performance was achieved using CSOME

than the traditional full search algorithm, with the same time, memory and I/O bandwidth

requirements. On average, using a single search window, a compression gain of more than

5% was achieved using a frame adaptive search offset over centring a full search on the

collocated position. CSOME with a single search window provides more effective motion

estimation with the same implemental quality as the traditional full search block matching.

For different specific video coding applications, different trade-offs between the

implemental properties of the motion estimation are appropriate. For the proposed CSOME,

increasing the number of search windows reduces the execution time of the motion

estimation, while increasing the memory and bandwidth requirements. In terms of coding

performance, using two search offsets resulted in improved results compared to the single

search window CSOME with a similar total number of search position. CSOME with two

search windows provided a 15% compression improvement over the traditional full search

 67

algorithms when approximately 600 total search positions were used. Expanding the

algorithm to four search offsets resulted in an overall deterioration of performance, as

compared to the single or two search offset CSOME. This implies that, for the video

sequences evaluated, two global motion components are often sufficient to characterise the

motion parameters of a video frame.

The selection of clustering method for estimation of the global motion component did not

have a significant impact on the overall coding efficiency resulting from the motion

estimation; however, the K-means clustering did consistently provide a slight (~1%)

improvement over the histogram method. A simplification of the K-means clustering

resulted in a negligible impact on compression performance, while reducing the complexity

of the global motion component estimation.

5.1 Future Enhancements

There are several possible enhancements to the CSOME algorithm that may be worth

investigating in the future. As it has been proposed, the number of search windows used for

block-matching must be known before estimating global motion components. For some

sequences, a CSOME using a single search window achieved greater compression

performance over CSOME using two search windows. For other sequences, using two

search windows provided gains over using a single search window. A possible enhancement

to the CSOME method would be adaptive selection of the number of CSOME search

windows to be used for block matching.

As proposed in this thesis, the estimates of the global motion components for a frame are

the identified components of the previous frame. Estimates that are more accurate may be

possible with consideration of a longer history of motion vectors – i.e. using the motion

vectors identified in more previously encoded frames

 68

Appendix A – Glossary of Terms

ITU-T: International Telecommunication Union Telecommunication

Standardization Sector

MPEG: Motion Pictures Experts Group

JVT: Joint Video Team – The collaborative group from MPEG and ITU-T

working on the H.264/MPEG-4 part 10 video compression standard

DVD: Digital Video Disc

MPEG-2: A widely used block-based motion compensated transform coding

video compression standard developed by MPEG

4:2:0 Subsampling: Term for method of subsampling a three channel (Y,Cb,Cr) colour

video signal. Each chrominance channel is subsampled by two in each

spatial direction.

D1 Resolution: Refers to standard broadcast resolution of digital video signals. I.E.

720x480 at 30 frames per second or 720x576 at 25 frames per second

Appendix B – Full Experimental Results

Performance of COL_16 compared to JVT_128

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 31.31 40.50 41.73 43.32 466.11 -40.4%
25 11.70 36.97 38.75 40.96 10897.74 18.25 36.73 38.65 40.85 486.15 -56.0%
30 5.56 32.99 36.71 39.11 8901.60 9.53 32.74 36.48 38.89 450.61 -71.3%
35 2.67 29.40 35.40 37.39 7820.72 4.84 29.15 35.18 37.19 397.31 -81.3%
20 35.88 41.60 43.29 43.63 23232.25 40.35 41.59 43.32 43.71 865.96 -12.5%
25 21.09 38.09 40.91 41.34 22128.64 25.40 38.06 40.86 41.45 916.69 -20.4%
30 11.07 34.30 38.92 39.48 17839.20 14.76 34.26 38.87 39.57 791.44 -33.4%
35 6.02 30.77 36.97 37.45 15889.67 8.57 30.73 36.90 37.58 810.74 -42.3%
20 15.73 42.27 42.17 42.68 7170.91 16.46 42.23 42.16 42.68 268.40 -4.7%
25 9.08 38.86 38.50 39.14 6824.36 9.69 38.80 38.50 39.12 291.45 -6.6%
30 4.75 34.99 35.29 36.39 5574.78 5.22 34.91 35.26 36.32 235.91 -10.0%
35 2.43 31.31 32.77 34.61 4881.84 2.76 31.25 32.64 34.48 224.55 -13.5%
20 37.53 40.95 41.42 42.28 22921.70 36.91 41.00 41.53 42.37 831.85 1.7%
25 20.21 37.71 39.05 40.01 21491.59 20.83 37.79 39.20 40.13 846.84 -3.1%
30 10.06 34.27 37.04 38.26 17484.31 11.15 34.23 37.18 38.37 743.47 -10.9%
35 5.23 31.25 35.11 36.79 14986.00 5.95 31.13 35.31 36.86 665.81 -13.7%
20 32.94 40.09 40.63 40.73 11973.89 32.89 40.08 40.65 40.73 296.35 0.2%
25 19.42 35.83 36.61 36.67 11726.43 19.51 35.80 36.60 36.66 300.97 -0.4%
30 10.18 31.17 33.37 33.34 9982.05 10.36 31.14 33.37 33.32 281.38 -1.7%
35 4.64 26.69 30.76 30.58 8969.22 4.81 26.66 30.73 30.58 281.64 -3.7%
20 49.46 40.97 42.37 43.20 26423.16 48.63 40.99 42.51 43.36 846.34 1.7%
25 28.82 37.24 39.77 40.73 25192.61 29.32 37.28 39.86 40.83 854.78 -1.7%
30 14.60 33.41 37.69 38.87 20043.00 15.97 33.44 37.60 38.82 772.84 -9.4%
35 7.44 30.07 35.82 37.11 17910.82 8.59 30.07 35.67 37.06 720.38 -15.5%

-0.27Rugby 110 -5.22%

-0.29

Mobile 130 -1.70% -0.10

Football 130

-0.51

110 -27.78%Canoa

60 -9.86%Ferris

Bus 75

JVT_128 COL_16

-69.97% -3.24

-6.63%

-1.44

69

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 25.95 40.61 41.74 43.37 805.466 -16.4%
25 11.70 36.97 38.75 40.96 10897.736 14.43 36.85 38.72 40.96 864.456 -23.3%
30 5.56 32.99 36.71 39.11 8901.597 7.32 32.86 36.62 39.02 709.819 -31.5%
35 2.67 29.40 35.40 37.39 7820.718 3.69 29.22 35.29 37.34 644.424 -38.2%
20 35.88 41.60 43.29 43.63 23232.25 40.00 41.59 43.31 43.71 1564.572 -11.5%
25 21.09 38.09 40.91 41.34 22128.641 25.01 38.07 40.87 41.44 1567 -18.6%
30 11.07 34.30 38.92 39.48 17839.197 14.34 34.26 38.89 39.56 1350.892 -29.6%
35 6.02 30.77 36.97 37.45 15889.673 8.28 30.72 36.93 37.57 1225.442 -37.4%
20 15.73 42.27 42.17 42.68 7170.907 16.10 42.25 42.16 42.69 440.842 -2.3%
25 9.08 38.86 38.50 39.14 6824.357 9.41 38.82 38.49 39.11 456.921 -3.5%
30 4.75 34.99 35.29 36.39 5574.777 5.01 34.94 35.27 36.36 372.359 -5.6%
35 2.43 31.31 32.77 34.61 4881.838 2.63 31.27 32.70 34.53 349.385 -8.2%
20 37.53 40.95 41.42 42.28 22921.7 37.18 41.00 41.52 42.35 1453.629 0.9%
25 20.21 37.71 39.05 40.01 21491.589 20.80 37.78 39.18 40.11 1467.924 -2.9%
30 10.06 34.27 37.04 38.26 17484.307 10.94 34.24 37.17 38.36 1237.863 -8.8%
35 5.23 31.25 35.11 36.79 14986.002 5.81 31.15 35.29 36.88 1127.764 -10.9%
20 32.94 40.09 40.63 40.73 11973.894 32.92 40.07 40.65 40.72 527.953 0.1%
25 19.42 35.83 36.61 36.67 11726.425 19.52 35.81 36.60 36.66 586.436 -0.5%
30 10.18 31.17 33.37 33.34 9982.049 10.35 31.15 33.37 33.32 493.223 -1.6%
35 4.64 26.69 30.76 30.58 8969.222 4.81 26.66 30.73 30.59 486.78 -3.8%
20 49.46 40.97 42.37 43.20 26423.156 48.79 40.99 42.48 43.33 1488.853 1.4%
25 28.82 37.24 39.77 40.73 25192.607 29.21 37.28 39.84 40.84 1509.339 -1.3%
30 14.60 33.41 37.69 38.87 20042.996 15.65 33.43 37.63 38.85 1334.215 -7.2%
35 7.44 30.07 35.82 37.11 17910.821 8.33 30.06 35.70 37.09 1218.696 -11.9%

JVT_128 COL_24

Performance of COL_24 compared to JVT_128

-1.29

Ferris 60

Bus 75 -30.37% -1.53

-5.61% -0.29

Canoa 110 -24.86%

-0.24

Mobile 130 -1.66% -0.10

Football 130 -5.50%

-0.21Rugby 110 -3.95%

70

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 23.03 40.68 41.76 43.41 363.85 -3.3%
25 11.70 36.97 38.75 40.96 10897.736 12.36 36.93 38.75 40.99 360.33 -5.7%
30 5.56 32.99 36.71 39.11 8901.597 6.07 32.95 36.68 39.05 334.55 -9.1%
35 2.67 29.40 35.40 37.39 7820.718 3.04 29.32 35.30 37.30 330.36 -13.9%
20 35.88 41.60 43.29 43.63 23232.25 35.74 41.62 43.37 43.75 743.66 0.4%
25 21.09 38.09 40.91 41.34 22128.641 21.47 38.09 40.95 41.50 730.35 -1.8%
30 11.07 34.30 38.92 39.48 17839.197 11.96 34.28 38.92 39.56 676.16 -8.1%
35 6.02 30.77 36.97 37.45 15889.673 6.67 30.75 36.92 37.56 642.14 -10.8%
20 15.73 42.27 42.17 42.68 7170.907 15.89 42.26 42.18 42.70 260.23 -1.0%
25 9.08 38.86 38.50 39.14 6824.357 9.23 38.83 38.51 39.12 254.82 -1.7%
30 4.75 34.99 35.29 36.39 5574.777 4.88 34.95 35.28 36.37 226.81 -2.7%
35 2.43 31.31 32.77 34.61 4881.838 2.53 31.28 32.72 34.56 216.82 -4.0%
20 37.53 40.95 41.42 42.28 22921.7 36.45 40.99 41.50 42.35 769.60 2.9%
25 20.21 37.71 39.05 40.01 21491.589 20.09 37.77 39.17 40.10 757.42 0.6%
30 10.06 34.27 37.04 38.26 17484.307 10.42 34.25 37.14 38.35 686.70 -3.6%
35 5.23 31.25 35.11 36.79 14986.002 5.50 31.16 35.28 36.89 639.76 -5.1%
20 32.94 40.09 40.63 40.73 11973.894 32.67 40.09 40.65 40.73 290.56 0.8%
25 19.42 35.83 36.61 36.67 11726.425 19.30 35.83 36.61 36.68 290.11 0.6%
30 10.18 31.17 33.37 33.34 9982.049 10.17 31.17 33.38 33.32 273.22 0.2%
35 4.64 26.69 30.76 30.58 8969.222 4.63 26.68 30.76 30.59 273.46 0.2%
20 49.46 40.97 42.37 43.20 26423.156 47.62 40.98 42.47 43.34 771.25 3.7%
25 28.82 37.24 39.77 40.73 25192.607 28.19 37.26 39.83 40.84 761.15 2.2%
30 14.60 33.41 37.69 38.87 20042.996 14.87 33.41 37.62 38.89 702.19 -1.9%
35 7.44 30.07 35.82 37.11 17910.821 7.84 30.05 35.69 37.09 672.05 -5.4%

Performance of JVT_16 compared to JVT_128
JVT_128 JVT_16

0.00Rugby 110 0.16%

-0.05

Mobile 130 0.39% 0.02

Football 130 -1.24%

-0.26

Ferris 60 -2.89% -0.15

Canoa 110 -5.19%

Bus 75 -8.48% -0.45

71

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 28.16 40.59 41.75 43.35 506.161 -26.3%
25 11.70 36.97 38.75 40.96 10897.736 15.89 36.82 38.70 40.89 480.083 -35.8%
30 5.56 32.99 36.71 39.11 8901.597 7.60 32.83 36.59 39.00 446.141 -36.6%
35 2.67 29.40 35.40 37.39 7820.718 4.16 29.21 35.21 37.24 425.143 -55.9%
20 35.88 41.60 43.29 43.63 23232.25 35.75 41.59 43.39 43.78 934.144 0.4%
25 21.09 38.09 40.91 41.34 22128.641 21.84 38.06 40.95 41.50 905.25 -3.6%
30 11.07 34.30 38.92 39.48 17839.197 12.50 34.25 38.91 39.55 853.155 -12.9%
35 6.02 30.77 36.97 37.45 15889.673 7.29 30.74 36.89 37.52 816.323 -21.1%
20 15.73 42.27 42.17 42.68 7170.907 16.47 42.25 42.18 42.71 321.657 -4.7%
25 9.08 38.86 38.50 39.14 6824.357 9.69 38.82 38.52 39.16 304.716 -6.7%
30 4.75 34.99 35.29 36.39 5574.777 5.23 34.94 35.29 36.35 277.624 -10.2%
35 2.43 31.31 32.77 34.61 4881.838 2.76 31.28 32.68 34.49 266.745 -13.5%
20 37.53 40.95 41.42 42.28 22921.7 36.67 40.98 41.53 42.37 952.993 2.3%
25 20.21 37.71 39.05 40.01 21491.589 20.43 37.76 39.21 40.13 912.893 -1.1%
30 10.06 34.27 37.04 38.26 17484.307 10.84 34.23 37.18 38.36 836.092 -7.7%
35 5.23 31.25 35.11 36.79 14986.002 5.89 31.18 35.32 36.87 753.537 -12.5%
20 32.94 40.09 40.63 40.73 11973.894 33.08 40.06 40.65 40.72 418.397 -0.4%
25 19.42 35.83 36.61 36.67 11726.425 19.66 35.79 36.60 36.67 387.952 -1.2%
30 10.18 31.17 33.37 33.34 9982.049 10.51 31.12 33.35 33.31 392.798 -3.2%
35 4.64 26.69 30.76 30.58 8969.222 4.96 26.65 30.73 30.58 385.301 -7.0%
20 49.46 40.97 42.37 43.20 26423.156 48.33 40.99 42.52 43.36 935.906 2.3%
25 28.82 37.24 39.77 40.73 25192.607 29.08 37.29 39.85 40.85 905.093 -0.9%
30 14.60 33.41 37.69 38.87 20042.996 15.78 33.41 37.54 38.81 848.138 -8.1%
35 7.44 30.07 35.82 37.11 17910.821 8.44 30.05 35.58 37.03 798.268 -13.5%

Performance of CSOME_1_16 with Histogram Peak Detection compared to JVT_128
JVT_128 CSOME_1_16 with Histogram Peak Detection

Football

Ferris

Mobile

Rugby 110 -4.32%

130 -3.29%

Canoa 110 -9.43%

Bus 75 -41.22% -2.20

130 -4.59%

-9.48% -0.48

-0.20

60

-0.50

-0.20

-0.23

72

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 26.94 40.60 41.75 43.38 433.514 -20.9%
25 11.70 36.97 38.75 40.96 10897.736 15.07 36.84 38.70 40.90 429.705 -28.8%
30 5.56 32.99 36.71 39.11 8901.597 7.46 32.84 36.61 38.99 401.136 -34.2%
35 2.67 29.40 35.40 37.39 7820.718 3.73 29.22 35.24 37.30 391.596 -39.8%
20 35.88 41.60 43.29 43.63 23232.25 35.70 41.59 43.40 43.79 844.189 0.5%
25 21.09 38.09 40.91 41.34 22128.641 21.82 38.06 40.96 41.50 839.284 -3.5%
30 11.07 34.30 38.92 39.48 17839.197 12.53 34.25 38.91 39.54 808.127 -13.1%
35 6.02 30.77 36.97 37.45 15889.673 7.29 30.73 36.83 37.51 777.756 -21.1%
20 15.73 42.27 42.17 42.68 7170.907 16.43 42.26 42.20 42.70 275.515 -4.5%
25 9.08 38.86 38.50 39.14 6824.357 9.67 38.83 38.51 39.14 269.765 -6.5%
30 4.75 34.99 35.29 36.39 5574.777 5.20 34.94 35.29 36.34 243.784 -9.6%
35 2.43 31.31 32.77 34.61 4881.838 2.75 31.28 32.67 34.51 232.45 -13.0%
20 37.53 40.95 41.42 42.28 22921.7 36.45 40.99 41.53 42.37 839.814 2.9%
25 20.21 37.71 39.05 40.01 21491.589 20.33 37.76 39.21 40.13 838.793 -0.6%
30 10.06 34.27 37.04 38.26 17484.307 10.84 34.23 37.17 38.38 762.91 -7.8%
35 5.23 31.25 35.11 36.79 14986.002 5.87 31.18 35.31 36.86 704.847 -12.2%
20 32.94 40.09 40.63 40.73 11973.894 32.82 40.08 40.65 40.73 291247 0.4%
25 19.42 35.83 36.61 36.67 11726.425 19.46 35.82 36.61 36.66 291240 -0.2%
30 10.18 31.17 33.37 33.34 9982.049 10.31 31.15 33.35 33.32 275.046 -1.2%
35 4.64 26.69 30.76 30.58 8969.222 4.76 26.66 30.72 30.57 275347 -2.6%
20 49.46 40.97 42.37 43.20 26423.156 48.39 40.98 42.49 43.36 851.537 2.2%
25 28.82 37.24 39.77 40.73 25192.607 29.08 37.27 39.82 40.84 847.563 -0.9%
30 14.60 33.41 37.69 38.87 20042.996 15.80 33.42 37.55 38.82 796.349 -8.3%
35 7.44 30.07 35.82 37.11 17910.821 8.46 30.05 35.61 37.05 757.607 -13.7%

Performance of CSOME_1_16 with K-Means Clustering compared to JVT_128
JVT_128 CSOME_1_16 with K-Means Clustering

-0.23

130 -4.32%

Rugby 110 -4.45%

Canoa

-0.19

Mobile 130 -1.12% -0.07

Football

Ferris 60 -9.01%

110 -9.47%

Bus 75 -34.59% -1.72

-0.50

-0.46

73

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 22.84 40.66 41.76 43.41 832.048 -2.5%
25 11.70 36.97 38.75 40.96 10897.736 12.33 36.91 38.75 40.98 806.873 -5.4%
30 5.56 32.99 36.71 39.11 8901.597 6.13 32.91 36.67 39.04 746.781 -10.2%
35 2.67 29.40 35.40 37.39 7820.718 3.09 29.26 35.31 37.30 715.252 -15.9%
20 35.88 41.60 43.29 43.63 23232.25 35.55 41.59 43.36 43.75 1659.482 0.9%
25 21.09 38.09 40.91 41.34 22128.641 21.52 38.06 40.94 41.50 1589.04 -2.0%
30 11.07 34.30 38.92 39.48 17839.197 12.15 34.25 38.88 39.56 1475.889 -9.7%
35 6.02 30.77 36.97 37.45 15889.673 7.01 30.72 36.86 37.51 1389.316 -16.4%
20 15.73 42.27 42.17 42.68 7170.907 16.11 42.26 42.19 42.71 531.673 -2.4%
25 9.08 38.86 38.50 39.14 6824.357 9.40 38.83 38.50 39.14 509.814 -3.5%
30 4.75 34.99 35.29 36.39 5574.777 5.03 34.95 35.30 36.37 458.858 -5.9%
35 2.43 31.31 32.77 34.61 4881.838 2.64 31.29 32.73 34.57 439.513 -8.6%
20 37.53 40.95 41.42 42.28 22921.7 36.25 40.96 41.51 42.36 1668.909 3.4%
25 20.21 37.71 39.05 40.01 21491.589 19.90 37.74 39.19 40.13 1611.809 1.5%
30 10.06 34.27 37.04 38.26 17484.307 10.46 34.22 37.15 38.36 1456.264 -4.0%
35 5.23 31.25 35.11 36.79 14986.002 5.70 31.20 35.29 36.84 1343.683 -8.9%
20 32.94 40.09 40.63 40.73 11973.894 33.18 40.07 40.65 40.72 736.702 -0.7%
25 19.42 35.83 36.61 36.67 11726.425 19.69 35.79 36.61 36.66 705.184 -1.4%
30 10.18 31.17 33.37 33.34 9982.049 10.55 31.12 33.36 33.32 697.081 -3.6%
35 4.64 26.69 30.76 30.58 8969.222 5.00 26.64 30.71 30.58 702.202 -7.7%
20 49.46 40.97 42.37 43.20 26423.156 48.42 40.97 42.45 43.32 1660.475 2.1%
25 28.82 37.24 39.77 40.73 25192.607 28.80 37.26 39.79 40.85 1618.151 0.1%
30 14.60 33.41 37.69 38.87 20042.996 15.40 33.41 37.56 38.85 1494.074 -5.5%
35 7.44 30.07 35.82 37.11 17910.821 8.17 30.03 35.61 37.06 1388.217 -9.8%

JVT_128 CSOME_1_24 with Histogram Peak Detection

Performance of CSOME_1_24 with Histogram Peak Detection compared to JVT_128

-0.15

-0.08

-0.22

-0.29

Rugby 110 -2.87%

Mobile 130 -3.66%

Football 130 -1.77%

60 -5.62%

110 -7.03%Canoa

Ferris

-0.51

-0.37

Bus 75 -9.67%

74

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 22.75 40.67 41.77 43.42 715.266 -2.0%
25 11.70 36.97 38.75 40.96 10897.736 12.17 36.93 38.76 41.00 706.781 -4.0%
30 5.56 32.99 36.71 39.11 8901.597 6.03 32.93 36.69 39.05 676.183 -8.5%
35 2.67 29.40 35.40 37.39 7820.718 3.00 29.28 35.34 37.34 627.783 -12.4%
20 35.88 41.60 43.29 43.63 23232.25 35.99 41.58 43.35 43.74 1471.656 -0.3%
25 21.09 38.09 40.91 41.34 22128.641 21.82 38.06 40.93 41.48 1459.033 -3.4%
30 11.07 34.30 38.92 39.48 17839.197 12.23 34.25 38.91 39.54 1349.484 -10.5%
35 6.02 30.77 36.97 37.45 15889.673 6.90 30.72 36.84 37.50 1287.335 -14.5%
20 15.73 42.27 42.17 42.68 7170.907 16.06 42.28 42.19 42.70 447.954 -2.1%
25 9.08 38.86 38.50 39.14 6824.357 9.38 38.84 38.51 39.14 438.111 -3.3%
30 4.75 34.99 35.29 36.39 5574.777 5.00 34.96 35.29 36.36 390.814 -5.3%
35 2.43 31.31 32.77 34.61 4881.838 2.62 31.29 32.73 34.57 368.358 -7.7%
20 37.53 40.95 41.42 42.28 22921.7 36.15 40.96 41.51 42.36 1488.443 3.7%
25 20.21 37.71 39.05 40.01 21491.589 19.83 37.73 39.19 40.13 1466.439 1.9%
30 10.06 34.27 37.04 38.26 17484.307 10.41 34.22 37.16 38.38 1331.482 -3.6%
35 5.23 31.25 35.11 36.79 14986.002 5.70 31.20 35.30 36.88 1188.208 -8.8%
20 32.94 40.09 40.63 40.73 11973.894 32.85 40.08 40.64 40.72 519.745 0.3%
25 19.42 35.83 36.61 36.67 11726.425 19.47 35.82 36.61 36.67 517.389 -0.2%
30 10.18 31.17 33.37 33.34 9982.049 10.30 31.15 33.37 33.33 479.309 -1.2%
35 4.64 26.69 30.76 30.58 8969.222 4.75 26.67 30.75 30.59 469.832 -2.5%
20 49.46 40.97 42.37 43.20 26423.156 48.39 40.97 42.46 43.32 1511.314 2.2%
25 28.82 37.24 39.77 40.73 25192.607 28.74 37.25 39.80 40.83 1501.419 0.3%
30 14.60 33.41 37.69 38.87 20042.996 15.31 33.40 37.56 38.84 1384.153 -4.9%
35 7.44 30.07 35.82 37.11 17910.821 8.07 30.04 35.63 37.07 1300.49 -8.5%

CSOME_1_24 with K-Means Clustering

-0.13Rugby 110 -2.43%

-0.07

Mobile 130 -1.07% -0.06

Football 130 -1.52%

-0.25

Canoa

Ferris 60 -4.84%

110 -7.78%

-0.40

-0.40

Performance of CSOME_1_24 with K-Means Clustering compared to JVT_128
JVT_128

Bus 75 -7.64%

75

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 22.70 40.68 41.75 43.41 393.08 -1.8%
25 11.70 36.97 38.75 40.96 10897.736 12.21 36.94 38.75 41.00 429.72 -4.4%
30 5.56 32.99 36.71 39.11 8901.597 6.05 32.92 36.69 39.07 407.80 -8.7%
35 2.67 29.40 35.40 37.39 7820.718 3.03 29.27 35.36 37.35 399.08 -13.4%
20 35.88 41.60 43.29 43.63 23232.25 35.45 41.60 43.38 43.76 805.78 1.2%
25 21.09 38.09 40.91 41.34 22128.641 21.56 38.07 40.94 41.48 851.33 -2.2%
30 11.07 34.30 38.92 39.48 17839.197 11.81 34.27 38.92 39.54 798.33 -6.7%
35 6.02 30.77 36.97 37.45 15889.673 6.78 30.74 36.92 37.51 774.16 -12.6%
20 15.73 42.27 42.17 42.68 7170.907 16.52 42.25 42.16 42.68 277.78 -5.0%
25 9.08 38.86 38.50 39.14 6824.357 9.82 38.83 38.51 39.14 298.01 -8.0%
30 4.75 34.99 35.29 36.39 5574.777 5.32 34.94 35.28 36.35 274.64 -12.0%
35 2.43 31.31 32.77 34.61 4881.838 2.84 31.29 32.67 34.49 263.26 -16.9%
20 37.53 40.95 41.42 42.28 22921.7 36.63 40.98 41.52 42.36 818.24 2.4%
25 20.21 37.71 39.05 40.01 21491.589 20.48 37.76 39.20 40.12 865.56 -1.3%
30 10.06 34.27 37.04 38.26 17484.307 10.92 34.21 37.15 38.35 806.72 -8.6%
35 5.23 31.25 35.11 36.79 14986.002 6.06 31.18 35.28 36.84 745.00 -15.7%
20 32.94 40.09 40.63 40.73 11973.894 32.88 40.08 40.65 40.73 389.59 0.2%
25 19.42 35.83 36.61 36.67 11726.425 19.56 35.81 36.62 36.66 335.78 -0.7%
30 10.18 31.17 33.37 33.34 9982.049 10.43 31.14 33.36 33.32 330.82 -2.5%
35 4.64 26.69 30.76 30.58 8969.222 4.89 26.65 30.73 30.57 340.17 -5.4%
20 49.46 40.97 42.37 43.20 26423.156 48.19 40.98 42.50 43.36 864.36 2.6%
25 28.82 37.24 39.77 40.73 25192.607 28.96 37.27 39.84 40.85 883.00 -0.5%
30 14.60 33.41 37.69 38.87 20042.996 15.87 33.42 37.60 38.84 834.58 -8.7%
35 7.44 30.07 35.82 37.11 17910.821 8.47 30.06 35.65 37.07 788.06 -13.8%

Performance of CSOME_2_11 with Histogram Peak Detection compared to JVT_128
JVT_128 CSOME_2_11 with Histogram Peak Detection

-5.53%

-0.57

-7.95%Bus 75

-0.25

-2.29% -0.14

Football

-0.23-4.37%

130

Rugby 110

Mobile 130

Ferris 60 -11.11%

Canoa 110 -5.20%

-0.41

-0.28

76

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 22.70 40.68 41.75 43.41 393.079 -1.8%
25 11.70 36.97 38.75 40.96 10897.736 12.18 36.94 38.75 41.00 392.643 -4.1%
30 5.56 32.99 36.71 39.11 8901.597 6.04 32.92 36.69 39.05 414.657 -8.6%
35 2.67 29.40 35.40 37.39 7820.718 2.99 29.29 35.34 37.35 372.172 -12.2%
20 35.88 41.60 43.29 43.63 23232.25 35.45 41.60 43.38 43.76 805.779 1.2%
25 21.09 38.09 40.91 41.34 22128.641 21.97 38.07 40.93 41.47 809.528 -4.2%
30 11.07 34.30 38.92 39.48 17839.197 11.83 34.27 38.93 39.54 775.324 -6.8%
35 6.02 30.77 36.97 37.45 15889.673 6.69 30.73 36.92 37.54 745.163 -11.1%
20 15.73 42.27 42.17 42.68 7170.907 16.52 42.25 42.16 42.68 277.782 -5.0%
25 9.08 38.86 38.50 39.14 6824.357 9.77 38.82 38.50 39.14 274.029 -7.5%
30 4.75 34.99 35.29 36.39 5574.777 5.29 34.91 35.27 36.35 281.453 -11.4%
35 2.43 31.31 32.77 34.61 4881.838 2.84 31.26 32.64 34.47 240.982 -16.5%
20 37.53 40.95 41.42 42.28 22921.7 36.63 40.98 41.52 42.36 818.242 2.4%
25 20.21 37.71 39.05 40.01 21491.589 20.49 37.76 39.19 40.11 857.564 -1.3%
30 10.06 34.27 37.04 38.26 17484.307 10.90 34.22 37.15 38.35 778.993 -8.4%
35 5.23 31.25 35.11 36.79 14986.002 6.01 31.16 35.29 36.83 696.02 -14.8%
20 32.94 40.09 40.63 40.73 11973.894 32.88 40.08 40.65 40.73 389.593 0.2%
25 19.42 35.83 36.61 36.67 11726.425 19.49 35.82 36.62 36.66 353.591 -0.4%
30 10.18 31.17 33.37 33.34 9982.049 10.32 31.15 33.37 33.33 274.867 -1.3%
35 4.64 26.69 30.76 30.58 8969.222 4.77 26.67 30.76 30.58 273.408 -2.9%
20 49.46 40.97 42.37 43.20 26423.156 48.19 40.98 42.50 43.36 864.358 2.6%
25 28.82 37.24 39.77 40.73 25192.607 28.87 37.28 39.85 40.86 865.374 -0.2%
30 14.60 33.41 37.69 38.87 20042.996 15.62 33.43 37.61 38.85 820.569 -7.0%
35 7.44 30.07 35.82 37.11 17910.821 8.43 30.06 35.67 37.08 764.971 -13.3%

JVT_128 CSOME_2_11 with K-Means Clustering

-3.46%

-0.07

-5.36%

Rugby

-0.30

-10.94% -0.56

Performance of CSOME_2_11 with K-Means Clustering compared to JVT_128

Football 130

Ferris 60

-0.19

-0.24

Mobile 130 -1.23%

Canoa 110 -5.84%

110

Bus 75 -7.65% -0.40

77

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 22.74 40.68 41.76 43.41 407.268 -2.0%
25 11.70 36.97 38.75 40.96 10897.736 12.21 36.94 38.75 40.99 423.626 -4.4%
30 5.56 32.99 36.71 39.11 8901.597 6.04 32.93 36.69 39.05 412.627 -8.6%
35 2.67 29.40 35.40 37.39 7820.718 2.99 29.29 35.34 37.35 373.077 -12.2%
20 35.88 41.60 43.29 43.63 23232.25 35.43 41.60 43.38 43.76 804.67 1.3%
25 21.09 38.09 40.91 41.34 22128.641 21.39 38.08 40.95 41.49 829.251 -1.4%
30 11.07 34.30 38.92 39.48 17839.197 11.81 34.27 38.93 39.54 755.663 -6.7%
35 6.02 30.77 36.97 37.45 15889.673 6.69 30.73 36.92 37.54 746.308 -11.1%
20 15.73 42.27 42.17 42.68 7170.907 16.53 42.25 42.16 42.69 296.314 -5.1%
25 9.08 38.86 38.50 39.14 6824.357 9.77 38.82 38.51 39.13 293.766 -7.6%
30 4.75 34.99 35.29 36.39 5574.777 5.29 34.92 35.26 36.35 272.905 -11.4%
35 2.43 31.31 32.77 34.61 4881.838 2.84 31.27 32.67 34.49 255.034 -16.7%
20 37.53 40.95 41.42 42.28 22921.7 36.68 40.98 41.52 42.36 817.973 2.3%
25 20.21 37.71 39.05 40.01 21491.589 20.47 37.76 39.20 40.12 811.685 -1.3%
30 10.06 34.27 37.04 38.26 17484.307 10.89 34.22 37.15 38.36 765.765 -8.3%
35 5.23 31.25 35.11 36.79 14986.002 6.01 31.16 35.29 36.82 696.923 -14.8%
20 32.94 40.09 40.63 40.73 11973.894 32.88 40.09 40.64 40.72 380.905 0.2%
25 19.42 35.83 36.61 36.67 11726.425 19.49 35.82 36.61 36.67 353.656 -0.4%
30 10.18 31.17 33.37 33.34 9982.049 10.32 31.16 33.39 33.32 268.005 -1.3%
35 4.64 26.69 30.76 30.58 8969.222 4.77 26.66 30.74 30.58 274.645 -2.8%
20 49.46 40.97 42.37 43.20 26423.156 48.17 40.98 42.50 43.35 873.578 2.6%
25 28.82 37.24 39.77 40.73 25192.607 28.88 37.28 39.85 40.85 866.062 -0.2%
30 14.60 33.41 37.69 38.87 20042.996 15.62 33.43 37.62 38.85 795.999 -7.0%
35 7.44 30.07 35.82 37.11 17910.821 8.45 30.06 35.67 37.07 759.182 -13.5%

Performance of CSOME_2_11 with Single Iteration K-Means Clustering compared to JVT_128
JVT_128 CSOME_2_11 with Single Iteration K-Means Clustering

110

130

-0.19Rugby

Canoa

-3.51%

-0.24

Mobile 130 -1.19% -0.07

Football

Ferris 60 -10.91%

110 -4.68% -0.24

-7.73% -0.40Bus 75

-0.56

-5.31%

78

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 22.53 40.67 41.77 43.42 759.52 -1.1%
25 11.70 36.97 38.75 40.96 10897.736 12.03 36.94 38.76 41.02 742.015 -2.8%
30 5.56 32.99 36.71 39.11 8901.597 5.96 32.93 36.70 39.09 706.76 -7.1%
35 2.67 29.40 35.40 37.39 7820.718 2.98 29.30 35.35 37.37 681.039 -11.5%
20 35.88 41.60 43.29 43.63 23232.25 35.13 41.60 43.37 43.74 1457.564 2.1%
25 21.09 38.09 40.91 41.34 22128.641 21.03 38.09 40.96 41.47 1425.22 0.3%
30 11.07 34.30 38.92 39.48 17839.197 11.59 34.27 38.94 39.54 1347.488 -4.6%
35 6.02 30.77 36.97 37.45 15889.673 6.56 30.70 36.93 37.53 1284.049 -8.9%
20 15.73 42.27 42.17 42.68 7170.907 16.33 42.26 42.19 42.70 506.646 -3.8%
25 9.08 38.86 38.50 39.14 6824.357 9.62 38.83 38.50 39.13 505.045 -5.9%
30 4.75 34.99 35.29 36.39 5574.777 5.14 34.96 35.29 36.37 443.835 -8.2%
35 2.43 31.31 32.77 34.61 4881.838 2.73 31.29 32.75 34.56 425.451 -12.2%
20 37.53 40.95 41.42 42.28 22921.7 36.99 40.98 41.51 42.35 1552.306 1.4%
25 20.21 37.71 39.05 40.01 21491.589 20.30 37.74 39.17 40.11 1510.574 -0.5%
30 10.06 34.27 37.04 38.26 17484.307 10.71 34.22 37.14 38.36 1375.032 -6.5%
35 5.23 31.25 35.11 36.79 14986.002 5.87 31.19 35.29 36.88 1273.266 -12.2%
20 32.94 40.09 40.63 40.73 11973.894 33.11 40.07 40.64 40.73 663.081 -0.5%
25 19.42 35.83 36.61 36.67 11726.425 19.65 35.79 36.61 36.66 629.528 -1.2%
30 10.18 31.17 33.37 33.34 9982.049 10.53 31.13 33.36 33.32 622.842 -3.4%
35 4.64 26.69 30.76 30.58 8969.222 4.97 26.65 30.72 30.57 631.97 -7.1%
20 49.46 40.97 42.37 43.20 26423.156 48.85 40.98 42.47 43.33 1546.43 1.2%
25 28.82 37.24 39.77 40.73 25192.607 29.12 37.26 39.83 40.84 1508.875 -1.0%
30 14.60 33.41 37.69 38.87 20042.996 15.55 33.42 37.61 38.86 1407.307 -6.5%
35 7.44 30.07 35.82 37.11 17910.821 8.35 30.05 35.66 37.09 1320.943 -12.2%

Performance of CSOME_2_16 with Histogram Peak Detection compared to JVT_128
JVT_128 CSOME_2_16 with Histogram Peak Detection

-0.15

-0.19

-0.20

-0.20-3.87%Rugby 110

Canoa 110

Ferris 60

Bus 75 -6.27% -0.33

-7.89% -0.41

Football 130 -4.15%

-2.87%

Mobile 130 -3.30%

79

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 22.46 40.68 41.76 43.41 651.59 -0.7%
25 11.70 36.97 38.75 40.96 10897.736 11.97 36.94 38.75 41.01 648.984 -2.3%
30 5.56 32.99 36.71 39.11 8901.597 5.92 32.94 36.71 39.07 677.561 -6.5%
35 2.67 29.40 35.40 37.39 7820.718 2.91 29.30 35.36 37.39 594.517 -9.0%
20 35.88 41.60 43.29 43.63 23232.25 35.28 41.60 43.36 43.74 1341.125 1.7%
25 21.09 38.09 40.91 41.34 22128.641 21.11 38.08 40.96 41.47 1328.265 -0.1%
30 11.07 34.30 38.92 39.48 17839.197 11.53 34.27 38.93 39.55 1249.61 -4.1%
35 6.02 30.77 36.97 37.45 15889.673 6.50 30.72 36.95 37.52 1198.898 -8.0%
20 15.73 42.27 42.17 42.68 7170.907 16.29 42.26 42.18 42.69 507.578 -3.6%
25 9.08 38.86 38.50 39.14 6824.357 9.54 38.84 38.48 39.12 456.077 -5.0%
30 4.75 34.99 35.29 36.39 5574.777 5.14 34.93 35.27 36.35 409.722 -8.3%
35 2.43 31.31 32.77 34.61 4881.838 2.71 31.30 32.71 34.55 391.47 -11.2%
20 37.53 40.95 41.42 42.28 22921.7 36.58 40.96 41.50 42.35 1414.273 2.5%
25 20.21 37.71 39.05 40.01 21491.589 20.23 37.73 39.16 40.10 1506.77 -0.1%
30 10.06 34.27 37.04 38.26 17484.307 10.61 34.23 37.14 38.36 1256.424 -5.5%
35 5.23 31.25 35.11 36.79 14986.002 5.86 31.19 35.27 36.84 1243.587 -11.9%
20 32.94 40.09 40.63 40.73 11973.894 32.87 40.09 40.64 40.72 643.547 0.2%
25 19.42 35.83 36.61 36.67 11726.425 19.47 35.82 36.61 36.66 470.345 -0.2%
30 10.18 31.17 33.37 33.34 9982.049 10.33 31.16 33.37 33.32 444.378 -1.4%
35 4.64 26.69 30.76 30.58 8969.222 4.79 26.67 30.76 30.58 465.582 -3.2%
20 49.46 40.97 42.37 43.20 26423.156 48.64 40.98 42.47 43.33 1472.025 1.7%
25 28.82 37.24 39.77 40.73 25192.607 29.06 37.27 39.83 40.83 1543.201 -0.8%
30 14.60 33.41 37.69 38.87 20042.996 15.50 33.42 37.62 38.86 1387.55 -6.2%
35 7.44 30.07 35.82 37.11 17910.821 8.30 30.04 35.69 37.09 1261.772 -11.6%

-0.19

-0.16

-0.07

-0.39

Rugby 110 -3.52%

Mobile 130 -1.20%

Football 130 -3.46%

60 -7.57%

110 -2.74%Canoa

Ferris

-0.28

-0.14

Performance of CSOME_2_16 with K-Means Clustering compared to JVT_128

Bus 75 -5.32%

JVT_128 CSOME_2_16 with K-Means Clustering

80

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 22.45 40.68 41.76 43.42 666.844 -0.7%
25 11.70 36.97 38.75 40.96 10897.736 11.99 36.95 38.76 41.03 680.937 -2.5%
30 5.56 32.99 36.71 39.11 8901.597 5.92 32.95 36.72 39.08 674.358 -6.5%
35 2.67 29.40 35.40 37.39 7820.718 2.92 29.29 35.36 37.37 599.53 -9.3%
20 35.88 41.60 43.29 43.63 23232.25 35.15 41.60 43.37 43.75 1371.666 2.0%
25 21.09 38.09 40.91 41.34 22128.641 21.12 38.08 40.96 41.47 1327.923 -0.1%
30 11.07 34.30 38.92 39.48 17839.197 11.54 34.28 38.93 39.55 1249.76 -4.2%
35 6.02 30.77 36.97 37.45 15889.673 6.50 30.73 36.93 37.53 1200.798 -8.0%
20 15.73 42.27 42.17 42.68 7170.907 16.28 42.26 42.19 42.69 471.81 -3.5%
25 9.08 38.86 38.50 39.14 6824.357 9.57 38.83 38.47 39.11 493.982 -5.4%
30 4.75 34.99 35.29 36.39 5574.777 5.14 34.94 35.28 36.35 411.184 -8.4%
35 2.43 31.31 32.77 34.61 4881.838 2.71 31.29 32.73 34.54 391.987 -11.2%
20 37.53 40.95 41.42 42.28 22921.7 36.59 40.96 41.50 42.35 1401.028 2.5%
25 20.21 37.71 39.05 40.01 21491.589 20.18 37.73 39.16 40.10 1450.557 0.2%
30 10.06 34.27 37.04 38.26 17484.307 10.62 34.23 37.14 38.35 1323.697 -5.5%
35 5.23 31.25 35.11 36.79 14986.002 5.86 31.20 35.29 36.86 1218.999 -12.0%
20 32.94 40.09 40.63 40.73 11973.894 32.83 40.09 40.65 40.73 478.92 0.3%
25 19.42 35.83 36.61 36.67 11726.425 19.47 35.82 36.61 36.67 471.809 -0.3%
30 10.18 31.17 33.37 33.34 9982.049 10.32 31.16 33.37 33.32 445.309 -1.3%
35 4.64 26.69 30.76 30.58 8969.222 4.80 26.68 30.73 30.58 571.169 -3.6%
20 49.46 40.97 42.37 43.20 26423.156 48.62 40.98 42.47 43.33 1470.627 1.7%
25 28.82 37.24 39.77 40.73 25192.607 29.01 37.27 39.83 40.83 1458.401 -0.6%
30 14.60 33.41 37.69 38.87 20042.996 15.53 33.42 37.62 38.86 1382.985 -6.4%
35 7.44 30.07 35.82 37.11 17910.821 8.31 30.06 35.70 37.11 1284.853 -11.6%

Bus 75 -5.40%

-2.72%

-0.28

-0.14

Performance of CSOME_2_16 with Single Iteration K-Means Clustering compared to JVT_128

-0.39

Canoa

Ferris 60 -7.72%

110

-0.15

Mobile 130 -1.19% -0.07

Football 130 -3.42%

-0.18Rugby 110 -3.46%

JVT_128 CSOME_2_16 with Single Iteration K-Means Clustering

81

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 22.88 40.67 41.74 43.40 535.359 -2.6%
25 11.70 36.97 38.75 40.96 10897.736 12.31 36.93 38.75 41.01 523.185 -5.3%
30 5.56 32.99 36.71 39.11 8901.597 6.13 32.93 36.69 39.06 506.38 -10.2%
35 2.67 29.40 35.40 37.39 7820.718 3.09 29.27 35.37 37.44 501.879 -15.9%
20 35.88 41.60 43.29 43.63 23232.25 38.11 41.58 43.33 43.71 1074.066 -6.2%
25 21.09 38.09 40.91 41.34 22128.641 22.65 38.06 40.92 41.45 1033.597 -7.4%
30 11.07 34.30 38.92 39.48 17839.197 12.42 34.26 38.91 39.52 976.05 -12.2%
35 6.02 30.77 36.97 37.45 15889.673 7.19 30.70 36.90 37.48 978.35 -19.4%
20 15.73 42.27 42.17 42.68 7170.907 16.56 42.27 42.18 42.70 391.355 -5.2%
25 9.08 38.86 38.50 39.14 6824.357 9.86 38.84 38.50 39.13 376.968 -8.5%
30 4.75 34.99 35.29 36.39 5574.777 5.35 34.96 35.28 36.36 349.767 -12.6%
35 2.43 31.31 32.77 34.61 4881.838 2.89 31.30 32.72 34.57 354.112 -18.8%
20 37.53 40.95 41.42 42.28 22921.7 37.80 40.98 41.51 42.35 1120.556 -0.7%
25 20.21 37.71 39.05 40.01 21491.589 21.21 37.76 39.17 40.10 1072.806 -4.9%
30 10.06 34.27 37.04 38.26 17484.307 11.39 34.22 37.13 38.35 1011.831 -13.3%
35 5.23 31.25 35.11 36.79 14986.002 6.34 31.21 35.24 36.84 1108.07 -21.2%
20 32.94 40.09 40.63 40.73 11973.894 32.92 40.08 40.64 40.72 457.971 0.1%
25 19.42 35.83 36.61 36.67 11726.425 19.57 35.81 36.62 36.67 428.569 -0.8%
30 10.18 31.17 33.37 33.34 9982.049 10.45 31.15 33.38 33.32 420.829 -2.6%
35 4.64 26.69 30.76 30.58 8969.222 4.88 26.67 30.74 30.57 471.678 -5.3%
20 49.46 40.97 42.37 43.20 26423.156 49.33 40.97 42.47 43.32 1126.251 0.2%
25 28.82 37.24 39.77 40.73 25192.607 29.85 37.26 39.82 40.83 1084.899 -3.6%
30 14.60 33.41 37.69 38.87 20042.996 16.31 33.41 37.61 38.83 1041.811 -11.7%
35 7.44 30.07 35.82 37.11 17910.821 9.00 30.04 35.67 37.08 1076.539 -21.0%

Performance of CSOME_4_8 with Histogram Peak Detection compared to JVT_128
JVT_128 CSOME_4_8 with Histogram Peak Detection

-0.42

130 -9.49%

Rugby 110 -8.02%

110

-0.43

Mobile 130 -2.27% -0.14

Football

-9.34% -0.49

Ferris 60 -11.52% -0.60

Canoa -11.23% -0.60

Bus 75

82

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 22.98 40.6781 41.7404 43.4031 566.14 -3.1%
25 11.70 36.97 38.75 40.96 10897.736 12.36 36.9297 38.7475 40.9964 550.691 -5.7%
30 5.56 32.99 36.71 39.11 8901.597 6.16 32.9362 36.691 39.0342 495.619 -10.8%
35 2.67 29.40 35.40 37.39 7820.718 3.09 29.2865 35.3493 37.3646 498.463 -15.6%
20 35.88 41.60 43.29 43.63 23232.25 36.50 41.5864 43.3498 43.7307 988.462 -1.7%
25 21.09 38.09 40.91 41.34 22128.641 22.47 38.0567 40.9298 41.4472 1010.719 -6.5%
30 11.07 34.30 38.92 39.48 17839.197 12.48 34.2655 38.9127 39.5214 995.66 -12.7%
35 6.02 30.77 36.97 37.45 15889.673 7.12 30.7218 36.9554 37.5166 933.949 -18.3%
20 15.73 42.27 42.17 42.68 7170.907 16.56 42.2579 42.1493 42.6643 336.484 -5.3%
25 9.08 38.86 38.50 39.14 6824.357 9.82 38.83 38.4739 39.0979 381.765 -8.1%
30 4.75 34.99 35.29 36.39 5574.777 5.34 34.9324 35.2551 36.3432 347.459 -12.6%
35 2.43 31.31 32.77 34.61 4881.838 2.86 31.2685 32.6823 34.5113 292.191 -17.6%
20 37.53 40.95 41.42 42.28 22921.7 37.70 40.981 41.5141 42.3589 1023.607 -0.4%
25 20.21 37.71 39.05 40.01 21491.589 21.18 37.7633 39.171 40.101 1066.653 -4.8%
30 10.06 34.27 37.04 38.26 17484.307 11.37 34.2146 37.1322 38.3357 946.557 -13.0%
35 5.23 31.25 35.11 36.79 14986.002 6.33 31.1788 35.275 36.8123 861.575 -20.9%
20 32.94 40.09 40.63 40.73 11973.894 32.81 40.0938 40.6466 40.7288 431.306 0.4%
25 19.42 35.83 36.61 36.67 11726.425 19.49 35.8294 36.6244 36.6709 459.373 -0.4%
30 10.18 31.17 33.37 33.34 9982.049 10.33 31.1721 33.3794 33.3375 384.535 -1.5%
35 4.64 26.69 30.76 30.58 8969.222 4.78 26.6818 30.7478 30.5809 367.46 -3.0%
20 49.46 40.97 42.37 43.20 26423.156 49.31 40.9791 42.4762 43.3353 1066.125 0.3%
25 28.82 37.24 39.77 40.73 25192.607 29.76 37.2621 39.8298 40.8332 1121.139 -3.2%
30 14.60 33.41 37.69 38.87 20042.996 16.10 33.406 37.6223 38.8442 988.941 -10.3%
35 7.44 30.07 35.82 37.11 17910.821 8.79 30.0576 35.7031 37.0805 965.398 -18.1%

-0.42

-0.06

-0.59

-0.36Rugby 110 -6.98%

Mobile 130 -1.06%

Football 130 -9.46%

60 -11.53%

110 -10.36%Canoa

Ferris

-0.50

-0.54

Performance of CSOME_4_8 with K-Means Clustering compared to JVT_128
JVT_128 CSOME_4_8 with K-Means Clustering

Bus 75 -9.61%

83

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 23.00 40.67 41.74 43.40 609.122 -3.2%
25 11.70 36.97 38.75 40.96 10897.736 12.37 36.94 38.74 40.98 478.454 -5.7%
30 5.56 32.99 36.71 39.11 8901.597 6.16 32.93 36.70 39.07 551.415 -10.7%
35 2.67 29.40 35.40 37.39 7820.718 3.12 29.29 35.36 37.35 487.528 -16.7%
20 35.88 41.60 43.29 43.63 23232.25 36.60 41.59 43.35 43.73 991.708 -2.0%
25 21.09 38.09 40.91 41.34 22128.641 22.40 38.07 40.93 41.46 1037.718 -6.2%
30 11.07 34.30 38.92 39.48 17839.197 12.38 34.27 38.92 39.53 948.902 -11.8%
35 6.02 30.77 36.97 37.45 15889.673 7.13 30.72 36.95 37.52 896.043 -18.4%
20 15.73 42.27 42.17 42.68 7170.907 16.58 42.26 42.15 42.67 349.033 -5.4%
25 9.08 38.86 38.50 39.14 6824.357 9.76 38.82 38.48 39.11 329.744 -7.4%
30 4.75 34.99 35.29 36.39 5574.777 5.33 34.93 35.27 36.35 347.547 -12.3%
35 2.43 31.31 32.77 34.61 4881.838 2.88 31.27 32.67 34.50 301.687 -18.2%
20 37.53 40.95 41.42 42.28 22921.7 37.81 40.99 41.52 42.36 1062.781 -0.7%
25 20.21 37.71 39.05 40.01 21491.589 21.22 37.76 39.18 40.09 1023.84 -5.0%
30 10.06 34.27 37.04 38.26 17484.307 11.36 34.22 37.15 38.35 946.672 -12.9%
35 5.23 31.25 35.11 36.79 14986.002 6.35 31.16 35.24 36.84 887.634 -21.4%
20 32.94 40.09 40.63 40.73 11973.894 32.75 40.09 40.66 40.73 349.713 0.6%
25 19.42 35.83 36.61 36.67 11726.425 19.45 35.83 36.62 36.66 378.966 -0.2%
30 10.18 31.17 33.37 33.34 9982.049 10.35 31.17 33.36 33.33 394.624 -1.7%
35 4.64 26.69 30.76 30.58 8969.222 4.77 26.69 30.75 30.60 345.436 -2.8%
20 49.46 40.97 42.37 43.20 26423.156 49.54 40.98 42.47 43.33 1071.627 -0.2%
25 28.82 37.24 39.77 40.73 25192.607 29.70 37.27 39.82 40.83 1029.373 -3.0%
30 14.60 33.41 37.69 38.87 20042.996 16.30 33.41 37.61 38.83 1027.942 -11.6%
35 7.44 30.07 35.82 37.11 17910.821 8.89 30.05 35.71 37.06 949.366 -19.5%

JVT_128 CSOME_4_8 with Single Iteration K-Means Clustering

-0.44

-0.06

-0.59

-0.39Rugby 110 -7.56%

Mobile 130 -1.01%

Football 130 -9.59%

60 -11.32%

110 -9.85%Canoa

Ferris

-0.51

-0.52

Performance of CSOME_4_8 with Single Iteration K-Means Clustering compared to JVT_128

Bus 75 -9.76%

84

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 22.58 40.68 41.75 43.41 703.675 -1.3%
25 11.70 36.97 38.75 40.96 10897.736 12.11 36.95 38.73 41.00 685.841 -3.5%
30 5.56 32.99 36.71 39.11 8901.597 5.99 32.94 36.70 39.10 659.495 -7.7%
35 2.67 29.40 35.40 37.39 7820.718 3.02 29.31 35.38 37.41 674.799 -13.0%
20 35.88 41.60 43.29 43.63 23232.25 36.39 41.59 43.36 43.72 1400.032 -1.4%
25 21.09 38.09 40.91 41.34 22128.641 22.28 38.06 40.94 41.44 1393.638 -5.7%
30 11.07 34.30 38.92 39.48 17839.197 12.35 34.26 38.92 39.52 1293.436 -11.5%
35 6.02 30.77 36.97 37.45 15889.673 7.00 30.68 36.92 37.51 1252.857 -16.3%
20 15.73 42.27 42.17 42.68 7170.907 16.50 42.28 42.17 42.71 502.737 -4.9%
25 9.08 38.86 38.50 39.14 6824.357 9.77 38.84 38.49 39.12 484.547 -7.6%
30 4.75 34.99 35.29 36.39 5574.777 5.28 34.95 35.28 36.40 442.395 -11.2%
35 2.43 31.31 32.77 34.61 4881.838 2.83 31.30 32.75 34.56 449.546 -16.2%
20 37.53 40.95 41.42 42.28 22921.7 37.29 40.97 41.50 42.34 1479.976 0.6%
25 20.21 37.71 39.05 40.01 21491.589 20.89 37.73 39.14 40.09 1448.004 -3.3%
30 10.06 34.27 37.04 38.26 17484.307 11.16 34.22 37.13 38.34 1343.754 -10.9%
35 5.23 31.25 35.11 36.79 14986.002 6.22 31.20 35.21 36.84 1279.816 -18.8%
20 32.94 40.09 40.63 40.73 11973.894 32.96 40.08 40.64 40.73 596.422 -0.1%
25 19.42 35.83 36.61 36.67 11726.425 19.58 35.81 36.60 36.65 566.403 -0.8%
30 10.18 31.17 33.37 33.34 9982.049 10.45 31.15 33.36 33.32 555.703 -2.6%
35 4.64 26.69 30.76 30.58 8969.222 4.91 26.66 30.72 30.59 579.078 -5.8%
20 49.46 40.97 42.37 43.20 26423.156 49.60 40.97 42.45 43.31 1505.469 -0.3%
25 28.82 37.24 39.77 40.73 25192.607 29.95 37.25 39.80 40.81 1470.591 -3.9%
30 14.60 33.41 37.69 38.87 20042.996 16.22 33.41 37.62 38.84 1383.27 -11.1%
35 7.44 30.07 35.82 37.11 17910.821 8.73 30.04 35.68 37.08 1313.933 -17.3%

Performance of CSOME_4_11 with Histogram Peak Detection compared to JVT_128
JVT_128 CSOME_4_11 with Histogram Peak Detection

-0.35

-0.15

-0.53

-0.39Rugby 110 -7.66%

Mobile 130 -2.43%

Football 130 -7.73%

60 -10.17%

110 -9.50%Canoa

Ferris

-0.36

-0.49

Bus 75 -6.82%

85

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 22.70 40.68 41.75 43.40 765.221 -1.8%
25 11.70 36.97 38.75 40.96 10897.736 12.09 36.95 38.76 41.01 651.232 -3.4%
30 5.56 32.99 36.71 39.11 8901.597 6.01 32.95 36.70 39.09 664.378 -7.9%
35 2.67 29.40 35.40 37.39 7820.718 3.04 29.32 35.37 37.34 647.186 -13.7%
20 35.88 41.60 43.29 43.63 23232.25 36.04 41.59 43.35 43.74 1405.072 -0.5%
25 21.09 38.09 40.91 41.34 22128.641 21.82 38.07 40.94 41.44 1420.241 -3.4%
30 11.07 34.30 38.92 39.48 17839.197 12.06 34.27 38.93 39.52 1310.263 -8.9%
35 6.02 30.77 36.97 37.45 15889.673 6.88 30.70 36.98 37.51 1304.722 -14.3%
20 15.73 42.27 42.17 42.68 7170.907 16.43 42.26 42.15 42.68 495.267 -4.5%
25 9.08 38.86 38.50 39.14 6824.357 9.67 38.84 38.48 39.11 490.795 -6.5%
30 4.75 34.99 35.29 36.39 5574.777 5.32 34.93 35.27 36.31 433.516 -12.0%
35 2.43 31.31 32.77 34.61 4881.838 2.80 31.29 32.73 34.55 398.95 -15.2%
20 37.53 40.95 41.42 42.28 22921.7 37.12 40.97 41.49 42.34 1385.52 1.1%
25 20.21 37.71 39.05 40.01 21491.589 20.85 37.73 39.15 40.09 1419.243 -3.2%
30 10.06 34.27 37.04 38.26 17484.307 11.08 34.22 37.11 38.33 1312.169 -10.1%
35 5.23 31.25 35.11 36.79 14986.002 6.20 31.19 35.23 36.84 1224.014 -18.4%
20 32.94 40.09 40.63 40.73 11973.894 32.78 40.09 40.65 40.73 524.436 0.5%
25 19.42 35.83 36.61 36.67 11726.425 19.46 35.83 36.62 36.67 465.607 -0.2%
30 10.18 31.17 33.37 33.34 9982.049 10.30 31.17 33.39 33.33 446.154 -1.1%
35 4.64 26.69 30.76 30.58 8969.222 4.77 26.69 30.76 30.59 476.625 -2.8%
20 49.46 40.97 42.37 43.20 26423.156 49.48 40.98 42.45 43.31 1484.679 0.0%
25 28.82 37.24 39.77 40.73 25192.607 29.78 37.25 39.81 40.82 1492.972 -3.3%
30 14.60 33.41 37.69 38.87 20042.996 15.97 33.41 37.63 38.84 1369.02 -9.4%
35 7.44 30.07 35.82 37.11 17910.821 8.68 30.05 35.73 37.10 1320.338 -16.6%

JVT_128 CSOME_4_11 with K-Means Clustering

-0.35

-0.34

-0.05

-0.52

-0.37

-0.37

Rugby 110 -6.63%

Mobile 130 -0.81%

Football 130 -7.46%

60 -10.18%

110 -7.04%Canoa

Ferris

Bus 75 -6.92%

Performance of CSOME_4_11 with K-Means Clustering compared to JVT_128

86

Video
Sequence

Number
of

Frames
QP Mbits

PSNRY
(JVT_128)

PSNRU
(JVT_128)

PSNRV
(JVT_128)

Computation
Time (sec)

Mbits PSNRY PSNRU PSNRV
Computation

Time (sec)
Total bit
saving

Bjontegaard
BR Delta
saving

Bjontegaard
PNSR Delta

(dB)

20 22.29 40.69 41.74 43.38 11586.032 22.65 40.68 41.74 43.40 733.004 -1.6%
25 11.70 36.97 38.75 40.96 10897.736 12.17 36.95 38.75 41.00 730.14 -4.1%
30 5.56 32.99 36.71 39.11 8901.597 5.99 32.94 36.71 39.09 651.784 -7.6%
35 2.67 29.40 35.40 37.39 7820.718 3.02 29.30 35.38 37.38 669.507 -13.3%
20 35.88 41.60 43.29 43.63 23232.25 35.99 41.59 43.35 43.73 1384.939 -0.3%
25 21.09 38.09 40.91 41.34 22128.641 21.80 38.07 40.94 41.45 1421.94 -3.3%
30 11.07 34.30 38.92 39.48 17839.197 12.09 34.27 38.94 39.51 1310.548 -9.2%
35 6.02 30.77 36.97 37.45 15889.673 6.90 30.70 36.97 37.52 1215.623 -14.6%
20 15.73 42.27 42.17 42.68 7170.907 16.35 42.25 42.16 42.67 468.721 -3.9%
25 9.08 38.86 38.50 39.14 6824.357 9.64 38.83 38.47 39.11 462.402 -6.2%
30 4.75 34.99 35.29 36.39 5574.777 5.31 34.94 35.30 36.36 422.061 -11.9%
35 2.43 31.31 32.77 34.61 4881.838 2.78 31.28 32.74 34.56 373.276 -14.3%
20 37.53 40.95 41.42 42.28 22921.7 37.14 40.97 41.49 42.34 1438.72 1.1%
25 20.21 37.71 39.05 40.01 21491.589 20.81 37.74 39.15 40.09 1384.755 -3.0%
30 10.06 34.27 37.04 38.26 17484.307 11.06 34.22 37.11 38.33 1296.607 -10.0%
35 5.23 31.25 35.11 36.79 14986.002 6.22 31.18 35.26 36.83 1223.935 -18.9%
20 32.94 40.09 40.63 40.73 11973.894 32.74 40.09 40.65 40.73 471.827 0.6%
25 19.42 35.83 36.61 36.67 11726.425 19.46 35.82 36.61 36.68 464.872 -0.2%
30 10.18 31.17 33.37 33.34 9982.049 10.30 31.17 33.38 33.33 458.157 -1.1%
35 4.64 26.69 30.76 30.58 8969.222 4.78 26.69 30.76 30.58 465.581 -3.1%
20 49.46 40.97 42.37 43.20 26423.156 49.56 40.98 42.46 43.31 1477.968 -0.2%
25 28.82 37.24 39.77 40.73 25192.607 29.76 37.26 39.81 40.81 1451.681 -3.3%
30 14.60 33.41 37.69 38.87 20042.996 15.95 33.40 37.63 38.85 1380.205 -9.3%
35 7.44 30.07 35.82 37.11 17910.821 8.71 30.05 35.72 37.10 1319.436 -17.0%

Performance of CSOME_4_11 with Single Iteration K-Means Clustering compared to JVT_128
JVT_128 CSOME_4_11 with Histogram Peak Detection

-0.35Rugby 110 -6.64%

-0.34

Mobile 130 -0.86% -0.05

Football 130 -7.36%

-0.50

Canoa

Ferris 60 -9.92%

110 -7.14%

-0.37

-0.38

Bus 75 -7.02%

87

Bus

28.00

30.00

32.00

34.00

36.00

38.00

40.00

42.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00

MBits

P
S

N
R

 L
u

m
a

JVT_128

COL_16

COL_24

COL_48

CSOME_1 (16x8) K-Means

CSOME_1 (24x12) K-Means

CSOME_2 (11x5) K-Means

CSOME_2 (16x8) K-Means

CSOME_4 (8x4) K-Means

CSOME_4 (11x5) K-Means

JVT (16x8)

Rate-Distortion performance of evaluated motion estimation algorithms for Bus

88

Canoa

30.00

32.00

34.00

36.00

38.00

40.00

42.00

44.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

MBits

P
S

N
R

 L
u

m
a

JVT_128

COL_16

COL_24

COL_48

CSOME_1 (16x8) K-Means

CSOME_1 (24x12) K-Means

CSOME_2 (11x5) K-Means

CSOME_2 (16x8) K-Means

CSOME_4 (8x4) K-Means

CSOME_4 (11x5) K-Means

JVT (16x8)

Rate-Distortion performance of evaluated motion estimation algorithms for Canoa

89

Ferris

30.00

32.00

34.00

36.00

38.00

40.00

42.00

44.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

MBits

P
S

N
R

 L
u

m
a

JVT_128

COL_16

COL_24

COL_48

CSOME_1 (16x8) K-Means

CSOME_1 (24x12) K-Means

CSOME_2 (11x5) K-Means

CSOME_2 (16x8) K-Means

CSOME_4 (8x4) K-Means

CSOME_4 (11x5) K-Means

JVT (16x8)

Rate-Distortion performance of evaluated motion estimation algorithms for Ferris

90

Football

30.00

32.00

34.00

36.00

38.00

40.00

42.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

MBits

P
S

N
R

 L
u

m
a

JVT_128

COL_16

COL_24

COL_48

CSOME_1 (16x8) K-Means

CSOME_1 (24x12) K-Means

CSOME_2 (11x5) K-Means

CSOME_2 (16x8) K-Means

CSOME_4 (8x4) K-Means

CSOME_4 (11x5) K-Means

JVT (16x8)

Rate-Distortion performance of evaluated motion estimation algorithms for Football

91

Mobile

30.00

32.00

34.00

36.00

38.00

40.00

42.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00

MBits

P
S

N
R

 L
u

m
a

JVT_128

COL_16

COL_24

COL_48

CSOME_1 (16x8) K-Means

CSOME_1 (24x12) K-Means

CSOME_2 (11x5) K-Means

CSOME_2 (16x8) K-Means

CSOME_4 (8x4) K-Means

CSOME_4 (11x5) K-Means

JVT (16x8)

1 Rate-Distortion performance of evaluated motion estimation algorithms for Mobile

92

Rugby

30.00

32.00

34.00

36.00

38.00

40.00

42.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

MBits

P
S

N
R

 L
u

m
a

JVT_128

COL_16

COL_24

COL_48

CSOME_1 (16x8) K-Means

CSOME_1 (24x12) K-Means

CSOME_2 (11x5) K-Means

CSOME_2 (16x8) K-Means

CSOME_4 (8x4) K-Means

CSOME_4 (11x5) K-Means

JVT (16x8)

Rate-Distortion performance of evaluated motion estimation algorithms for Rugby

93

 94

Bibliography

 [1] Chen, J., U. Koc, and K. J. R. Liu. Design of Digital Video Coding Systems - A
Complete Compressed Domain Approach, New York: Marcel Dekker
Inc., 2002.

 [2] Cote, G. and L. Winger, Recent Advances in Video Compression Standards
IEEE Canadian Review, vol. pp. 21-24, 2002.

 [3] Bhaskaran, V. and K. Konstantinides. Image and Video Compression Standards -
Algoritms and Architectures, Boston: Kluwer Academic Publishers, 1997.

 [4] Yang, K. H. and A.F. Faryar, "A context-based predictive coder for lossless and
near-lossless compression of video," Proceedings of International
Conference on Image Processing, pp. 144-147, 2000.

 [5] Oami, R. and M. Ohta, "Efficient lossless video coding compatible with MPEG-
2," Preceedings of IEEE Confererence on Communications, pp. 901-905,
1998.

 [6] Ribas-Corbera, J. and D.L. Neuhoff, "Optimal bit allocations for lossless video
coders: motion vectors vs. difference frames ," Proceedings of
International Conference on Image Processing, pp. 180-183, 1995.

 [7] Marlow, S., J. Ng, and C. McArdle, "Efficient motion estimation using multiple
log searching and adaptive search windows," Image Processing and Its
Applications, Sixth International Conference on, pp. 214-218, 1997.

 [8] Lin, Y. and S. Tai., Fast full-search block-matching algorithm for motion-
compensated video compression IEEE Transactions on Communications,
vol. 45, pp. 527-531, 1997.

 [9] Lee, S., J. Kim, and S. Chae, New Motion Estimation Algorithm Using
Adaptively Quantized Low Bit-Resolution Image and Its VLSI
Architecture for MPEG2 Video Encoding IEEE Transactions on Circuits
and Systems for Video Technology, vol. 8, pp. 734-744, 1998.

 [10] Jain, J. and A. Jain, Displacement Measurement and its Application in Interframe
Image Coding IEEE Transactions on Communications, vol. COM-29, pp.
1799-1808, 1981.

 [11] Ghanbari, M., The cross-search algorithm for motion estimation IEEE
Transactions on Communications, vol. 38, pp. 950-953, 1990.

 [12] Gallant, M. , G. Cote, and F. Kossentini, A new center-biased search algorithm
for block motion estimation IEEE Transactions on Image Processing, vol.
8, pp. 1816-1823, 1999.

 95

 [13] Chen, Y., Y. Hung, and C. Fuh, Fast Block Matching Algorithm Based on the
Winner-Update Strategy IEEE Transactions on Image Processing, vol.
10, no. 8, pp. 1212-1222, 2001.

 [14] Calvagno, G., F. Fantozzi, and R. Rinaldo, "Feature based global and local motion
estimation for videoconference sequences," Proceedings of International
Conference on Image Processing, pp. 102-105, 2001.

 [15] Brunig, M. and W. Niehsen, Fast Full-Search Block Matching IEEE
Transactions on Circuits and Systems for Video Technology, vol. 11, pp.
241-247, 2001.

 [16] Baek, Y. H. O. a. H. L., An efficient block-matching criterion for motion
estimation and its VLSI implementation IEEE Transactions on Consumer
Electronics, vol. 42, pp. 885-892, 1996.

 [17] ITU-T. Video Codec for Audiovisual Services at px64 kbit/s. ITU-T
Recomendation H.261 . 93.

 [18] ITU-T and ISO/IEC JTC1. Generic Coding of Moving Pictures and Associated
Audio Information - Part 2: Video. ITU-T Recommendation H.262 -
ISO/IEC 13818-2 (MPEG-2) . 94.

 [19] ITU-T. Video Coding for Low Bitrate Communication. ITU-T Recommendation
H.263 . 98.

 [20] ISO/IEC. Coding of Moving Pictures and Associated Audio for Digital Storage
Media at up to about 1.5Mbit/s. ISO/IEC 11172 .

 [21] VCEG, Joint Video Team of ISO IES MPEG and ITU-T. Joint Committee Draft
(CD) of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10
AVC). Wiegand, T. 2002.

 [22] Mullen, K. T., The contrast sensitivity of human colour vision to red-green and
blue- yellow chromatic gratings Journal of Physiology, vol. pp. 381-400,
1985.

 [23] Mitchell, J. L., W. B. Pennebaker, C. E. Fogg, and D. J. LeGall. MPEG Video
Compression Standard, Boston: Kluwer Academic Publishers, 1996.

 [24] Gerken, P., Object-based analysis-synthesis coding of image sequences at very
low bit rates IEEE Transactions on Circuits and Systems for Video
Technology, vol. 4, pp. 228-235, 1994.

 [25] Lee, S., H. D. Cho, Y. Cho, S. Son, E. S. Jang, J. Shin, and Y. S. Seo, Binary
shape coding using baseline-based method IEEE Transactions on Circuits
and Systems for Video Technology, vol. 9, pp. 44-58, 1999.

 96

 [26] Nakaya, Y. and H. Harashima, Motion Compensation Based on Spatial
Transformations IEEE Transactions on Circuits and Systems for Video
Technology, vol. 4, pp. 339-367, 1994.

 [27] Sullivan, G. J. and R. L. Baker, "Rate-distortion optimized motion compensation
for video compression using fixed or variable size blocks," Proceedings of
Global Telecommunications Conference, pp. 85-90, 1991.

 [28] Rao, K. R. and J. J. Hwang. Techniques and Standards for Image, Video and
Audio Coding, London: Prentice Hall PTR, 1996.

 [29] Itoh, Y. and N. Cheung, "Universal variable length code for DCT coding,"
Proceedings of International Conference on Image Processing, pp. 940-
943, 2000.

 [30] Marpe, D., H. Schwarz, G. Bldttermann, G. Heising, and T. Wiegand, "Context-
based adaptive binary arithmetic coding in JVT/H.26L," Proceedings of
International Conference on Image Processing, pp. 513-516, 2001.

 [31] Wei, J. and Z. Li, An efficient two-pass MAP-MRF algorithm for motion
estimation based on mean field theory IEEE Transactions on Circuits and
Systems for Video Technology, vol. 9, pp. 960-972, 1999.

 [32] Kuhn, P. Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4
Motion Estimation, Boston: Kluwer Academic Publishers, 1999.

 [33] Mizuki, M., U. Desai, I. Masaki, and A. Chandrakasan, "A binary block matching
architecture with reduced power consumption and silicon area
requirement," Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 3248-3251, 1996.

 [34] He, Z., C. Tsui, K. Chan, and M. Liou, Low-power VLSI design for motion
estimation using adaptive pixel truncation IEEE Transactions on Circuits
and Systems for Video Technology, vol. 10, pp. 669-678, 2000.

 [35] Ogura, E., M. Takashima, D. Hiranaka, T. Ishikawa, Y. Yanagita, S. Suzuki, T.
Fukuda, and T. Ishii, A 1.2-W Single-Chip MPEG2 MP@ML Video
Encoder LSI Including Wide Search Range (H: +-288, V: +-96) Motion
Estimation and 81-MOPS Controller IEEE Journal of Solid-State
Circuits, vol. 33, pp. 1765-1771, 1998.

 [36] Cheng, K. and S. Chan, "Fast block matching algorithms for motion estimation,"
Proceedings of IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 2311-2314, 1996.

 [37] Sauer, K. and B. Schwartz, Efficient block motion estimation using integral
projections IEEE Transactions on Circuits and Systems for Video
Technology, vol. 6, pp. 513-518, 1996.

 97

 [38] Qiu, X., W. Zhang, H. Chen, and R. Zhou, "Low entropy block matching
algorithm for motion estimation," Proceedings of 4th International
Conference on ASIC, pp. 405-408, 2001.

 [39] Valova, I. and Y. Kosugi, Hadamard-based image decomposition and
compression IEEE Transactions on Information Technology in
Biomedicine, vol. 4, pp. 306-319, 2000.

 [40] Hoang, D., P. Long, and J. Vitter, Efficient cost measures for motion estimation
at low bit rates IEEE Transactions on Circuits and Systems for Video
Technology, vol. 8, pp. 488-500, 1998.

 [41] Jong, H., L. Chen, and T. Chiueh, Parallel architectures for 3-step hierarchical
search block-matching algorithm IEEE Transactions on Circuits and
Systems for Video Technology , vol. 4, pp. 407-416, 1994.

 [42] Pirsch, P. and H. Stolberg, VLSI Implementation of Image and Video
Multimedia Processing Systems IEEE Transactions on Circuits and
Systems for Video Technology, vol. 8, pp. 878-891, 1988.

 [43] Cheng, S. and H. Hang, A Comparison of Block-Matching Algorithms Mapped
to Systolic-Array Implementations IEEE Transactions on Circuits and
Systems for Video Technology, vol. 7, pp. 741-757, 1997.

 [44] Shen, J., T. Wang, and L. Chen, A novel Low-Power Full-Search Block-
Matching Motion-Estimation Design for H.263+ IEEE Transactions on
Circuits and Systems for Video Technology , vol. 11, pp. 890-897, 2001.

 [45] Kuhn, P., A. Weisgerber, R. Poppenwimmer, and W. Stechele , "A flexible VLSI
architecture for variable block size segment matching with luminance
correction," IEEE International Conference on Application-Specific
Systems, Architectures and Processors, pp. 479-488, 1997.

 [46] Bjontegaard, G. H.26L Test Model Long Term Number 8 (TML-8) draft0. Video
Coding Experts Group . 2001.

 [47] Koga, T., K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, "Motion-compensated
interframe coding for video conferencing," Proceeding of NTC '81, New
Orleans, LA, pp. G5.3.1-G5.3.5, 1981.

 [48] Po, L. and W. Ma, A novel four-step search algorithm for fast block motion
estimation IEEE Transactions on Circuits and Systems for Video
Technology, vol. 6, pp. 313-317, 1996.

 [49] Zhu, S. and K. Ma, A new diamond search algorithm for fast block-matching
motion estimation IEEE Transactions on Image Processing, vol. 9, pp.
287-290, 2000.

 98

 [50] Po, L. and W. Ma, "A new center-biased search algorithm for block motion
estimation," Proceedings of International Conference on Image
Processing, pp. 410-412, 1995.

 [51] Lakamsani, P., An architecture for enhanced three step search generalized for
hierarchical motion estimation algorithms IEEE Transactions on
Consumer Electronics, vol. 43, pp. 221-227, 1997.

 [52] ANSI/SMPTE. Component Video Signal 4:2:2 - Bit-Parallel Digital Interface.
ANSI/SMPTE 125M-1995 .

 [53] Pirsh, P., N. Demassieux, and W. Gehrke, VLSI Architectures for Video
Compression - A survey Proceedings of the IEEE, vol. 83, pp. 220-246,
Feb, 1995.

 [54] Nam, J., J. Seo, J. Kwak, M. Lee, and Y. H. Ha, New fast-search algorithm for
block matching motion estimation using temporal and spatial correlation
of motion vector IEEE Transactions on Consumer Electronics, vol. 46,
pp. 934-942, 2000.

 [55] Duda, R. O. , P.E. Hart, and D.G Stork. Pattern Classification, Toronto: John
Wiley & Sons, 2001.

 [56] Sullivan, G. J. and T. Wiegand, Rate-distortion optimization for video
compression IEEE Signal Processing Magazine, vol. 15, pp. 74-90, Nov,
1998.

 [57] Bjontegaard, G., "Calculation of average PSNR differences between RD curves,"
ITU-T VCEG Meeting, Austin, TX, pp. VCEG-M33, 2001.

