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Abstract

The mapping of sea ice is an important task for understanding global climate and

for safe shipping. Currently, sea ice maps are created by human analysts with the

help of remote sensing imagery, including synthetic aperture radar (SAR) imagery.

While the maps are generally correct, they can be somewhat subjective and do not

have pixel-level resolution due to the time consuming nature of manual segmentation.

Therefore, automated sea ice mapping algorithms such as the multivariate iterative

region growing with semantics (MIRGS) sea ice image segmentation algorithm are

needed.

MIRGS was designed to work with one-channel single-polarization SAR imagery

from the RADARSAT-1 satellite. The launch of RADARSAT-2 has made available

two-channel dual-polarization SAR imagery for the purposes of sea ice mapping.

Dual-polarization imagery provides more information for distinguishing ice types,

and one of the channels is less sensitive to changes in the backscatter caused by the

SAR incidence angle parameter. In the past, this change in backscatter due to the

incidence angle was a key limitation that prevented automatic segmentation of full

SAR scenes.

This thesis investigates techniques to make use of the dual-polarization data in

MIRGS. An evaluation of MIRGS with RADARSAT-2 data was performed and

showed that some detail was lost and that the incidence angle caused errors in

segmentation. Several data fusion schemes were investigated to determine if they can

improve performance. Gradient generation methods designed to take advantage of

dual-polarization data, feature space fusion using linear and non-linear transforms as

well as image fusion methods based on wavelet combination rules were implemented

and tested. Tuning of the MIRGS parameters was performed to find the best set

of parameters for segmentation of dual-polarization data. Results show that the

standard MIRGS algorithm with default parameters provides the highest accuracy,

so no changes are necessary for dual-polarization data. A hierarchical segmentation

scheme that segments the dual-polarization channels separately was implemented

to overcome the incidence angle errors. The technique is effective but requires more

user input than the standard MIRGS algorithm.
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Chapter 1

Introduction

Sea ice mapping is an important application of remote sensing systems. It is

essential for understanding the Arctic climate system [25] and for safe navigation of

ships in waters where sea ice can form [59]. The primary task of sea ice mapping

is to create maps that indicate the geographic distribution of different types of

sea ice, with type being denoted by stage of development and other properties.

Image data from satellite-based synthetic aperture radar (SAR), such as data from

RADARSAT-1 (R1), are an important source of information for sea ice mapping [19].

RADARSAT-2 (R2), launched in 2007, is a Canadian SAR satellite that offers several

technical enhancements over R1, including higher spatial resolution and additional

imaging modes that are expected to improve discrimination of water from ice [44]

and to better distinguish between different types of ice [50]. These enhancements

are important because under certain but common circumstances, interpreting the

various types of ice and water in the image can be difficult.

Since R2 is a relatively new satellite, little work has been done on evaluating the

actual usefulness of these expected enhancements. Additionally, current operational

sea ice maps are produced by human analysts with visual inspection of the image

data [19]. This process is somewhat subjective, as different ice analysts can produce

different results given the same data set. It is also extremely difficult for humans to

produce a highly detailed, pixel-level accurate ice map in an operational setting due

to the workload involved. Ice analysts currently provide only broad, regional maps

that are outlines of areas with a certain composition of ice types. This has been

one of the motivating reasons for interest in automated sea ice mapping algorithms

for organizations such the Canadian Ice Service (CIS), which produces operational

sea ice maps in Canada.
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Automated algorithms are also useful for scientific research studies by reducing

the workload and improving the objectivity of sea ice image analyses. For example,

in order to generate information about the amount of ice present in an area,

Belchanskya and Douglas had to perform manual inspection and thresholding of

SAR images to distinguish between water and ice [4]. Worbya and Comiso visually

compared ice information from passive microwave with SAR imagery [62]. While

they found a good match, pixel-level accurate ice maps would help to improve the

objectivity of their comparison. As with the operational case, such an ice map is

only feasible with an automated algorithm.

As explained above, automated sea ice mapping algorithms are desirable for a

number of reasons. Therefore, this thesis investigates the benefits of the enhanced

information available in R2 data for use in automated sea ice mapping. Specifically,

the problem to be investigated is how to make the best use of R2 data obtained

with the new dual-polarization mode in the iterative region growing with semantics

(IRGS) algorithm [65]. This algorithm is part of a larger system called MAGIC

(Map-Guided Ice Classification) [12], which aims to provide pixel level accurate ice

maps given a manually created ice map.

IRGS provides an unsupervised segmentation of the image to be analyzed,

dividing the image into disjoint regions. In image segmentation, each region groups

together image pixels that are similar in gray level or some other feature. In the

case of sea ice mapping, the different regions ideally correspond to certain ice

types, under the assumption that the ice types can be distinguished by the features

available. The term feature generally refers to properties of objects that are either

direct measurements of the object or can be extracted by some operation on the

measurements [18]. Image segmentation produces maps that are unlabeled, meaning

that there is no assignment of ice type to any of the regions produced. In the

MAGIC system, the labeling process is performed after the segmentation stage by

assigning an ice type to each of the regions.

The dual-polarization mode of R2 provides additional features unavailable from

R1 to distinguish the different ice types. It should therefore be able to improve the

image segmentation results obtained with IRGS. Thus, the problem being considered

in this thesis is to determine whether this is the case and find the methods to use

these additional features which produce the best segmentation result. The results

of this work can then be used to extend the MAGIC system to make use of R2

dual-polarization data.
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Chapter 2 gives an overview of sea ice mapping and SAR imaging and present

observations about the appearance of sea ice in R2 images. Image segmentation and

the existing MIRGS algorithm are also explained to give context for the rest of the

thesis. Chapter 2 also presents an initial evaluation of MIRGS for segmenting R2

data to establish a set of goals that the methods presented in the thesis will address.

Chapter 3 presents the proposed methods. Chapter 4 evaluates the performance

of the proposed methods through a number of experiments. Finally, Chapter 5

concludes the thesis by presenting major findings and recommendations for future

work.
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Chapter 2

Background

2.1 Sea ice mapping

Sea ice refers to any ice that is found floating at sea and can be categorized into

many different stages of development (ice types), each of which has very different

properties [10]. The stages of development refer to how thick the ice is, which

roughly corresponds to the age of the ice. For example, new ice that has just formed

is thin and very different from ice that has had time to freeze and consolidate into a

substantial navigation hazard.

An example of a partial sea ice chart (an operational sea ice map) created by

the CIS is shown in Figure 2.1a. The ice chart polygon regions are overlaid on top

of the SAR image that corresponds to the date and location of the charts. Each

polygon region is coded with an egg code that contains the ice analyst’s estimate

of the composition of the ice types present in the polygon region. The ice in each

polygon is not homogeneous and the egg code can contain more than one ice type.

Since the polygons are created manually, a more detailed break down of the ice

types is not often feasible. For the purposes of this thesis, an ideal sea ice mapping

process should assign a unique ice type to each pixel in the image.

Egg codes for four of the polygons are shown on the right side of Figure 2.1a. The

egg code follows standards set by the World Meteorological Organization (WMO)

and the interpretation of the egg code is explained in Figure 2.1b [10]. The egg

code values of interest for this thesis are S{a,b,c,d}, which represent the multiple ice

types (stages of development) that are present within the polygon. The value Ct

represents the concentration of sea ice in tenths of the polygon’s area, with the
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(a) Ice chart example.

(b) Egg code meanings [10].

Figure 2.1: (a) An example of ice chart polygons overlaid on top of a SAR image,
with the associated egg code information for each polygon. (b) Each egg code consists
of fields that indicate the total concentration of ice Ct (in tenths, with 9+ indicating
greater than nine-tenths concentration) and the partial concentrations (C{a,b,c,d}) and
forms (F{a,b,c,d}) that correspond to each stage of development (S{a,b,c,d}), respectively.
Trace amounts of one additional stage of development can be indicated by the
presence of So. Se and Fe provide for an additional stage of development in Canada
but this is rarely used.
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Table 2.1: Listing of sea ice stages of development, along with thickness and code
used to denote each type, from [10].

Name Thickness (cm) Code
New Ice < 10 1
Nilas, Ice Rind < 10 2
Young Ice 10 - 30 3

Gray Ice 10 - 15 4
Gray White Ice 15 - 30 5

First Year Ice (FYI) ≥ 30 6
Thin FYI 30 - 70 7

First Stage Thin FYI 30 - 50 8
Second Stage Thin FYI 50 - 70 9

Medium FYI 70 - 120 1·
Thick FYI > 120 4·

Brash -
Old Ice 7·

Second Year Ice 8·
Multi-Year Ice 9·

Ice of Land Origin N·
Undetermined or Unknown X

remainder being water. C{a,b,c,d} represent the concentrations of each of the stages

of development present. F{a,b,c,d} lists the form of ice corresponding to each of the

stages of development. Form refers to the typical size within the polygon region of

the ice floes for the corresponding type of ice. So, Se and Fe allow trace amounts of

additional stages of development to be specified but are rarely used.

Table 2.1 shows all sea ice stages of development defined by the WMO, their

thickness and their corresponding codes [10]. This table lists the different types of

ice that are the ice types of interest in ice mapping. First year and thinner ice types

are formed during the most recent freezing season from sea water. Brash refers to

ice formed from fragments of various types of ice after collisions of ice structures.

Old ice refers to ice that has experienced at least one melting season after formation.

The salinity content and physical structure of each type of ice is distinct and gives

each ice type a different appearance in SAR imagery. Not all of the ice types can be

distinguished based on gray tone in SAR images and ice analysts frequently have

to use shape information and ancillary data such as weather conditions to make a

determination. In addition to mapping the location of each of the aforementioned

ice types, ice maps must also indicate where open water occurs.
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Figure 2.2: A diagram explaining the operation of SAR, adapted from [45]. The
spacecraft sends a pulse of RADAR energy at the Earth’s surface, which is reflected
back and received as backscatter. The motion of the spacecraft creates a synthetic
antenna aperture that is larger than the size of the antenna. The incidence angle θ
defines the angle to any ground range, which is the distance from the orbital ground
track.

2.2 Overview of SAR imaging

SAR imagery is one of the main sources of information for sea ice mapping. Therefore,

an understanding of SAR and the new SAR imaging capabilities of R2 will be

presented in this section.

The basic operating configuration of a spaceborne SAR is shown in Figure 2.2.

The system consists of a spacecraft with the SAR equipment moving along an orbital

track, which traces out the orbital ground track along the Earth’s surface [45]. The

azimuth direction is the direction of motion of the spacecraft, while the range

direction corresponds to the distance from the orbital ground track. The incidence

angle θ is the angle to points on the ground along the range direction. The SAR

system emits microwave pulses at the Earth’s surface. The antenna footprint is

7



(a) Horizontal (H) Polarization (b) Vertical (V) Polarization

Figure 2.3: Waves of electromagnetic radiation consist of orthogonal electric (E)
and magnetic fields (M) traveling in direction k̂. Linearly polarized waves, such as
that used in SAR, have fixed directions for the fields. (a) Horizontally polarized
waves have electric fields in the ĥ direction. (b) Vertically polarized waves have
electric fields in the v̂ direction.

the area illuminated by the pulse. The swath width determines the width of the

strip that the system can image. Once a pulse is emitted, the receiver on the SAR

system waits for a return pulse of energy that has been backscattered toward it by

the surface.

The antenna lengths required to create high resolution images are too large to

launch into orbit for traditional RADAR. SAR solves this by using signal processing

techniques and the motion of the spacecraft to create the effect of a larger antenna,

giving rise to the synthetic aperture [37], [34]. The motion of the spacecraft also

allows the field of view to be advanced in the direction of motion so that two

dimensional SAR images of the surface can be generated.

The values of pixels in SAR images are the backscatter coefficients (σ◦ ) on

a decibel scale (dB) at each ground location corresponding to the pixels. The

backscatter coefficient σ◦ is a dimensionless value that indicates the amount of

backscatter from the surface.

SAR systems can transmit and receive EM energy in different polarizations.

Polarization refers to the orientation of the electric field component of the electro-

magnetic wave. Figure 2.3 shows the two possible polarizations for the EM radiation

that can be transmitted or received from SAR systems: horizontal (H) and vertical

(V). The polarizations differ in that the electric field of one is orthogonal to the

electric field of the other.
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Since there are two possible polarizations for transmit and two possible polariza-

tions for receive, four possible polarization channels can be measured, corresponding

to the four possible backscatter coefficients σ◦pq, where p (transmit polarization) and

q (receive polarization) can each be either H or V . When p = q, the σ◦pp channel is

called the co-polarization (co-pol) channel. When p 6= q, the σ◦pq channel is called

the cross-polarization (cross-pol) channel.

SAR systems are not necessarily designed to measure all four polarization

channels. A single-polarization SAR system can only measure one of the four

possible σ◦pq. A dual-polarization SAR can measure σ◦HH and σ◦HV or (σ◦V H and

σ◦V V ). Only a quad-polarization (or fully-polarimetric) SAR can measure all four

possible σ◦pq. R1 is a single-polarization SAR while R2 has single-, dual- and

quad-polarization imaging modes.

Different ice types have different backscatter characteristics that can be measured

by SAR, since each ice type differs in factors such as surface roughness, volumetric

structure and salinity [38]. Each of these factors affects the backscatter level in each

of the polarization channels, making it possible to distinguish between the different

types of ice with these backscatter “signatures”. Very smooth salinated ice reflects

EM radiation away from the sensor and appears very dark in all channels. Ice

that only scatters EM radiation incident on its surface tends to scatter in the same

polarization as the incoming radiation so that the co-polarization channel is brighter

than the cross-polarization. Ice that scatters radiation after it has penetrated the

surface tends to have closer values in the co- and cross-polarization channels.

Because of the large number of factors involved in determining the backscatter

characteristics of ice, there is considerable variability even within one ice type.

Smooth first year ice will have a lower backscatter than rough first year ice. Although

both types belong to the same stage of development, they look quite different in SAR

images. Ice at different stages of development can also look the same due to intra-

type overlap of backscatter. Dual-polarization and quad-polarization SAR provide

more information to help disambiguate different ice types than single-polarization

SAR. R2 improves upon R1 by adding an operationally useful dual-polarization

mode.
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2.3 RADARSAT-2 capabilities and data

The most important improvement provided by R2 for operational sea ice map-

ping is the dual-polarization ScanSAR Wide mode [44]. This mode combines the

same 500 km swath width as R1’s single polarization ScanSAR mode (needed to

provide adequate spatial coverage), with the additional information provided by

dual-polarization imaging. The European Space Agency’s ENVISAT Advanced

SAR (ASAR) also provides dual-polarization data but only has a swath width of

100km [48]. ScanSAR Wide has a pixel resolution of 100 m × 100 m, with a pixel

spacing of 50 m × 50 m (the pixels actually represent the backscatter of overlapping

RADAR footprints). A full SAR scene is therefore approximately 10000 × 10000

pixels. This thesis will focus on investigating the use of R2 dual-polarization data

from its ScanSAR Wide mode since it will be the mode used for sea ice monitoring.

The Canadian Ice Service (CIS) expects to use the co-polarization (σ◦HH) and the

cross-polarization (σ◦HV ) channels for their operations and has provided several real

R2 scenes for testing in this thesis. These scenes were recorded over the Gulf of St.

Lawrence area on February 25 and March 4, 2009. CIS has also provided operational

ice charts for Gulf of St. Lawrence on these dates, although they were created from

R1 data using the HH channel since CIS had not yet integrated R2 imagery into

their operational pipeline.

The HH channel provides the same data as R1, while the addition of the HV

channel is expected to improve the discrimination of ice and water, particularly

water that has been wind roughened, which looks very similar to some types of ice

in the HH channel at small incidence angles. Experiments carried out by Manore et

al. [31] and Scheuchl et al. [50] on airborne and ENVISAT ASAR dual-polarization

data confirmed that the HV channel improves the discrimination of ice and water

under these circumstances. R2’s dual-polarization mode should be similar.

2.4 Appearance of sea ice in R2 imagery

The previous sections have discussed the theoretical aspects of sea ice imaging.

This section describes the appearance of sea ice in R2 imagery by investigating the

available R2 data. Table 2.2 shows the appearance of several different ice types in

the HH and the HV channels, along with a brief description of the ice characteristics.

The first column of the table lists the name of the ice type, with the stage of
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development code in parenthesis. The ice types were identified by consulting CIS

ice charts and finding locations where the ice type could be identified manually (e.g.

ice chart polygons that are predominantly one type of ice or parts of the ice chart

polygon where there is a clear distinction between the different ice types present).

The HV channel always appears darker than the HH channel because the

backscatter is always lower in HV. This is because the SAR transmission is H-

polarization, so that there is a tendency to backscatter H-polarization (seen in HH)

rather than V-polarization (seen in HV). First-year ice is bright in both HH and HV

while the two gray ice types are darker. New ice and open water are very similar,

appearing bright in HH and dark in HV. However, open water tends to be smoother

with no visible structures. Not shown in the table are smooth versions of gray ice,

new ice and water, which are all dark in both HH and HV bands. In the first year

ice images, some form of ice that is bright in HH and dark in HV is visible between

the first year ice floes (which are very well defined in the HV image). This is wind

roughened water or new ice, which are difficult to distinguish from the first year

ice in the HH band alone at near range (small) incidence angles. The HV band,

however, provides information on the location of the first year ice since water and

new ice are dark.

Table 2.2 shows images that each span a very small incidence angle range of

no more than 1.5◦, while ScanSAR Wide images span 30◦ from 20◦ to 50◦. The

backscatter values of wind-roughened open water and new ice, and to a lesser extent

the other ice types, are dependent on incidence angle [17], [57]. The incidence

angle dependence is significant and can cause the appearance of open water and

new ice to vary dramatically from near range (small incidence angles) to far range

(large incidence angles). This is shown in Figure 2.4(a) for open water in the HH

channel. The data scaling in the figure has not been adjusted to exaggerate the

effect; the dynamic range of all ice types is between -35 dB to -5 dB, as shown in

the figure. Thus, open water can take on the backscatter of a variety of other ice

types depending on the incidence angle and can cause difficulties in separating it

and other ice types. The HV channel is much less sensitive to the incidence angle,

as shown in Figure 2.4(b) but there is some systematic banding in the HV band.

Experiments with ENVISAT ASAR data showed a similar trend and may be related

to the signal-to-noise ratio varying across the image due to insufficient transmitter

power [49]. It is generally not possible to apply a correction to the scene to eliminate

the incidence angle effect because the correction factor is different for each ice class

and the ice class is not known beforehand [26]. Therefore, some way to harness the
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Table 2.2: Appearance of different ice types in RADARSAT-2 images

Ice Type (Code) Appearance HH HV

First Year Ice (7) The ice appears bright in
both HH and HV. Ice floes
are well defined, have round
corners and appear to be
fairly homogeneous.

Gray White Ice (5) Moderately bright in HH but
dark in HV. Dark in both
HH and HV when smooth.
Floes take on a cracked ap-
pearance.

Gray Ice (4) The ice appears moderately
bright in both HH and HV
and is similar to first year ice
except it is not as bright.

New Ice (1) Similar to open water (bright
to dark from near range to
far range incidence angle) in
HH but with visible struc-
ture. Dark areas in HH rep-
resent very smooth new ice.
No backscatter in HV and
appears very dark.

Open Water HH brightness varies with in-
cidence angle and weather
(rough water and near range
are bright, calm water and
far range are dark). No
backscatter in HV. No vis-
ible structures.
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Incidence Angle (Degrees)

263035404549
−35 dB

−5 dB

(a) HH

Incidence Angle (Degrees)

263035404549
−35 dB

−5 dB

(b) HV

Figure 2.4: Appearance of open water as a function of incidence angle. (a) Open
water exhibits an incidence angle dependent variation in backscatter in the HH band,
with the near range (small incidence angle) being much brighter than the far range
(larger incidence angle). New ice has similar characteristics. (b) The same scene in
the HV band does not show as much incidence angle dependence, although there
is systematic banding, in which the backscatter is not constant across incidence
angles.

information in the incidence angle insensitive HV band is needed.

The proposed methods will take into account the above observations in order to

improve sea ice segmentation in SAR scenes.

2.5 Image segmentation

As this thesis focuses on improving the image segmentation portion of the MAGIC

system, the image segmentation problem must first be defined. The description

used here is summarized from [65]. Let there be n classes into which the image is

segmented. Let S be a set of sites on a lattice and s ∈ S be a site in the lattice. Let

X = {Xs|s ∈ S} be a set of discrete random variables forming a random field on S,

with each Xs taking a value from {1, . . . , n}. Xs indicates the class that is assigned

to site s. The class numbers can be subsequently converted into meaningful ice class

names through a classification and labeling process but this is not part of the image
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segmentation process.

Let Y = {Ys|s ∈ S} be the random field on S that is realized by the observed

image. Each Ys takes on a feature vector, with each element representing the tonal

value from each of the available image channels. The tonal values could be the

backscatter in dB from the HH and HV channels, for example, but in this thesis

they could also take on other meanings depending on what transforms are applied

to the image data.

Let x = {xs|s ∈ S} and y = {ys|s ∈ S} be realizations of X and Y, respectively.

Based on the information contained in the image y, the image segmentation algorithm

must generate the segmentation image x. There will be n classes in the segmentation

image, denoted by disjoint regions Ω1, . . . ,Ωn, each of which contains all the pixels

assigned to one class. Note that y
(pq)
s represents the value of channel pq at site s.

For example, a dual-polarization feature vector consists of ys = (y
(HH)
s , y

(HV )
s ).

The definition of the “best” segmentation for the purposes of sea ice mapping

is to ensure that each Ωi corresponds to a unique ice type. Different segmentation

methods have different methods for estimating the best segmentation.

2.6 Multivariate IRGS algorithm

The IRGS algorithm [65] and its multivariate extension, MIRGS [43], is the image

segmentation algorithm that is to be adapted to dual-polarization R2 data since

it is fully incorporated into the MAGIC system and its results when applied to

R1 data have been evaluated by CIS experts and found to be reasonable [12], [64].

This section summarizes [65] and [43] in its description of the algorithm, which will

henceforth be referred to as MIRGS.

Figure 2.5 shows the major steps of the MIRGS algorithm. The following

sections detail each of the steps of the MIRGS algorithm, based on the latest

implementation [43].

2.6.1 Step 1: Image gradient and watershed generation

The algorithm starts by accepting as input an image with at least one image channel.

The image is first segmented with a watershed algorithm [58] that divides the image

into many small regions with relatively uniform backscatter in each. Each region v
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Figure 2.5: Major steps of the MIRGS algorithm. To initialize the system, MIRGS
computes the 1a) image gradient, 1b) generates the watershed regions, the region
adjacency graph (RAG) and 2) the initial segmentation with K-means. The 3)
relabeling and 4) merging processes follows and are repeated for a user-specified
number of iterations until the 5) final segmentation is produced.
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consists of a set of sites Sv that belongs to it. By grouping sites into regions, the

effect of speckle-noise is reduced since the feature vectors of the individual sites

{ys|s ∈ Sv} can be averaged into one feature vector yv for the entire region. The

image is represented by a data structure called a region adjacency graph (RAG) G
whose nodes consist of the set of regions V and whose edges represent boundary sites

between each pair of adjacent regions. The segmentation definitions are modified

from that presented in Section 2.5. Each site no longer has a separate label in the

segmentation image x. Rather, all sites within a region are assigned a single label.

Let xr be this region-based segmentation image and Xr be the set of all possible xr.

In order to generate the watershed segmentation, the image gradient must be

computed. Since there can be multiple channels in an image, MIRGS uses a vector

field gradient (VFG) approach [27] to calculate a joint image gradient from all

channels. The calculated gradient is always normalized by dividing by the largest

gradient in the scene so that the largest gradient has a value of 1.0. This allows

MIRGS to evaluate relative edge strength rather than absolute edge strength so

that the algorithm scales properly for scenes with different dynamic ranges. The

watershed is then calculated based on the joint, normalized image gradient.

2.6.2 Step 2: Region-based K-means initialization

As part of the initialization process and as a technique to push the algorithm to find

a globally acceptable solution, each of the obtained watershed regions v is assigned

a label xrv via a region-based K-means algorithm. For each region v, the K-means

algorithm chooses the label that best satisfies:

xrv = arg min
i

∑
s∈Sv

(ys − µi)T(ys − µi) (2.1)

where ys is the feature vector at site s whose elements are the values of the image

channels and where T is the transpose operator. This process is iterative and begins

with random means µi that are updated on each iteration.
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2.6.3 Step 3: Labeling with Gibbs Sampling

Once the initial K-means segmentation is generated, MIRGS enters the iterative

portion of the algorithm. The goal is to find the optimal labeling of each watershed

region. This is done by finding a configuration of labels that globally minimizes

a cost function. MIRGS iteratively performs labeling of the watershed regions,

followed by region-merging. At each iteration, an intermediate segmentation result

is generated. Region-merging reduces the number of nodes in the RAG by combining

adjacent regions. This makes the labeling process in the subsequent iterations more

efficient as fewer nodes have to be considered. Additionally, the solution process is

not as likely to be trapped in a local minimum when regions are merged together [65].

The number of iterations for MIRGS is set by the user and 100 iterations is the

number typically used.

The cost function that MIRGS minimizes in order to produce the optimal

segmentation xr∗ is the following:

xr∗ = arg min
xr∈Xr

Ef + Es

(2.2)

where Ef is the feature model energy and Es is the spatial context model energy.

Ef is defined as follows:

Ef =
1

2c

n∑
i=1

∑
Sv⊆Ωi

∑
s∈Sv

log(|Σi|) + (ys − µi)TΣ−1
i (ys − µi) (2.3)

where c is the number of channels in the image, n is the number of classes, Sv are

the sites in each watershed region v that are part of the region Ωi that is assigned to

class i, Σi is the class covariance matrix of class i and µi is the mean value of class

i. Ef is the energy associated with the assumption that the image values of the

watershed regions in each class follow a multivariate Gaussian distribution, which

gives reasonable results [65], [64].

The spatial context model energy Es is defined as follows:
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Es = β

n−1∑
i=1

n∑
j=i+1

n∑
s∈∂Ωi∩∂Ωj

g(∇s) (2.4)

where β is a positive weighting value that determines the strength of the spatial

context model in the cost function, and ∂Ωi and ∂Ωj are the sets of sites along the

border of class i and j, respectively. g(∇s) is the edge penalty and is defined as:

g(∇s) = exp

[
−
(
∇s

K

)2
]

(2.5)

where ∇s is the normalized image gradient at site s (which is used to represent edge

strength and is the same image gradient as that calculated for Step 1) and K is a

parameter that determines the strength of the image gradient’s effect. The setting

of K is described thoroughly in [65] and [43] and is not repeated here.

Es adds a penalty value to the total energy whenever the segmentation result

has assigned two different classes to adjacent regions. This is similar to the Markov

random field (MRF) based multi-level logistic (MLL) segmentation model, which

only differs in that the edge penalty g(∇s) is always unity. MLL operates under the

intuitive assumption that regions adjacent to each other are more likely to be from

the same class than they are from different classes. The addition of the edge penalty

g(∇s) in MIRGS refines this assumption. The penalty added will be higher when

the edge strength between two regions is weak, and small when the edge strength is

high. The MIRGS model agrees even more with intuition: humans would expect

that if there is a strong edge between two regions, they are more likely to be from

different classes than when there is no edge.

The entire cost function produces a segmentation that is a balance between

labeling each region based on feature space similarity and spatial context. The cost

function considers a segmentation more likely to be “true” when the regions in each

class are similar to each other in feature space and when adjacent regions belong

to the same class if the edge between them is weak. The parameter β controls the

influence of the spatial context model. Large β will make the spatial context model

stronger and will create very smooth segmentation results, ideal for simple images.

For complex images, β should be small so the segmentation result is more detailed.
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MIRGS incorporates a method to derive β from the data and is implemented as

follows:

β = C1
J/C2

1 + J/C2

β0 (2.6)

where J is the minimum Fisher criterion [18] between any two classes in the image

according to the current segmentation result (i.e., it is the Fisher criterion between

the two classes that are least separable from each other), C1 and C2 are user-defined

constants and β0 is an intermediate parameter. β0 is calculated by considering the

boundary length of the previous intermediate segmentation. It uses a Monte Carlo

method to obtain a maximum likelihood estimation that will keep the boundary

length the same on subsequent segmentations [65], which will preserve the level of

complexity in the segmentation result.

The Fisher criterion J is a measure of class separability in feature space. Large J

implies greater separability. The use of J to adjust β ensures that the effect of both

feature space and spatial context models are balanced in the cost function. When

J is large (as it is on the initial iterations), the previous segmentation result was

strongly influenced by the feature space model, so β is made larger to compensate.

As the effect of the spatial context model gets larger on subsequent iterations, J

decreases. This causes β to decrease, preventing excessive influence by the spatial

context model. The user is able to set C1 and C2 to control the relative strength of

β. Large C1 and small C2 emphasize the spatial context model.

The actual optimization for Equation 2.2 is accomplished with Gibbs sam-

pling [21] which chooses a label for each node in the RAG.

2.6.4 Step 4: Region Merging

After the labeling process is completed for all nodes, region merging is performed in

a greedy fashion. The process only considers all pairs of adjacent regions which have

the same class. Let ∂E be the total change of the energy in Equation 2.2 if a pair

of such regions is merged. The algorithm will merge the pair of regions that has the

smallest negative ∂E and update the RAG. This continues until the smallest ∂E is

non-negative.
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When region-merging is complete, the algorithm will go back to Step 3 until the

desired number of iterations is reached, at which point the final segmentation will

be produced.

2.7 Evaluation of MIRGS with R-2 data

In this section, MIRGS is evaluated using real R2 data to identify areas for improve-

ment. A subimage was extracted from the February 25, 2008 Gulf of St. Lawrence

scene and calibrated according to the steps in Appendix A. Based on CIS provided

ice charts, a pixel-level manual segmentation was created of the scene, consisting

of four classes: water, smooth ice of indeterminate type, first year ice and gray ice

/ gray white ice (types 4 and 5 jointly). In this case, it was extremely difficult to

separate the scene into the exact stages of development listed in Table 2.1, so the

ice was grouped by appearance in a red-green-blue (RGB) composite of the HH and

HV channels. The manual segmentation is used as ground-truth to evaluate the

performance of MIRGS on the test scene. Additional details about this image can

be found in Section B.1.

Figures 2.6 (a)-(c) shows the HH and HV channels and the manually segmented

ground-truth. Figures 2.6 (d)-(f) shows four class segmentation results using only

the HH channel, only the HV channel and both HH and HV channels as features.

The overall accuracy of each segmentation is calculated and listed in the figure

captions. The HH channel, which contains the same data as R1, only achieves

61.7% accuracy. The HV channel only achieves 46.3% accuracy. Only the HH &

HV feature set produces an accuracy of higher than 80%, which according to CIS

requirements [20] is the target value that any ice mapping processes must achieve

consistently.

Several observations can be made from these results. The HH channel contains

significant feature space ambiguity between water and first year ice, causing the

first year ice to frequently be grouped with open water. The HV channel does not

contain sufficient information to segment four classes. Visually, the image only

shows two classes. Therefore, the segmentation result is quite poor. The combined

feature set appears to overcome all of these problems, producing a segmentation

that appears closest to the ground-truth. Even so, the level of detail in the HH &

HV result is somewhat lacking. Fine structures, particularly those of water, appear

to be merged with neighbouring classes.
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(a) HH (b) HV (c) Ground-truth

(d) HH result, Accuracy =
61.7%

(e) HV result, Accuracy =
46.3%

(f) HH & HV result, Accuracy
= 84.7%

Figure 2.6: An evaluation of MIRGS with R2 data. A subimage from a R2 scene
was selected for evaluating MIRGS using default parameters (C1 = 3, C2 = 0.5)
by comparison with a manually segmented ground-truth. The HH result shows
ambiguities in the segmentation and the HV result is incorrect. Only the HH & HV
result is accurate but it appears to lose details due to overmerging.
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Figure 2.7: Comparison of the spatial context parameter β as a function of iteration
between univariate and multivariate feature sets. The parameter β is affected by β0

and the Fisher criterion J for the two least separable classes. The dual-pol data
inherently causes more merging by causing larger β values for the same set of C1 and
C2. This is because the feature space separability is higher which causes larger J
and β0 values. These in turn cause β to be larger, in accordance with Equation 2.6.
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Qualitatively, the HH & HV segmentation result appears much smoother than

the HH result, suggesting that the spatial context model is more dominant in the

multivariate case. Figure 2.7 confirms this quantitatively. Plots of the minimum

Fisher criterion J , β0, the adjustment factor in Equation 2.6 and the β used at each

iteration during the segmentation process show that the β is always larger for the

multivariate HH & HV case compared to the HH-only case. This arises because of

the better feature space separability between classes when using HH & HV. This

means the initial segmentation of HH & HV is already smoother, which tends to

make β0 larger. Additionally, with J being larger, the adjustment factor encourages

β to be larger as well. The end result is that the spatial context model is weighted

more in the multivariate case, smoothing out the segmentation result.

The current combined gradient method may also contribute to loss of detail.

Figure 2.8 illustrates this for a synthetic dual-polarization example. In Figure 2.8(a),

a horizontal slice through the step edges in the image is shown. In the HH gradient

(Figure 2.8(b)), the edges with the strongest relative strength with respect to other

edges in the HH channel are the left-most and right-most edges. In the HV gradient

(Figure 2.8(c)), the strongest edges are the left-most and middle edges. In the

combined gradient (Figure 2.8(d)), the strongest edge is the left-most edge because

it has a high edge strength in both of the channels. On the other hand, the middle

edge is considered a weaker edge in the combined gradient even though it was one

of the strongest edges in the HV channel. The combined gradient method [27] was

designed to assign the highest strength only to edges that appear in both channels

but for sea ice segmentation, strong edges in either of the dual-polarization channels

should be considered meaningful. An example is open water and smooth ice having

no contrast in HV but high contrast in HH: the edge that appears in HH definitely

separates the two classes.

Figures 2.9(a)-(b) show the HH and HV channels of a full R-2 scene across the

full range of incidence angles. Only the left side of the scene has ice; the smooth

gradient that transitions from light to dark in the HH image is open water. This

scene is a typical example of the incidence angle variation of open water. Additional

details about this image can be found in Section B.3.

Figures 2.9(c)-(e) show three class segmentation results using HH, HV and HH

& HV, respectively. All three segmentation results break up the open water portion

into a number of regions, reflecting the difficulty that the algorithm has in dealing

with the incidence angle effect. This scene has no associated manual segmentation
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(d) Combined HH & HV gradient

Figure 2.8: An example showing the dual-polarization performance of the joint VFG
gradient method. (a) A plot of the intensity in digital numbers (DN) of a horizontal
slice through a synthetic dual-polarization image with step edges shows that some
edges are strong in HH and some are strong in HV. (b) Gradient through the same
slice derived from the HH channel does not pick up the middle edge which is low
contrast in HH. (c) Gradient from the HV channel does not pick up the right edge
but assigns high relative strength to the left and middle edges. (d) The combined
gradient picks up all edges, but the relative strength is strongest for the edge that
is in both images even though all edges are expected to be equally meaningful.
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(a) HH image (b) HV image

(c) HH segmentation result (d) HV segmentation result

(e) HH & HV segmentation esult (f) Expected segmentation

Figure 2.9: Segmentation results using MIRGS applied to a full scene R2 image. The
incidence angle variation of open water causes both IRGS and MIRGS to produce
incorrect segmentation results. The open water portion should not be split into
multiple sections.

for accuracy comparisons as the size of the scene makes it impossible to attempt

one but the segmentation results are clearly wrong. Although the appearance of

open water in HV is relatively insensitive to incidence angle, the HV band alone

cannot distinguish three classes.

Currently, MIRGS is unaffected by the incidence angle effect when the image

to be segmented is small (as in Figure 2.6) or when a manually produced CIS ice

chart is available to exclude open water regions from the segmentation process. This

limits its flexibility for fully automated full scene segmentation.

In summary, although the use of dual-polarization data improves segmentation

accuracy, possible areas of improvement that will be addressed by this thesis include

increasing level of detail in the segmentation result and dealing with the effect of

incidence angle on the segmentation. These objectives are detailed in Section 2.9.
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2.8 Related work

Previous studies have examined the utility of multipolarimetric information for a

variety of remote sensing applications. Much of the research literature has focused

on using either fully-polarimetric SAR or systems where both the HH and VV

channels are available. Images from fully-polarimetric airborne SAR systems have

been assessed qualitatively for improving sea ice identification [31]. The authors

identified that using either the cross-polarization channels independently or fusing

the co-polarization channels by taking the ratio HH/VV can improve ice-water

discrimination. The same ratio has also been used to estimate sea ice thickness [35].

In another work [51], fully-polarimetric backscatter data from the space-shuttle-

based SIR-C SAR system was transformed into several different measures which

can separate ice and water using simple thresholds. Fully polarimetric or HH & VV

data has also been used for other applications, such as land cover classification [41],

ship detection [29] and crop monitoring [8].

Although the results from these previous studies were promising, the techniques

used are not directly applicable to operational R2 data, since they require channels

not available in the dual-polarization mode. However, dual-polarization data consist-

ing of HH and HV channels has also been studied in the literature. Dual-polarization

ENVISAT ASAR data, which is similar to RADARSAT-2 data, was used with an

unsupervised segmentation algorithm and tested for its ability to distinguish sea

ice types [49]. The segmentation algorithm uses transformations on complex-valued

dual-polarization data and a minimum-distance, Bayesian framework to classify each

image pixel. As with previous studies, the separation of water and ice was improved

by the dual-polarization data. RGB composite images of HH and HV data (R =

HV, G = HV, B = HH) were found to significantly improve visual discrimination of

open water and ice [1]. These findings are also supported in [44] and [50].

Another work tested dual-polarization data from a Ku-band SAR (a different

frequency than the C-band R2) with a multivariate Gaussian maximum likelihood

classifier and two neural-network classifiers [39]. All three classifiers performed

similarly and the classification accuracies of first year ice, multi-year ice and icebergs

were improved. Fusion of the co-polarized and cross-polarized channels was also

performed using principal component analysis (PCA). This was found to improve

the visual distinction of the different ice types but did not improve classification

accuracy using the tested classifiers.
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Most of the work mentioned has focused on making use of the multidimensional

feature space provided by multipolarimetric data. Data fusion methods such as

PCA in [39] transform the multidimensional data into a single image, relying on the

transform to preserve separability of classes. PCA has been frequently tested for

reducing the dimensionality of multisensor, multifrequency and/or multipolarization

data sets, such as passive microwave and SAR data [14], passive microwave and

scatterometer data[63] and Landsat visible and near-infrared imagery [42]. Dimen-

sionality reduction with PCA is a linear projection of the multidimensional feature

space onto a reduced dimension feature space that preserves maximum amount of

variance [52]. Non-linear dimensionality reduction (NLDR) techniques can also be

used to fuse multiple channels into a single image. Multidimensional data points

in hyperspectral satellite imagery were projected onto reduced dimension manifold

coordinates in [3], producing reduced dimensionality images that exceeded the

quality of those produced by PCA. The improvement was achieved because the

structure of the underlying data was non-linear.

Image fusion methods such as the HH/VV band ratio in [31] are also able to

fuse multiple images together into a single image. Further examples include the

HV/HH band ratio for fusing dual-polarization SAR [50], [14] and wavelet image

fusion methods which decompose the images into wavelet coefficients at different

scales and combine the coefficients from two or more images according to defined

rules [40]. Wavelet image fusion has been used for multipolarization SAR image

fusion [54], [23] and attempt to create fused images that combine details from all of

the source images.

2.9 Objectives

The answers to the following research questions are the objectives of this thesis.

These are formulated based on the observations in Section 2.7. Listed under each

question are hypotheses that will be tested to answer the questions.

1. What methods can be used to increase the accuracy in the dual-polarization

segmentation results?

(a) An image gradient calculation method designed for dual-polarization

data may be more effective at improving accuracy and capturing more

detail. This method must be designed such that high contrast boundaries
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that appear in only one of the polarization channels are treated as being

as strong as an edge that appears in both images.

(b) Data and image fusion techniques can create a combined single channel

image that preserves the feature space separability of the two original

channels. The single channel image will contain high contrast boundaries

between all classes separable with the dual-polarization data. A combined

edge map that contains all the edges in both original channels can then

be generated from this fused image.

(c) An appropriate choice of user-defined parameters for the MIRGS spatial

context model parameter β can improve the accuracy and level of detail

by compensating for the extra merging caused by the multivariate feature

space.

2. Can the incidence angle effect that causes confusion between open water and

ice be eliminated by using dual-polarization data?

Relative to the HH channel, the HV channel is insensitive to the incidence

angle effect and can be used to separate open water from other ice types. Since

the HV channel does not have sufficient information to distinguish between

all possible ice types, segmentation will have to be performed hierarchically,

where HV can be segmented into as many classes as it can distinguish (e.g.,

ice and open water). Each of the classes produced can be further subdivided

by using the HH channel to segment all possible classes.
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Chapter 3

Methods

This section describes the proposed methods. Sections 3.1 to 3.4 focus on improving

accuracy for smaller scenes without the incidence angle effect. These methods seek

to improve the current MAGIC application of segmenting manually created ice

polygons down to the pixel level [12]. The manually created polygons exclude open

water with large incidence angle related backscatter changes, so that the incidence

angle effect can usually be safely ignored. Section 3.5 focuses on a hierarchical

segmentation scheme that is designed to deal with the incidence angle effect for full

R2 scenes. This can potentially lead to fully automatic full scene segmentation of

sea ice.

Before being input into any of the methods in this section, the R2 data were

first calibrated using the procedure described in Appendix A.

3.1 Gradient and edge map computation

As discussed in Section 2.7, the multivariate VFG gradient calculation method used

by MIRGS, which computes the gradient using the two channels jointly, assigns a

strong edge strength only to edges that appear in both the HH and the HV channels.

However, strong edges that appear in only one channel but not in the other are

equally meaningful because they denote an ice type boundary and should have a

high edge strength to reflect this.

Given that both the initial watershed segmentation and the MIRGS algorithm

rely on a proper accounting of meaningful edges, three different gradient generation

rules were tested that were designed to treat strong edges that appear in any channel
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as being as meaningful as strong edges that appear in both channels. In this section,

let ∇(HH)
s be the normalized gradient at site s from the HH image, ∇(HV )

s be the

normalized gradient for the HV image and ∇V FG
s be the normalized vector field

gradient [27] that MIRGS currently uses.

The simplest way of combining strong edges in any of the channels is to take

the maximum normalized gradient (MAX):

∇MAX
s = max

{
∇(HH)
s ,∇(HV )

s ,∇V FG
s

}
(3.1)

In the MAX gradient rule, the gradient value given to MIRGS is the maximum

relative strength that occurs at site s from any of the two polarization channels

individually or from the dual-polarization feature set. Inclusion of ∇V FG
s covers

cases where a site has a weak relative gradient magnitude in each individual channel

but a strong relative magnitude when both channels are considered jointly. The

MAX ensures that the ∇s always gives maximum normalized relative strength

available at any site.

In an ideal example with no noise, the MAX gradient rule gives the desired

results: any edges that are strong in one of the images is guaranteed to have a high

edge strength in the combined gradient. However, in the case of sites that have no

edge but a non-zero gradient due to noise, the MAX rule will always choose the

largest gradient value, which may amplify noise. To alleviate this, two alternative

gradient combination rules are proposed.

The first is an Absolute Difference Weighted Average (ADWA) gradient rule.

This rule is defined as follows:

∇ADWA
s = wADWA

s ∇MAX
s + (1− wADWA

s )∇V FG
s (3.2)

where:

wADWA
s =

|∇(HH)
s −∇(HV )

s |

max
s

{
|∇(HH)

s −∇(HV )
s |

} (3.3)
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In the ADWA rule, the combined gradient weights heavily toward ∇MAX
s if the

difference in gradient magnitude between the HH and HV band is large and weights

heavily toward ∇V FG
s if the difference is small. Because the gradient magnitude due

to noise tends to be small, the difference in gradient magnitude at noisy sites will

be small. In this case, the VFG gradient is appropriate since it was designed to

minimize noise [27]. If the difference in gradient magnitude is large between the HH

and HV channels, then a case where one of the channels has an strong edge and

the other does not has been encountered. In this case, the MAX gradient value is

appropriate and the ADWA gradient weights toward the MAX gradient. Finally, if

the difference in gradient magnitude in HH and HV is small but the site is a true

edge, then the edge appears in both images and weighting toward the VFG gradient

will be appropriate, which is reflected in the ADWA rule.

The second alternative to the MAX rule is the Canny gradient combination rule

(CG). This rule is similar to ADWA but the weight is different:

∇CG
s = wCGs ∇MAX

s + (1− wCGs )∇V FG
s (3.4)

where:

wCGs =

{
1 if site s is a local maximum

0 otherwise
(3.5)

The local maximum is defined as in the Canny edge detection algorithm [11]: a site

s is a local maximum if the gradient magnitude is larger than that of its immediate

neighbours in the gradient direction. In the CG rule, maxima are assigned the

gradient value of ∇MAX
s since they are more likely to be real edges. Non-maxima

are assigned the gradient value of ∇V FG
s .

All three combined gradient rules assign high gradient strength to all three

edges for the synthetic example shown previously in Figure 2.8. Figure 3.1 shows

the results of using VFG, MAX, ADWA and CG on the same synthetic image

with multiplicative Gaussian (mean 1.0, variance 0.1) noise (in SAR imagery, noise

is considered multiplicative [37]). The mean of the gradient value is shown for

non-edge pixels and edge pixels using each method. Non-edge pixels should have

small gradient values because they are caused by noise while edge pixels should
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have high gradient values. In the figure, VFG has the lowest sensitivity to noise but

also the lowest sensitivity to edges. The other three methods have comparatively

higher noise sensitivity along with edge sensitivity but it is not clear from this test

which is the best method to use for MIRGS segmentation of R2 imagery.

The experiments in Chapter 4 tested each of the four available gradient com-

bination methods (VFG, MAX, ADWA and CG) for the purposes of combining

the gradients of HH & HV dual-polarization data. The combined gradients were

then used in MIRGS with the HH & HV dual-polarization feature set in order to

determine which method provides the best segmentation accuracy. These results

are presented in Chapter 4.

3.2 Image fusion

The literature review in Section 2.8 identified two main methods for image-based

fusion: band ratios and wavelet image fusion. These ideas are described and adapted

to the dual-polarization R2 data in this section.

3.2.1 HV / HH band ratio

The cross-polarization ratio HV/HH is a relatively simple image fusion technique

and was suggested as a useful fusion of information from the HH and HV channels

for human visualization [50]. This ratio was also found to be one of the principal

variables amongst a multisensor, multifrequency and multipolarization data set [14].

This means that the HV/HH ratio accounts for a significant amount of the variance

in the multidimensional data set. Therefore, the HV/HH ratio should be investigated

as an image fusion technique.

Calculation of the ratio is straightforward. The backscatter coefficient in HV is

simply divided by the backscatter coefficient in HH. Since the HH and HV images

are digital numbers on a dB scale, the fusion at each image site s is accomplished

simply by:

yHV/HHs = y(HV )
s − y(HH)

s (3.6)

The resulting single channel image still has units of dB.
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Figure 3.1: VFG, MAX, ADWA and CG gradient combination methods for a
noisy synthetic two-channel image with step edges. Mean (non-edges) indicates the
mean gradient value over all non-edge pixels with lower being better. Mean (edge)
indicates the mean gradient value over all edges pixels, with higher being better.
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3.2.2 Wavelet image fusion

As explained in Section 2.8, wavelet-based image fusion has been attempted for a

variety of remote sensing applications. Conceptually, wavelet image fusion decom-

poses the images to be fused into their wavelet coefficient representations and uses

various rules to fuse the coefficients into a final set of fused wavelet coefficients,

which is then transformed back into a fused image [40]. Wavelet-based image fusion

is able to preserve fine details of the original images in the fused image [54]. Here,

wavelet image fusion is briefly described, along with the coefficient fusion rules that

will be tested.

Wavelets are functions whose energy is limited in time and possess wave-like

or periodic characteristics [55]. Signals can be expressed as a summation of scaled

and translated wavelets. The wavelet transform finds the summation coefficients for

each scaled and translated wavelet in a manner similar to how the Fourier transform

finds the summation coefficients for expressing the signal in terms of sinusoidal

functions. Since the wavelets are limited in time, unlike sinusoidal functions, a

wavelet transform is able to provide both time and frequency information. Due to

this, wavelet transforms are well suited for analyzing non-stationary signals like

images [2].

The wavelet image fusion approach begins with the multiscale decomposition

(MSD) of the images to be fused. MSD decomposes images into a collection of

coefficient images at different spatial scales (decomposition level) that can be used

to fully reconstruct the original image [66]. Mallat [30] showed that the wavelet

transform can be implemented as a MSD with the use of high-pass and low-pass

filters to create the wavelet coefficient images. The filters are derived from the

wavelet basis that will decompose the images. The MSD can be constructed in

stages: one level of decomposition consists of a smoothed approximation coefficient

image and three detail coefficient images showing details in the horizontal, vertical

and diagonal directions. The approximation image can, in turn, be decomposed

into four coefficient images, which represents the next decomposition level.

Let D(r, c, k, l) represent one MSD coefficient image at decomposition level k.

Indices r and c refer to the row and column locations in each image and l = 0 . . . 3.

When l = 0, the coefficient image is referred to as the approximation coefficient

image. Higher l correspond to horizontal (1), vertical (2) and diagonal (3) detail

coefficient images. The original image can be considered D(r, c, k, 0) with k = 0.
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Figure 3.2: A two level wavelet multi-resolution decomposition. Level k contains
three detail coefficient images D(r, c, k, 1 . . . 3). Level k + 1 is the highest stage of
this decomposition and contains an approximation coefficient image D(r, c, k + 1, 0)
and three detail coefficient images D(r, c, k + 1, 1 . . . 3)

A two-level wavelet MSD is shown in Figure 3.2. D(r, c, k, 1 . . . 3) are detail

coefficients corresponding to level k. The original image can be consideredD(r, c, k, 0)

with k = 0. The smoothed approximation at level k was decomposed into the next

decomposition level k + 1. In this example, the decomposition stopped at level

k + 1 and so the smoothed approximation D(r, c, k + 1, 0) is kept. The sizes of the

coefficient images shown in the figure reflect their relative pixel dimensions. Detail

coefficients D(r, c, k, 1 . . . 3) have relatively high spatial resolution and contains high

frequency details. D(r, c, k + 1, 1 . . . 3) has lower spatial resolution and contains

lower frequency details. D(r, c, k, 0) contains the lowest frequency details.

Because it separates the image into high frequency and low frequency coefficient

images that retain spatial localization, the wavelet MSD allows the fusing of the

coefficients at different scales and locations to be controlled independently. The

coefficient fusion process is shown in Figure 3.3. The coefficients in the same location

in each corresponding image are combined according to a fusion rule which can

make different decisions for each location and scale.

Previous work on using wavelets to fuse SAR imagery used the discrete wavelet

transform (DWT) to create the MSD [54]. In this thesis, the stationary wavelet

transform (SWT) [36] is used because it was found to produce better image fusion

results in both other work [46] and in initial tests with the R2 SAR images, where
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Figure 3.3: Wavelet image fusion is accomplished by decomposing the individual
images using the wavelet transform, fusing the corresponding coefficient images into
a single fused decomposition and then performing the inverse wavelet transform to
obtain the fused image.

the SWT fused images had fewer artifacts. The fusion rules and procedures for the

SWT case are fully interchangeable with those of the DWT case.

Let D1 and D2 represent the wavelet decomposition of the two SAR channels

(HH and HV) to be fused. Let DF be the decomposition of the fused image. For

conciseness, let p = (r, c, k, l) so that D(r, c, k, l) = D(p). The detail coefficients

D1(r, c, k, 1 . . . 3) and D2(r, c, k, 1 . . . 3) can be fused by the choose-max rule:

DF (p) = max {D1(p), D2(p)} for l = 1, . . . , 3 (3.7)

This rule was found to be the best for detail coefficients in [40]. By choosing the

strongest detail coefficients, the wavelet fusion method should create an image that

incorporates all the strong edge information present in the HH and HV images, in a

way that is similar to the MAX gradient calculation in Section 3.1.

Two fusion rules for the approximation coefficients D1(r, c, k, 0) and D2(r, c, k, 0)

are tested: the weighted-average (WA) rule, first introduced in [9], and an Abso-

lute Difference Weighted Average (ADWA) rule that has been formulated to take

advantage of differences in the HH and HV channels, in a similar manner as the

ADWA gradient rule. The WA rule was found to give the best results in [40]. It is

formulated as follows [9]:
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DF (p) = w1(p)D1(p) + w2(p)D2(p) for l = 0 (3.8)

where w1 and w2 are weights that are assigned based on how well the coefficients

at each location match each other. If there is good matching (i.e., the coefficients

appear similar), then the assigned weights will average the two coefficients. If

matching is poor, then the assigned weights will choose the more salient feature.

Salience at a particular row r and column c in the coefficient image is defined as:

S(p) =
∑

r′∈R′,c′∈C′

D(r′, c′, k, l)2 (3.9)

where R′ and C ′ are sets of row and column indices centered around row r and

column c, respectively. Salience is computed by considering a small window around

(r, c) defined by R′ and C ′. A 3 × 3 window was used in this thesis after promising

results in initial tests. The match measure between coefficients in D1 and D2 is

defined as:

M12(p) =

2
∑

r′∈R′,c′∈C′
D1(r′, c′, k, l)D2(r′, c′, k, l)

S1(r′, c′, k, l) + S2(r′, c′, k, l)
(3.10)

The match measure is similar to a normalized correlation between the values within

the small neighbourhood defined by R′ and C ′. The weights are assigned as follows.

Let wmin(p) and wmax(p) be two intermediate weights. If M12(p) ≤ α then,

wmin(p) = 0 (3.11)

wmax(p) = 1 (3.12)

else if M12(p) > α then:
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wmin(p) =
1

2
− 1

2

(
1−M12(p)

1− α

)
(3.13)

wmax(p) = 1− wmin(p) (3.14)

Finally, if S1(p) > S2(p), then w1(p) = wmax(p) and w2(p) = wmin(p), else w1(p) =

wmin(p) and w2(p) = wmax(p). The parameter α is set empirically; the value chosen

was 0.5 after initial tests. The WA rule has previously been used for fusing SAR

images for visual analysis [54].

The ADWA rule is a simpler fusion rule. It can be defined as follows:

w1(p) =
|D1(p)−D2(p)|

max
r,c
{|D1(p)−D2(p)|}

(3.15)

w2(p) = 1− w1(p) (3.16)

DF (p) = w1(p)D1(p) + w2(p)D2(p) (3.17)

where the maximum value of |D1(p) −D2(p)| is taken over all rows and columns

at the particular decomposition level and D1 corresponds to the HH band and D2

corresponds to the HV band. The ADWA rule emphasizes the coefficients in the HH

band when the difference between HH and HV is large. When the difference between

the HH and HV band is small, it emphasizes the HV band. For first year ice, the

backscatter difference between the HH and HV band is small. This makes the first

year ice darker in the fused image because the darker HV band is emphasized. For

open water at near range incidence angles, the HH band is much brighter than the

HV band. The fused image will therefore retain the HH level of brightness in open

water regions. This fusion technique increases contrast between first year ice and

open water in the fused image. As seen in Section 2.4 and 2.7, first year ice and

open water are frequently difficult to distinguish in the HH band at near range

incidence angles. The ADWA rule should create a single image that retains the

improved dual-polarization separability between these ice classes.

The wavelet basis chosen for the MSD was the Daubechies wavelet with eight

coefficients. Although many other wavelet bases can be used, the tests here are not

meant to be an exhaustive investigation of the optimal wavelet basis. In initial tests,

the choice of wavelet made very little difference in terms of image appearance or
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Figure 3.4: The HH & HV feature space plot of the real image (Figure B.1).
Light shades in the background indicate the Gaussian maximum likelihood decision
boundaries.

class separability. For all tests, four levels of decomposition were used for the MSD

as it gave the best results during initial testing.

3.3 Feature space fusion

Figure 3.4 shows a plot of the feature space of the real image (Figure B.1) with

the dual-polarization HH & HV feature set. All feature values are integer digital

numbers (DN) from [0, 255], which are a direct mapping from backscatter values of

[−35,−5] dB. For clarity, only 5000 data points, selected from a regular image grid,

are shown. Lighter shades in the background indicate the decision boundaries for a

Gaussian maximum likelihood (ML) classifier. Feature space fusion methods attempt

to transform the feature space shown in Figure 3.4 into a single dimensional feature

space. The fused single image should then theoretically contain edges between all

the classes for the spatial context model and retain class separability for the feature

space model.
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Figure 3.5: The line represents the principal component direction onto which the
data points are projected during PCA. The data points shown here correspond to
the real image (Figure B.1).

3.3.1 Principal component analysis

As mentioned in Section 2.8, principal component analysis (PCA) can be used as an

image fusion technique for multichannel image data. In order to fuse the HH and

HV channels, PCA can be regarded as a projection of the 2-D ys feature vectors

onto the axes in the direction of maximum variance of the data (the principal

component direction) [52]. Figure 3.5 shows the feature space for the real image,

with the principal component direction shown as a line. Under PCA, all data points

(feature vectors) are projected onto the direction of the line. This creates a new,

single channel image referred to as PC1 (principal component 1). If the classes are

well separated along the PC direction, PCA can be an excellent way of reducing

dimensionality while retaining class separability.

Mathematically, the fused PCA channel for each feature vector at site s can be

calculated as follows [52]:

yPC1
s = eT(ys − ȳ) (3.18)

where ys is the feature vector at site s, ȳ is the mean of the feature vectors and

e is the eigenvector corresponding to the largest eigenvalue of the feature vector
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Figure 3.6: A least-squares fit of a parabola to the HH & HV data points in feature
space. The data points shown here correspond to the real image (Figure B.1).

covariance matrix.

The locality preserving projection [22] (LPP) is similar to PCA but it explicitly

attempts to find a linear projection that preserves distances between points in the

transformed feature space. The LPP will keep points that were close in the original

space close in the transformed space and likewise with points that were far apart in

the original space. This can potentially improve results since it ensures that feature

vectors that are dissimilar do not get mapped to similar values. However, in practice

with the dual-polarization data, the LPP produced results very similar to PCA and

for conciseness was not included in the testing presented here.

3.3.2 Parabolic arc-length projection

Feature space fusion is not limited to linear projections such as PCA. In fact, the

feature space distribution of points in Figure 3.4 appears to be non-linear. The

classes appear to be dark in both HH & HV, dark in HV but bright in HH, and

bright in both HH & HV. There are no data points that are bright in HV and dark

in HH. These characteristics produce the shape of the points seen in Figure 3.4. All

other R2 scenes are similar.

The non-linear distribution of points suggests that projection of the points onto

a coordinate system defined by a non-linear curve may be a useful way of fusing the
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two channels. In Figure 3.6, a parabolic curve is shown. This curve was created by

least-squares fitting of the coefficients a and b in the following equation:

y(HV ) = a(y(HH))2 + c (3.19)

to the data points. Projection of each data point to the arc-length coordinate of

this parabolic curve represents a non-linear transformation to a univariate feature

space which should be able to “unwrap” the non-linear feature space into a single

dimension. The projection is accomplished as follows. Let y′s be the point on the

parabola closest to the feature vector at site s (ys):

y′s = arg min
yp

||ys − yp|| (3.20)

where yp is any point on the parabola and ||ys − yp|| indicates Euclidean distance

between ys and yp. y′s is found by minimizing the Euclidean distance equation

analytically. When more than one root is found, the one which corresponds to the

largest HH (y(HH)) value is chosen. The parabolic arc-length (PAL) coordinate

is calculated from the standard arc-length formula for the quadratic curve in

Equation 3.19:

yPALs =

y′
s
(HH)∫
0

√
1 + (2ay

(HH)
p )2dy(HH)

p (3.21)

where a is the least-squares fitted coefficient from Equation 3.19 and PALs is the

Parabolic Arc-Length coordinate of site s, where the arc-length is measured from

y(HH) = 0. Equation 3.21 is solved analytically.

Other curves can also be used. For example, a general parabola y(HV ) =

a(y(HH))2 + by(HH) + c can also be considered. However, the general parabola

sometimes produces an inverted parabola when fitted to the data, which does not

give the desired non-linear “unwrapping” of the feature space. Other families of

curves can also be tested in future work; the parabolic curve is tested here as
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a representative of non-linear projections using curve fitting because there are

analytical solutions to the above equations.

3.3.3 Non-linear dimensionality reduction techniques

In addition to the PCA and PAL techniques, three non-linear dimensionality reduc-

tion (NLDR) techniques were also used to perform feature space fusion: locally linear

embedding (LLE) [47], Laplacian eigenmaps (LEIGS) [5] and local tangent-space

alignment (LTSA) [67]. In many ways, these techniques are similar to PCA or LPP

but rather than projecting onto a linear axis, they attempt to project the data onto

a non-linear “manifold” on which the data are assumed to lie. The PAL technique

assumed that the data lie on a parabola due to the backscatter characteristics of

dual-polarization data. The NLDR techniques learn the manifold coordinates from

the data points themselves, with no assumption for a particular manifold shape.

Conceptually, NLDR methods assume that the image feature vector at site s

arises from:

ys = f(Ψs) + ε (3.22)

where f is some unknown non-linear function or process that forms a manifold

in the feature space of ys, Ψs are the manifold coordinates of site s and ε is

noise [67]. NLDR methods find Ψs without explicitly knowing f . The three NLDR

methods considered here operate similarly: for every feature vector ys, the local

geometry as defined by the k nearest Euclidean distance neighbours in feature

space is determined and manifold coordinates are then found that in some way

preserves the local geometry for all the original feature vectors. The three methods

mainly differ in the nature of the local geometry that they preserve. In the following

discussion, let ntrain represent the number of feature vectors that are given to each

NLDR algorithm to learn the manifold coordinates.

LLE [47] assumes that the manifold is locally linear. Then an ntrain × k weight

matrix W is computed by minimizing the reconstruction error E(W):
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E(W) =
∑
s

|ys −
k∑
j=1

wsjysj
|2 (3.23)

where ysj
refers to one of the k nearest neighbours of the feature vector at site s.

Minimizing Equation 3.23 via least-squares fitting finds the set of weights that best

linearly reconstructs each of the feature vectors from its k nearest neighbours. The

weights are constrained such that
k∑
j=1

wsj = 1 in order to make the weights invariant

to translation and the form of Equation 3.23 makes them invariant to rotation and

scaling [47]. LLE assumes that there is a linear mapping between the original feature

space and the manifold coordinates on a local level that consists of a translation,

rotation and scaling. Since the weights were designed to be invariant to these three

transformations, the manifold coordinates Ψs of a data point can be written as a

linear combination of the manifold coordinates of its k nearest neighbours Ψsj
with

the exact same set of weights. Therefore, choosing Ψ (the set of all Ψs for every

site s in the scene) to minimize the cost function Φ(Ψ):

Φ(Ψ) =
∑
s

|Ψs −
k∑
j=1

wsjΨsj
|2 (3.24)

will give the desired manifold coordinates. In Equation 3.24, the wsj are fixed

and the optimization is performed to find a set of Ψs that globally minimizes the

expression. The above problem is converted into an eigenvalue problem and solved

to obtain the manifold coordinates. LLE preserves the reconstruction weights of

each of the k nearest neighbours of each data point. Only one parameter, k, needs

to be chosen. This was set to k = 8 after tests from 4 to 16 neighbours showed little

difference in results.

LEIGS [5] constructs an adjacency graph with feature vectors ys as nodes. Any

two nodes are connected by an edge if at least one of the nodes is among the k

nearest neighbours of the other. A ntrain × ntrain weight matrix W is constructed

where wij = 1 if nodes i and j are connected on the graph. LEIGS then finds the

set of manifold coordinates Ψ minimizes the cost function Φ(Ψ):
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Φ(Ψ) =
∑
ij

(Ψi −Ψj)wij (3.25)

where the summation is done over all pairs of nodes in the graph. The above

minimization problem is converted algebraically to an eigenvalue problem subject

to a scaling constraint in the manifold coordinates; the full details are in [5]. The

idea behind LEIGS is that the manifold coordinates must map points that are close

together in the original space (as indicated by wij = 1) to points that are close

together on the manifold. The only parameter that needs to be chosen is k, the

number of nearest neighbours. This value was again set to k = 8 after initial testing

from 4 to 16 neighbours revealed little difference in the results.

LTSA [67] uses the k nearest neighbours of a feature vector to estimate the local

manifold tangent space by finding the best fit n-dimensional hyperplane for the

points, where n is the number of dimensions in the original data. Once the local

tangent space is found, its k nearest neighbours are converted to local tangent space

coordinates θsj
, where j = 1 . . . k to indicate the nearest neighbour points. LTSA

assumes that there is an affine transformation Ls that approximately transforms

the tangent space coordinates to manifold coordinates:

Ψsj
= Ψ̄sj

+ Lsθsj
+ εsj

(3.26)

where Ψ̄sj
is the mean of the manifold coordinates for the k nearest neighbours and

εsj
is a reconstruction error. LTSA then finds the set of Ls and Ψsj

that minimizes

the total reconstruction error over all of the original data points:

∑
s

k∑
j=1

εsj
=
∑
s

k∑
j=1

Ψsj
− Ψ̄sj

− Lsθsj
(3.27)

The above problem is algebraically converted to an eigenvalue problem and the

optimal manifold coordinates Ls and Ψsj
are found. Then, all information to

produce the manifold coordinates Ψs for each feature vector is available. As with

LLE and LEIGS, the only parameter that needs to be set is k, the number of nearest

neighbours and the same value of k = 8 was used.
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All three NLDR techniques required finding the eigenvectors of matrices with

(MN)2 entries, where M is the image width in pixels and N is the image height. In

order to reduce the computational requirements, the original images were resampled

via bicubic interpolation to have a maximum of 4096 pixels prior to the NLDR

process. This was chosen because it is the largest number of points that could be

handled without exhausting available memory (2 GB) on the test system. The

4096 data points form the training set for learning the manifold. Once the NLDR

technique is applied, the feature vector yt at each site t in the resampled image will

have been mapped to manifold coordinates Ψt:

yt → Ψt (3.28)

Assuming that the training feature vectors allowed the NLDR technique to learn

a reasonably accurate manifold, a method is needed to map all of the original feature

vectors ys to coordinates on the learned manifold. The manifold, however, is defined

only on the training points and cannot be extended to other points. A method to

estimate the manifold coordinates of points outside of the training set has been

suggested [28]. First, the mapping between each training feature vector and its

manifold coordinates is approximated as an affine transform Lt:

Ψt − Ψ̄t = Lt(yt − ȳt) (3.29)

where Ψ̄t and ȳt are the mean of the transformed and original coordinates of the

data point and its k nearest neighbours in the training set. This neighbourhood

is the same as that used by the NLDR technique for learning the manifold. The

transform Lt is then calculated [28]:

Lt = (Ψt − Ψ̄t)(yt − ȳt)
† (3.30)

where (.)† is the pseudoinverse operator which operates on vectors by treating them

as non-square matrices. Once Lt is computed for each training point, mapping of

the original data points is accomplished by:
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Ψs = Ψ̄t′ + Lt′(ys − ȳt′) (3.31)

where t′ indicates the site of the training feature vector that is closest to ys in feature

space. Since yt′ and ys are nearest neighbours, their transformed coordinates on

the manifold should be similar. Thus, the affine transformation Lt′ can be used to

estimate the manifold coordinates of ys.

All image feature vectors are mapped using this estimation method. The

resulting NLDR feature vectors still have two dimensions and fusion to one image is

accomplished by discarding one of the two dimensions. The most significant NLDR

channel corresponds to the first channel and retains the most information. The least

significant NLDR channel is the second channel and is usually discarded.

For efficient nearest neighbour searching to find training site t′ in Equation 3.31

for each site s in the image, a KD-Tree [6] data structure was implemented. This

is a space partitioning scheme for multidimensional data points that improves an

exhaustive O(MNntrain) nearest neighbour search to an O(MN log ntrain) search on

average. Tests showed that finding the nearest neighbour from a set of 4096 training

points typically required searching fewer than 100 points, significantly improving

the speed of the fusion process.

The implementation of each of the three NLDR methods was obtained from [60],

which is a collection of code for NLDR techniques provided by the original authors.

Another popular NLDR technique called ISOMAP [56] was also available but it

was not tested because the provided code could not handle the transformation of

4096 data points. Using a much lower number of data points was tested but did not

generate useful results, so these results, for conciseness, were not included here.

3.4 Parameter selection

Parameter selection of the C1 and C2 parameters in Equation 2.6 can affect results

by changing the value of the spatial context model weighting β. In the parameter

selection experiments, each of the methods explained in the previous sections are

tested with MIRGS set at different values of the parameters. The range of C1 tested

was [1.0, 7.0]. Values below this range were unacceptably noisy and oversegmented

and values above this range results were overmerged excessively. The range of C2
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tested was from [0.1, 1]. This was the range which has been found empirically to

give reasonable results. In actual usage of MIRGS, C1 is generally set first and then

C2 is used to “fine-tune” the segmentation results.

3.5 Hierarchical segmentation

The methods in the previous sections have focused on fusing the information from the

dual-polarization bands before the segmentation process is executed. In this section,

a hierarchical segmentation method is introduced which performs the segmentation

in stages, where one segmentation result is used to guide the next one. Hierarchical

segmentation generates image segments in a nested fashion [24]. The image is first

partitioned into several segments, which are each partitioned into further segments.

This partitioning can be continued until a desired number of total classes is reached,

a stopping criteria is met or until each pixel is assigned its own class.

3.5.1 Overview

The proposed approach is to first segment the HV channel with MIRGS into as

many classes as it can distinguish. Since the HV channel does not have sufficient

information to distinguish all classes, as seen in Section 2.7, each of the obtained

segments is then further partitioned using MIRGS but with information from the

HH channel.

The motivation for considering such a hierarchical approach for segmentation

can be seen in Figure 3.7, which is a plot of the probabilities of a pixel having

a certain value in the HH or HV channel given that it belongs to a certain class.

These plots were generated with the ground-truth for the real R2 image shown in

Figure B.1. In the plot for the HH channel, first year ice and water overlap and are

not separable. However, these two classes are separable in the HV channel, although

smooth ice, gray ice and water are not. If the proposed segmentation approach is

used, then the HV channel will be segmented into two segments: one containing first

year ice and another containing the three remaining classes. If this other segment

is then input into MIRGS and segmented into three classes with the HH channel,

then the result should correctly separate the three remaining classes.

A schematic of the hierarchical segmentation process for this image is shown in

Figure 3.8. When interpreting the hierarchies, the order of the branches from each
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channel indicates the brightness of the class mean in the channel. The left most

branch is the darkest and the rightmost branch is brightest.

This method is a way of using the enhanced class separability information given

by two channels but using only one channel at a time. The reason for this is to help

deal with the incidence angle effect which causes problems for MIRGS as described

in Section 2.7 in Figure 2.9. Initially segmenting the HV channel into two classes

allows the darker open water to be separated from first year ice since the appearance

of water is insensitive in HV to incidence angle.

One question with this approach, however, arises when Figure 3.7(b) is considered

again. It suggests that if the HV image is segmented into two segments, then one

segment will consist of open water, gray ice and smooth ice that must be further

segmented into three classes by segmenting the HH image, as in Figure 3.8. For

an image without the incidence angle effect, such as the real image (Figure B.1),

this does not pose a problem. However, the HH image may not be able to properly

segment the open water / gray ice / smooth ice portion of the image if the water

changes appearance due to the incidence angle effect.

Two possibilities exist to mitigate the aforementioned problem. First, Figure 3.7

only shows feature space separability. It is possible that gray ice will be separable

from open water and grouped with first year ice due to edge strength and spatial

context, which MIRGS inherently uses. This was the case for the full scene data

set (Figure B.3) that was available for testing. Smooth ice is more problematic,

but it is very dark in the HH band and should be separable in that channel from

wind roughened open water regardless of incidence angle. There was no example

of smooth ice occurring in an image with the incidence angle effect to test this

assertion.

The second mitigating factor is that the HV channel could be segmented into

more than two segments. If the HV image can be separated into open water /

smooth ice, gray ice and first year ice, then the HH channel should be able to

separate smooth ice from open water, as described above while gray ice and first

year ice are already separate.

The test data provided by the CIS does not represent all the ice types listed in

Table 2.1, so the observations in this section will need to be amended in future work

as additional data becomes available.
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Figure 3.7: Class conditional probability distribution functions for backscatter values
for the real image (Figure B.1) from (a) HH and (b) HV. The separability of first
year ice and water is poor in the HH channel but good in the HV channel. However,
the separability of smooth ice, gray ice and water is poor in HV.
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Figure 3.8: An example sea ice type hierarchy for hierarchical segmentation. The
order of the branches from each channel from left to right indicates the brightness
of each class in the channel from darkest to brightest.

3.5.2 Implementation

Two approaches for creating sea ice type hierarchies (SITH) like that shown in

Figure 3.8 were tested. The first approach is simple: the hierarchies are user-defined

based on domain knowledge. User-defined SITHs allow human operators to control

precisely how many classes are segmented at each node in the hierarchy. This

complicates the segmentation process because the user must define more than just

the number of classes. For operational use, however, this should be acceptable

as human experts should have some intuition to determine which hierarchy is

appropriate for each scene.

The second approach for creating a SITH (Auto-SITH) is based on estimating

the number of segments that can be distinguished in the HV channel. The HV

channel is then segmented into precisely that number of segments. The number

of subsegments in each segment that is distinguishable in the HH channel is then

estimated and the segmentation is performed. To estimate the number of segments

that can be distinguished, the Davies-Bouldin (DB) index [16] is used. The DB

index is defined as:

DB(η) =
1

η

η∑
i=1

Ri (3.32)
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where

Ri = max
j 6=i
{Rj,i} (3.33)

Rj,i =
ej + ei
mj,i

(3.34)

DB(η) evaluates a particular segmentation result with η classes, with ej being the

average Euclidean distance between the feature vectors assigned to class j and the

centroid µj of class j and mj,i = ||µj − µi||, the Euclidean distance between the

two class centroids. The ej can be considered the average error for class j in the

current segmentation result. To estimate the number of classes in a scene, the DB

index is evaluated for segmentation results using η = 2, . . . , n classes. The η with

the smallest DB index is chosen as the number of classes present in the scene. The

smallest DB index is achieved for segmentation results whose clusters in feature

space are small (low ej) and have large separation (large mj,i).

The error terms ej used in the DB index is defined in terms of Euclidean distance

only, so the segmentation results used for estimating the number of classes were the

initial region-based K-means segmentations rather than the MIRGS segmentation.

This is because usage of the MIRGS segmentation results would require a new error

term ej to be derived, but it is currently unclear how to incorporate the MIRGS

spatial context model into the error term.

In determining the number of classes for the HV channel, η = 2, . . . , n, where n is

the total number of classes in the scene. For determining the number of subsegments

in each of the obtained HV segments, η = 2, . . . , (n− nHV + 1). This is based on

the fact that when the HV channel is divided in to nHV segments, each of these

segments can only have a maximum of (n− nHV + 1) classes if there are n classes

in total. If (n− nHV + 1) ≤ 2 , then the number of classes is set to (n− nHV + 1).

It should be noted that the DB index can only determine the number of classes

for η > 1. An alternative method, outlined in [18], determines whether a single

cluster should be split into two clusters but it does not determine the number of

classes beyond that. This was not implemented because if a one class segment

is oversegmented to two classes, a post-process merging (see below) can be used

to eliminate the extra class. Other indices, such as the Modified Hubert (MH)

index [24], can also be used instead of the DB index. However, the DB index is
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attractive because it only requires the η at which the minimum value of the index

occurs to be found rather than having to determine the η at which a “significant

knee” in the index value curve occurs [24].

A method similar to K-means iterative Fisher (KIF) clustering [13] could also be

used to automatically generate the proper hierarchies. At each stage, KIF always

clusters segments into two subsegments; if the Fisher criterion between the two

classes is below a certain threshold τ̂ , then the clusters are merged since they

likely represent only one class. Such a scheme is not implemented here because an

appropriate τ̂ threshold has not yet been found for each of the dual-polarization

channels. More image data will be necessary before this can be done in future work.

Two additional generic sea ice type hierarchies are also tested, shown in Figure 3.9.

These are used to provide additional test cases for the test scenes.

When using both Auto-SITH and the generic SITH 2-3 or 3-2, the final number

of classes may exceed the number of classes that the user desires for the scene. In

the case of Auto-SITH, the DB index only determines the number of classes as being

two or more. For the generic SITHs, the output is always six classes. To ensure that

the final number of classes is equal to the number of classes that the user has chosen,

the final segmentation result is post-processed to merge any excess classes. This is

performed by repeated pairwise merging of the two closest classes according to the

Fisher criterion [18] until the desired number of classes is reached. The experiments

will test which feature set (HH, HV or HH & HV) should be used to calculate the

Fisher criterion during merging. It is also possible to use a spatial context aware

merging criterion such as that present in Step 4 (Section 2.6.4) of MIRGS but the

classes that should be merged are not necessarily adjacent to each other. Therefore,

only the feature space merging with the Fisher criterion is considered at this time.
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(a) SITH 2-3

(b) SITH 3-2

Figure 3.9: Two generic sea ice type hierarchies that were also tested.
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Chapter 4

Experimental Results and

Discussion

The methods described in Chapter 3 were tested on three separate images. The first

image is the real R2 image seen in Figure B.1. This image has a manual segmentation

as ground-truth and represents ice types at near range incidence angles (0◦ to 10◦).

The second test image is a synthetic dual-polarization image created as described

in Section B.2 and shown in Figure B.2. The ground-truth for the real image may

contain manual segmentation errors whereas the ground-truth for the synthetic

image is unambiguous. The gray levels in each of the classes in the synthetic image

were derived from real R2 data and represent ice types at the 30◦ to 35◦ incidence

angle range. There was a lack of unambiguous ice type samples at other incidence

angle ranges to generate synthetic images for those ice types. The hierarchical

segmentation techniques were tested with the real and synthetic images, as well

as the third test image, which is the full scene image shown in Figure B.3. This

image lacks ground-truth but Figure B.3(c) is a reasonable “expected” segmentation

derived by manually combining several MIRGS segmentation results. Due to the

lack of actual ground-truth, only qualitative evaluation for the full scene image was

performed.

4.1 Data fusion for improved accuracy

This section presents the results of testing gradient generation, image fusion and

feature space fusion techniques. All experiments performed in this section followed
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the same procedure. Each technique is applied to the calibrated dual-polarization

images and MIRGS is used to obtain a segmentation result. The segmentation

result is then compared to the ground-truth image. Two measures were used for

measuring segmentation accuracy: the overall accuracy, which is the percent of

pixels correctly segmented and the κ coefficient [7],[15]. The Kappa coefficient is

defined as follows [45]:

κ =

P
∑
k

xkk −
∑
k

xk+x+k

P 2 −
∑
k

xk+x+k

(4.1)

where xij is the j-th entry on the i-th row of the segmentation error matrix,

xi+ =
∑

j xij and x+j =
∑

i xij. P represents the total number of pixels in the

image. κ is an accuracy assessment measure that ranges from [−1, 1] and compares

the segmentation result to random assignment. When κ = 0, the segmentation

result is as good as random assignment. When κ = 1, the segmentation is perfect.

Negative κ indicate results that are biased against the proper segmentation.

Overall accuracy and κ give two correlated but distinct measurements of accuracy.

Prior to accuracy assessment, the segmented results are relabeled to match the

ground-truth image labels to maximize overall accuracy. This process is necessary

because the segmentation algorithm may assign a label value (1, . . . , n) to pixels of

a certain ice type that is different from the label value (1, . . . , n) assigned to the

same ice type in the ground-truth image or in another segmentation result.

Table 4.1 lists all the data fusion methods and feature sets that were tested.

Both original bands are tested with MIRGS individually in order to provide a

comparison with single-polarization data. The gradient combination rules are tested

using HH & HV bands as the feature set given to MIRGS. The single images created

by the image fusion techniques are also tested. LEIGS 1 & 2, LLE 1 & 2 and

LTSA 1 & 2 use both NLDR channels as the multivariate feature set for MIRGS

and were included to test whether the NLDR techniques transform the original

two-dimensional feature space to another two-dimensional feature space with better

separability. The NLDR transforms are very non-linear and the results are difficult

to predict in advance. LEIGS 2, LLE 2 and LTSA 2, which are the second and least

significant NLDR channels, are included for completeness.
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Table 4.1: Data fusion methods and feature sets tested.

Name Feature Set Used

Single Polarization

HH HH band only.
HV HV band only.

Gradient Generation Methods for Dual-Polarization Data

HH & HV, ADWA Gradient HH & HV with gradient combination using
the ADWA rule.

HH & HV, VFG Gradient HH & HV with existing VFG gradient gen-
eration method.

HH & HV, MAX Gradient HH & HV with gradient combination using
the MAX rule.

HH & HV, CG Gradient HH & HV with gradient combination using
the CG rule.

Image Fusion Techniques

ADWA Wavelet Image fused with the wavelet ADWA rule.
WA Wavelet Image fused with the wavelet WA rule.
HV / HH Band ratio image.

Feature Space Fusion Techniques

LEIGS 1 First LEIGS channel.
LEIGS 1 & 2 Both LEIGS channels (with VFG gradient

combination).
LEIGS 2 Second LEIGS channel.
LLE 1 First LLE channel.
LLE 1 & 2 Both LLE channels (with VFG gradient

combination).
LLE 2 Second LLE channel.
LTSA 1 First LTSA channel.
LTSA 1 & 2 Both LTSA channels (with VFG gradient

combination).
LTSA 2 Second LTSA channel.
PAL Fused PAL channel.
PCA Fused PCA channel.
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Table 4.2: Accuracy statistics for tested data fusion techniques on the real image
(Figure B.1) at different values for the MIRGS merging parameter C1. C2 for each
method was fixed at 0.4.

Method Overall (%) κ Overall (%) κ Overall (%) κ Overall (%) κ

ADWA Wavelet 62.78 0.48 74.14 0.61 75.24 0.62 74.59 0.60

HH 56.52 0.40 61.68 0.46 68.85 0.55 72.14 0.57

HH & HV, ADWA 80.44 0.72 83.92 0.77 78.40 0.69 75.20 0.64

HH & HV, VFG 80.85 0.73 84.70 0.78 77.48 0.68 71.17 0.59

HH & HV, MAX 80.77 0.73 84.19 0.77 78.64 0.69 72.71 0.61

HH & HV, CG 80.62 0.72 83.92 0.77 79.72 0.71 73.51 0.62

HV 40.86 0.21 46.27 0.28 48.37 0.30 47.46 0.29

LEIGS 1 65.59 0.54 67.14 0.56 72.00 0.62 73.91 0.64

LEIGS 1 & 2 65.92 0.54 70.25 0.59 73.78 0.64 74.97 0.65

LEIGS 2 51.28 0.35 54.69 0.39 59.11 0.44 60.52 0.46

LLE 1 64.26 0.52 72.28 0.62 75.59 0.66 72.70 0.62

LLE 1 & 2 79.55 0.71 84.13 0.77 81.65 0.74 75.93 0.66

LLE 2 49.53 0.30 56.29 0.37 61.51 0.42 58.27 0.35

LTSA 1 40.21 0.20 46.30 0.27 49.30 0.31 48.12 0.29

LTSA 1 & 2 61.35 0.48 62.40 0.50 62.88 0.50 57.09 0.42

LTSA 2 46.07 0.29 48.76 0.33 50.38 0.29 49.63 0.27

PAL 57.01 0.42 64.37 0.50 68.07 0.54 68.78 0.55

PCA 59.65 0.45 66.95 0.54 69.72 0.57 70.55 0.58

WA Wavelet 61.25 0.45 72.52 0.59 72.44 0.57 67.75 0.48

HV / HH 51.04 0.32 56.80 0.39 57.51 0.41 52.81 0.37

C1 = 1 C1 = 3 C1 = 5 C1 = 7

Bold Best result for given C1 Italic Best result for given method Bold Best result

4.1.1 Real image

Table 4.2 shows the accuracy assessment results for the real image (Figure B.1)

for all data fusion methods. The output of each method was input into MIRGS,

which was then run at four different settings of the C1 parameter, with C2 = 0.4.

Cells highlighted in yellow represent the best C1 value for a particular method,

while those in light green represent the best data fusion method for a particular C1

value. The best accuracies are obtained with multivariate feature sets (HH & HV,

LLE 1 & 2) at C1 = 3. All of these perform very similarly, but the best accuracy

obtained in the table was provided by HH & HV, VFG Gradient. The proposed

gradient combination rules did not improve accuracy for the real image. It appears

that MIRGS is not very sensitive to the gradient combination method and all four

gradient generation methods produce very similar results.

Many of the image fusion and feature space fusion techniques (ADWA Wavelet,

WA Wavelet, LEIGS 1, LLE 1) produce accuracy results better than the best

HH or HV channels alone. This is expected as they each attempt to fuse the

dual-polarization information into a single band. These fused images are unable to

provide the accuracy of the dual-polarization feature set HH & HV, indicating that
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Table 4.3: Accuracy statistics for tested data fusion techniques on the real image
(Figure B.1) at different values for the MIRGS merging parameter C2. C1 for each
method was fixed at the best value for the method as indicated by Table 4.2.

Method Overall (%) κ Overall (%) κ Overall (%) κ Overall (%) κ

ADWA Wavelet 75.67 0.63 75.24 0.62 75.04 0.62 75.46 0.63

HH 70.69 0.54 72.14 0.57 67.33 0.53 67.36 0.53

HH & HV, ADWA 83.81 0.77 83.92 0.77 84.06 0.77 84.15 0.77

HH & HV, VFG 84.21 0.77 84.70 0.78 84.71 0.78 84.79 0.78

HH & HV, MAX 84.07 0.77 84.19 0.77 84.11 0.77 84.28 0.77

HH & HV, CG 83.89 0.77 83.92 0.77 84.15 0.77 84.22 0.77

HV 46.46 0.28 48.37 0.30 47.84 0.30 47.75 0.29

LEIGS 1 73.87 0.64 73.91 0.64 74.02 0.64 73.49 0.63

LEIGS 1 & 2 75.24 0.65 74.97 0.65 75.48 0.66 75.30 0.65

LEIGS 2 57.86 0.43 60.52 0.46 60.50 0.46 59.93 0.45

LLE 1 75.35 0.65 75.59 0.66 75.13 0.65 75.62 0.66

LLE 1 & 2 84.10 0.77 84.13 0.77 84.00 0.77 84.12 0.77

LLE 2 60.31 0.39 61.51 0.42 60.38 0.41 60.11 0.41

LTSA 1 49.07 0.30 49.30 0.31 49.01 0.30 48.42 0.30

LTSA 1 & 2 58.82 0.45 62.88 0.50 62.18 0.49 62.22 0.49

LTSA 2 49.78 0.27 50.38 0.29 50.04 0.29 49.57 0.28

PAL 67.02 0.52 68.78 0.55 69.12 0.55 68.11 0.54

PCA 68.93 0.55 70.55 0.58 69.97 0.58 70.44 0.58

WA Wavelet 73.12 0.59 72.52 0.59 72.38 0.59 71.68 0.58

HV / HH 52.81 0.37 57.51 0.41 59.18 0.43 57.95 0.41

C2 = 0.1 C2 = 1C2 = 0.7C2 = 0.4

Bold Best result for given C2 Italic Best result for given method Bold Best result

some information has been lost. The best results obtained with LTSA 1, PAL and

PCA were unable to improve upon the best HH only results. The second channel of

all NLDR techniques perform poorly, which is expected since they carry the least

information.

Figure 4.1 shows the effect of increasing C1 on the segmentation result. As C1 gets

larger, more and more merging occurs due to β being larger and the segmentation

result becomes less noisy and smoother. The increased merging causes the number

of regions remaining in the MIRGS RAG to decrease as C1 increases. With larger

C1, the spatial context model is weighted more by a larger β and there is less

reliance on the feature model. This explains why univariate feature sets such as

HH in Table 4.2 have increasing performance at larger C1: the feature space model

has poor separability for the univariate feature sets, so increased reliance on spatial

context is necessary to obtain accurate performance. At the same time, the spatial

context is insufficient and so the univariate feature sets do not provide as much

accuracy as the multivariate feature sets.

Table 4.3 shows segmentation accuracy statistics for the real image for each of

the data fusion methods at four different values of C2. The C1 for each method was
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Figure 4.1: Segmentation results obtained for the real image (Figure B.1) using HH
& HV with VFG gradient (the best feature set according to Table 4.2) at different
values of C1. The effect of larger C1 is to increase the amount of merging. C2 was
fixed at 0.4.
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Figure 4.2: Segmentation results obtained for the real image using HH & HV with
VFG gradient (the best feature set according to Table 4.3) at different values of C2.
The effect of larger C2 is to decrease the amount of merging. C1 was fixed at 3.

fixed at the best value obtained in Table 4.2. The effect of changing the value of

C2 within this range is much smaller than the effect of C1. C2 values beyond this

range did not improve performance. None of the data fusion methods change in

their relative performance; HH & HV with VFG gradient is still the best performing

feature set. However, C2 = 1 has improved accuracy over C2 = 0.4. Figure 4.2 shows

the effect of varying C2 on the segmentation result. Larger C2 leads to less merging

(as indicated by the increasing number of regions remaining in the RAG) but this is

not apparent visually. The best result remains nearly identical to the result obtained

with default MIRGS parameters on HH & HV, VFG gradient, previously shown in

Figure 2.6(f).
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(b) Accuracy as a function of C2 for various fixed C1

Figure 4.3: Overall segmentation accuracy for the real image (Figure B.1) using HH
& HV with VFG gradient as functions of (a) C1 and (b) C2. Accuracy is highest
when C1 = 3 and C2 = 0.45. The accuracy curve is smooth when C1 is small because
the segmentation results are stable across different values of C2. When C1 is large,
the curve is less smooth because the large size of the remaining unmerged regions
causes perturbations in the stochastic segmentation to have a large effect.
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Figure 4.3(a) shows the overall accuracy of the real image HH & HV, VFG

gradient segmentation as a function of C1, from [1, 7] in increments of 0.5. The four

curves correspond to four different values of C2 for which the tests were performed.

The blue curve indicates the C2 that provided the highest accuracy. Accuracy

is at a maximum at C1 = 3, which agrees with Table 4.3. C1 values below and

above 3 have lower accuracy, corresponding to noisy and overmerged segmentations,

respectively. The accuracy curve is smooth for C1 < 4, which indicates that the

MIRGS algorithm is stable over different ranges of C1, with no irregularities in the

segmentation optimization process. For larger C1 values, the accuracy curve is less

stable. This is expected from the MIRGS algorithm, which assigns labels to entire

regions at a time: as the region size increases due to large C1, any error in the

label of a particular region has a larger effect on overall accuracy since each region

comprises a larger number of pixels. Because the algorithm is partly stochastic due

to Gibbs sampling [21], random label changes may also occur on a regional basis in

different runs of the algorithm.

Figure 4.3(b) shows the overall accuracy of the real image (HH & HV, VFG

gradient) segmentation as a function of C2, from [0.1, 1.2] in increments of 0.05.

As with Figure 4.3(a), the four curves correspond to four different values of C1 for

which the tests were performed and the blue curve indicates the C1 that provided

the highest accuracy. Here, C1 = 3 is the best parameter value for all values of C2.

Additionally, C2 can be set to any value from [0.1, 1.2] without affecting accuracy.

As before, higher C1 leads to accuracy curves that are less smooth due to large

region sizes. Increasing C2 can partially compensate for the increased merging

caused by large C1, which explains the rise in accuracy for the C1 = 7 curve.

The experiments with the real image show that the preferred and reasonable

method to use for the dual-polarization data is the HH & HV feature set with VFG

gradient with C1 = 3 and C2 = 1.

4.1.2 Synthetic image

Table 4.4 shows the accuracy assessment results for the synthetic image (Figure B.2)

for all data fusion methods at four different values of the C1 parameter, with

C2 = 0.4. Similar to the results for the real image shown in Table 4.2, all four of

the results obtained using the HH & HV data set have similar accuracy, with the

MAX gradient performing best amongst the four. The closeness of the accuracy
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Table 4.4: Accuracy statistics for tested data fusion techniques on the synthetic
image (Figure B.2) at different values for the MIRGS merging parameter C1. C2 for
each method was fixed at 0.4.

Method Overall (%) κ Overall (%) κ Overall (%) κ Overall (%) κ

ADWA Wavelet 50.94 0.32 56.92 0.39 57.12 0.38 54.21 0.34

HH 50.09 0.33 48.76 0.27 50.11 0.29 78.87 0.70

HH & HV, ADWA 91.38 0.88 98.08 0.97 97.07 0.96 95.86 0.94

HH & HV, VFG 92.01 0.89 98.25 0.98 97.15 0.96 96.25 0.95

HH & HV, MAX 90.95 0.88 98.28 0.98 97.24 0.96 96.31 0.95

HH & HV, CG 91.09 0.88 98.09 0.97 97.28 0.96 96.31 0.95

HV 54.97 0.41 79.99 0.72 83.14 0.76 81.79 0.74

LEIGS 1 67.26 0.56 77.39 0.70 95.87 0.94 95.27 0.93

LEIGS 1 & 2 74.18 0.65 80.67 0.74 95.78 0.94 77.20 0.68

LEIGS 2 65.45 0.55 67.99 0.55 81.75 0.74 82.96 0.76

LLE 1 77.27 0.69 90.62 0.87 97.32 0.96 96.66 0.95

LLE 1 & 2 91.22 0.88 98.21 0.98 97.60 0.97 96.42 0.95

LLE 2 62.94 0.50 89.55 0.86 94.12 0.92 93.08 0.90

LTSA 1 68.91 0.57 93.91 0.92 93.87 0.91 93.16 0.91

LTSA 1 & 2 92.13 0.89 98.40 0.98 97.23 0.96 96.15 0.95

LTSA 2 51.74 0.36 78.11 0.70 83.40 0.77 82.92 0.76

PAL 67.80 0.56 81.02 0.74 86.02 0.80 86.59 0.81

PCA 69.25 0.58 82.66 0.76 88.44 0.84 88.14 0.83

WA Wavelet 53.25 0.35 58.53 0.41 58.92 0.41 57.96 0.39

HV / HH 68.34 0.57 93.46 0.91 93.46 0.91 93.61 0.91

C1 = 1 C1 = 3 C1 = 5 C1 = 7

Bold Best result for given C1 Italic Best result for given method Bold Best result

values again shows that MIRGS is not sensitive to the gradient combination method.

Multivariate feature sets LLE 1 & 2 and LTSA 1 & 2 also have similarly high

accuracies, with LTSA 1 & 2 achieving the highest accuracy obtained from all the

methods. As with the Table 4.2, the best performance for multivariate feature sets

is achieved when C1 = 3.

The performance of the single-polarization channel HH is affected by the low

separability of the ice types at the mid-range incidence angles that the synthetic

image represents. In contrast to the results with the real image, the HV channel

provides better accuracy. Neither of the single-polarization channels approach the

best multivariate feature sets in terms of accuracy. The single channel images

created by using NLDR techniques for fusion (LEIGS 1, LLE 1, LTSA 1), PCA,

PAL and HV / HH all provide better accuracy than the HH or HV channels. The

NLDR techniques approach the multivariate level of accuracy. As with the real

image, PCA outperforms PAL. Less successful with this image are the wavelet

fusion methods, both of which have poor performance. ADWA wavelet fusion in

particular was designed to take advantage of the higher backscatter level of open

water compared to first year ice in the HH channel to increase image contrast. At
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Figure 4.4: Segmentation results obtained for the synthetic image (Figure B.2) using
LTSA 1 & 2 (the best feature set according to Table 4.4) at different values of C1.
The effect of larger C1 is to increase the amount of merging. C2 was fixed at 0.4.

mid-range incidence angles, the backscatter of open water is closer to first year ice

so the rule does not perform as well.

Figure 4.4 shows the LTSA 1 & 2 segmentation results for the synthetic image

at different values of C1. As before, increasing C1 causes increased merging. Once

C1 = 3, the noise in the segmentation is gone. Higher levels of C1 causes detail to

be lost.

Table 4.5 shows the accuracy assessment results for the synthetic image (Fig-

ure B.2) for all data fusion methods at four different values of the C2 parameter,

with C1 fixed at the best values obtained in Table 4.4. The table shows that C2 = 0.4

is the best value for most of the multivariate feature sets. Figure 4.5 shows the
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Table 4.5: Accuracy statistics for tested data fusion techniques on the synthetic
image (Figure B.2) at different values for the MIRGS merging parameter C2. C1 for
each method was fixed at the best value for the method as indicated by Table 4.4.

Method Overall (%) κ Overall (%) κ Overall (%) κ Overall (%) κ

ADWA Wavelet 53.75 0.33 57.12 0.38 58.87 0.41 58.18 0.40

HH 53.81 0.34 78.87 0.70 53.62 0.33 52.84 0.35

HH & HV, ADWA 98.12 0.97 98.08 0.97 98.08 0.97 97.96 0.97

HH & HV, VFG 98.15 0.97 98.25 0.98 98.05 0.97 97.85 0.97

HH & HV, MAX 98.24 0.98 98.28 0.98 98.08 0.97 97.61 0.97

HH & HV, CG 98.08 0.97 98.09 0.97 98.03 0.97 97.63 0.97

HV 82.76 0.76 83.14 0.76 83.18 0.77 83.35 0.77

LEIGS 1 95.64 0.94 95.87 0.94 93.56 0.91 85.36 0.80

LEIGS 1 & 2 96.17 0.95 95.78 0.94 95.14 0.93 94.12 0.92

LEIGS 2 95.44 0.94 82.96 0.76 82.87 0.75 82.42 0.75

LLE 1 97.21 0.96 97.32 0.96 97.17 0.96 96.57 0.95

LLE 1 & 2 98.29 0.98 98.21 0.98 98.13 0.97 97.97 0.97

LLE 2 93.89 0.92 94.12 0.92 94.12 0.92 93.00 0.90

LTSA 1 94.37 0.92 93.91 0.92 92.41 0.90 90.65 0.87

LTSA 1 & 2 98.38 0.98 98.40 0.98 98.35 0.98 98.21 0.98

LTSA 2 82.83 0.76 83.40 0.77 83.03 0.76 83.35 0.77

PAL 86.69 0.81 86.59 0.81 87.10 0.82 86.69 0.81

PCA 89.21 0.85 88.44 0.84 85.70 0.80 84.99 0.79

WA Wavelet 58.15 0.40 58.92 0.41 59.98 0.43 59.60 0.42

HV / HH 93.01 0.90 93.61 0.91 93.05 0.90 94.38 0.92

C2 = 0.1 C2 = 0.4 C2 = 0.7 C2 = 1

Bold Best result for given C2 Italic Best result for given method Bold Best result

effect of varying C2 on the segmentation result. Larger C2 leads to less merging (as

indicated by the increasing number of regions remaining in the RAG) but, as with

the real image case, this is not apparent visually.

Figure 4.6(a)-(b) show the accuracy of the synthetic image segmentation (using

LTSA 1 & 2 ) results as functions of C1 and C2. The accuracy is highest at C1 = 3,

with C2 not having a large effect unless C1 is larger. This is similar to the real image

case. Unlike the real image case, all the accuracy curves are smooth regardless of

the value of C1. The synthetic image is easier to segment than the real image due

to the clean outlines so regions are not as likely to be labeled incorrectly by the

stochastic optimization process. This means that even with larger regions, accuracy

does not fluctuate too much. Figure 4.6(b) shows that when C1 = 5 or C1 = 7,

increasing C2 makes the accuracy approach that of the C1 = 3 case. This is a case

of C2 being able to compensate for the extra merging caused by large C1.
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Figure 4.5: Segmentation results obtained for the synthetic image (Figure B.2) using
LTSA 1 & 2 (the best feature set according to Table 4.5) at different values of C2.
The effect of larger C2 is to decrease the amount of merging. C2 was fixed at 3.
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(a) Accuracy as a function of C1 for various fixed C2
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Figure 4.6: Overall segmentation accuracy for the synthetic image (Figure B.2)
using LTSA 1 & 2 as functions of (a) C1 and (b) C2. Accuracy is highest when
C1 = 3.5 and C2 = 0.7. The accuracy curve is smooth because the segmentation
results are stable across different values of C1 and C2. The effect of C2 is much
smaller than that of C1.
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4.1.3 Discussion

Considering the results from both the real image (Figure B.1) and the synthetic

image (Figure B.2), HH & HV with any of the gradient combination rules and LLE

1 & 2 consistently provide the best or near the best performance. The best accuracy

is achieved when C1 is close to 3 to 3.5. When C1 is set correctly, C2 can be set to

nearly any value within [0.1, 1] without affecting accuracy. The multivariate output

from the NLDR transforms do not alter the feature space separability as compared

to HH & HV for either image.

The most consistently performing NLDR method is LLE. LLE 1 consistently

achieves the highest univariate accuracy for both synthetic and real images and

LLE 1 & 2 performs very closely to HH & HV. LTSA only performs well for the

synthetic image and LEIGS does not perform particularly well for either image. The

difference in LTSA’s performance between the two images appears to be related to

the image resampling process that determines the training feature vectors. This

is made clear in Figure 4.7. The figure shows LTSA 1 for the whole image under

different sets of training feature vectors obtained from different image resampling

schemes. In the top row, a pseudorandom resampling scheme was used where pixels

were selected to be used as training feature vectors from a regular grid. The grid

was offset by a random amount for each example shown in the top row so that the

training vectors were different each time. It is clear that the fused image result from

LTSA is different for every set of training vectors. The bottom row shows similar

results, except the training vectors were obtained by bicubic sampling the original

image to have the indicated number of pixels. Figure 4.8 and Figure 4.9 show the

same experiment for LEIGS and LLE, respectively. The results for LEIGS and LLE

are much more consistent over different sets of training vectors, with the bicubic

sampling scheme showing greatest consistency. These results show that LTSA is

not robust to different sets of training vectors. Based on the above considerations,

the LLE method appears to be the best NLDR technique for the purposes of fusing

R2 data.

The wavelet techniques, PAL, PCA and HV / HH do not perform particularly

well for either real or synthetic images and should not be considered as an image

fusion method for input into MIRGS.
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Pseudorandom, 4000 points Pseudorandom, 4000 points Pseudorandom, 4000 points

Bicubic, 2000 points Bicubic, 3000 points Bicubic, 4000 points

Figure 4.7: LTSA is not robust to picking different subsets of samples for use during
the training phase since each sample subset produces a different fused image result.

Pseudorandom, 4000 points Pseudorandom, 4000 points Pseudorandom, 4000 points

Bicubic, 2000 points Bicubic, 3000 points Bicubic, 4000 points

Figure 4.8: LEIGS produces images that are similar to each other under different
training sample selection techniques.
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Pseudorandom, 4000 points Pseudorandom, 4000 points Pseudorandom, 4000 points

Bicubic, 2000 points Bicubic, 3000 points Bicubic, 4000 points

Figure 4.9: LLE produces images that are similar to each other under different
training sample selection techniques.

4.2 Hierarchical segmentation

The hierarchical segmentation results are presented in this section. All experiments

follow the same procedure. First, the SITH is defined, either manually or with

Auto-SITH. The HV channel is then segmented using MIRGS into the number

of classes specified by the hierarchy, with C1 = 5 and C2 = 0.4 (set at the best

values obtained previously). Each segment from the HV channel is then segmented

using the HH channel using the number of classes specified by the hierarchy, with

C1 = 3 and C2 = 0.4. C1 is set to 3 in order to retain the best level of detail in the

segmentation. This is different from the results obtained previously in Tables 4.2

and Tables 4.4 where C1 = 7 gave the best results for HH because the feature space

separability. For hierarchical segmentation, such a high C1 is not necessary because

the HV channel has already been used to segment out classes that are difficult

to distinguish in HH. Whenever excess classes must be merged, calculation of the

Fisher criterion was tested for three cases: with the HH only (HH merge), HV only

(HV merge) or HH & HV (HH & HV merge) feature sets.

In addition to performing the experiments on the full scene image, the exper-

iments were also performed on both the real and synthetic images to determine
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Table 4.6: Accuracy statistics for tested sea ice type hierarchies.

(a) Real Image (Figure B.1)

Hierarchy Overall (%) κ

User-Defined SITH 82.6 0.75

SITH 2-3, HH Merge 69.77 0.59

SITH 2-3, HV Merge 70.64 0.59

SITH 2-3, HH & HV Merge 78.69 0.70

SITH 3-2, HH Merge 69.08 0.57

SITH 3-2, HV Merge 57.61 0.40

SITH 3-2, HH & HV Merge 71.05 0.60

Auto-SITH Same as SITH 3-2

(b) Synthetic Image (Figure B.2)

Hierarchy Overall (%) κ

User-Defined SITH 97.08 0.96

SITH 2-3, HH Merge 76.02 0.67

SITH 2-3, HV Merge 76.02 0.67

SITH 2-3, HH & HV Merge 76.02 0.67

SITH 3-2, HH Merge 66.67 54

SITH 3-2, HV Merge 97.67 0.97

SITH 3-2, HH & HV Merge 97.67 0.97

Auto-SITH Same as SITH 3-2

Bold Best result

whether hierarchical segmentation is a technique to make use of dual-polarization

data even for images without the incidence angle effect.

4.2.1 Real and synthetic images

The user defined SITHs for the real image (Figure B.1) and the synthetic image

(Figure B.2) are shown in Figure 4.10. These are generated by visually inspecting the

images and determining a reasonable number of classes for each channel. A number

of different hierarchies were defined and tested. Only the hierarchies with the best

results in these initial tests are presented here as the user defined hierarchies.

Table 4.6 shows accuracy statistics for the user defined SITH and the generic

SITH 2-3 and SITH 3-2 hierarchies. For the generic SITHs, the accuracy for the

three cases of excess class merging (HH merge, HV merge and HH & HV merge)

are shown. In the case of both images, Auto-SITH generated a hierarchy identical

to SITH 3-2, so the SITH 3-2 results apply. The best results are obtained with the

user defined SITHs, although for the synthetic image, SITH 3-2 generated a slightly

better result. This indicates that Class 3 or Class 4 in Figure 4.10(b) contains

small areas of either Class 1 or Class 2 which are properly segmented by SITH

3-2 and then merged with Class 1 or Class 2 in the post-processing. It should be

noted that neither Auto-SITH or the generic SITH works consistently for both

images. The DB index used by Auto-SITH likely generated an incorrect number

of clusters for the HV image: the DB index indicated three clusters while the HV

image can only distinguish two clusters. This is supported by visually inspecting the

image and by observing that the user-defined hierarchy obtained the best results.

However, the DB index is correct for the synthetic image. The best feature set to

use for post-process merging was also not consistent between the two images or even
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(a) Real image

(b) Synthetic image

Figure 4.10: User defined segmentation hierarchies for the real (Figure B.1) and
synthetic (Figure B.2) images.
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(a) HH & HV, VFG (b) User-defined SITH (c) Ground-truth

Figure 4.11: Comparison between the best regular segmentation results and the
best SITH results for the real image (Figure B.1).

between the two generic SITHs that were tried for each image.

The best accuracies obtained using the SITH methods are slightly lower than the

best accuracies obtained from the best segmentations obtained in the Section 4.1.

Figures 4.11 and 4.12 show the best regular segmentations compared to the best

hierarchical segmentations for the real and synthetic images, respectively. The SITH

results for the real image are slightly noisier than the HH & HV segmentation. The

SITH results for the synthetic image have lost some detail compared to the LTSA 1

& 2 segmentation. These experiments have shown that hierarchical segmentation

is slightly worse than regular segmentation when the incidence angle effect is not

present.

4.2.2 Full scene image

Figure 4.13 shows the user-defined and Auto-SITH hierarchies for the full scene

image (Figure B.3). Both of these hierarchies contain an extra class that needs to

be merged during post-processing. Class 1 and Class 2 in the user-defined hierarchy

both correspond to open water. Parts of the open water are grouped with Class 3

(gray ice) and Class 4 (first year ice) during the initial HV segmentation, so that

the entire segment must be separated into three classes to recover the open water.

The segments that correspond to Class 1 and Class 2 must then be merged. This is

an example where merging based on a criterion that includes spatial context may

not work: Class 1 and Class 2 do not actually touch and yet they are the classes
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(a) LTSA 1 & 2 (b) SITH 3-2, HH & HV
merge

(c) Ground-truth

Figure 4.12: Comparison between the best regular segmentation results and the
best SITH results for the synthetic image (Figure B.2).

that should be merged together.

Figure 4.14 shows the segmentation results for the user-defined SITH and the

generic SITHs, with merging based on the three different feature sets. Only the

user-defined and SITH 2-3 hierarchies produce the expected segmentation. The

user-defined SITH can be merged using both HH & HV and HV only, while the

SITH 2-3 only works with HV merging. In general, any merging that involves the

HH band does not give the proper segmentation result if the open water portion from

the initial HV segmentation was segmented into more than one class, as in SITH 2-3.

This is because the open water in the HH band varies dramatically in appearance

as a result of incidence angle. In fact, the only reason that the user-defined SITH

produces an acceptable segmentation when merged using HH & HV is because the

main open water portion was not segmented further. SITH 3-2 with HV merging

does not have any of the incidence angle related segmentation problems, but much

of the gray ice is confused with open water. First year ice can almost always be

separated from open water when using hierarchical segmentation.

Figure 4.15 shows the Auto-SITH segmentation results. Like the previous cases,

any merging performed using a feature set that involves the HH band produces a

poor result. Merging with HV eliminates the incidence angle-induced segment but

much of the open water embedded in the first year and gray ice regions is confused

with gray ice. This is because there were only two classes in each segment produced

by the initial HV segmentation. In this case, the DB index correctly indicated that
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(a) User defined hierarchy

(b) Auto-SITH hierarchy

Figure 4.13: (a) The user-defined SITH for the full scene image (Figure B.3) contains
an extra class because the initial HV segmentation does not fully separate open
water from ice (class 1 and class 2 are both open water). The user-defined SITH
therefore requires post-process merging. (a) The Auto-SITH hierarchy also contains
an extra class that must be merged.
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(a) User-defined SITH, HH merge (b) User-defined SITH, HV merge

(c) User-defined SITH, HH & HV merge (d) SITH 2-3, HH merge

(e) SITH 2-3, HV merge (f) SITH 2-3, HH & HV merge

(g) SITH 3-2, HH merge (h) SITH 3-2, HV merge

(i) SITH 3-2, HH & HV merge (j) Expected Segmentation (derived
from (b)

Figure 4.14: The incidence angle variation of open water can be handled by the
selection of an appropriate sea ice typing hierarchy followed by merging of extra
segments using the Fisher criterion in an appropriate feature set. In the full scene
image (Figure B.3), the user-defined hierarchy followed by merging using (b) HV
only or (c) HH & HV works well. SITH 2-3 with merging on (e) HV also works.
(j) The expected answer for comparison is derived from the user-defined hierarchy
result.
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(a) Auto-SITH, HH merge (b) Auto-SITH, HV merge

(c) Auto-SITH, HH & HV merge (d) Expected Segmentation

Figure 4.15: Only the HV merged Auto-SITH result comes close to the expected
segmentation for the full scene image (Figure B.3), but it has lost most of the small
areas of open water on the left hand side of the image.

the HV channel can be divided into two segments, but failed to correctly identify

the number of classes in each of those two segments.

4.2.3 Discussion

The preceding results indicate that hierarchical segmentation is not the ideal method

of dual-polarization segmentation when incidence angle effects are not present. The

use of regular segmentation is thus motivated for the current MAGIC use cases, where

limited range CIS polygons with no incidence-angle-based variations for interior

pixels are segmented by MIRGS to a pixel resolution level. For full scene automatic

segmentation, hierarchical segmentation appears to be a promising approach but only

when the hierarchies are manually defined. Furthermore, if the hierarchies involve

excess classes, which may be unavoidable in some cases, HV is the only feature

set that can be used for merging. Although not tested here because there were no

examples in the available R2 data sets, this merging scheme may be problematic if

some of the segments are ice types (such as gray ice, water and new ice) in which

the HV band has poor separability. In those cases, merging on HV may erroneously

merge different classes together. It should be possible for an ice expert to manually

define the merging in the same way the segmentation hierarchy was defined, either
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by using a user interface or by setting up a set of merging steps. This will increase

the workload required over a fully automated sea ice segmentation algorithm, but

will still be less laborious than manual segmentation.

Some of the merging problems may be solvable if the classification process

that was partially developed in [64] is used to label some of the segments. The

classification process could use shape, texture and tone information to help identify

the ice class of a particular segment, which will help the merging process.

Auto-SITH is not entirely reliable. The estimation method for the number of

clusters seems to give values that are not what is expected for the given image. The

DB index estimate of the number of classes is often in error by one class (e.g. it

indicates 2 when the number is 3 or vice versa). Since SITH segmentation requires

a precise number of classes to work properly, Auto-SITH with the DB index is not

a recommended method for automatically generating the segmentation hierarchies.
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Chapter 5

Conclusions

5.1 Summary

The use of dual-polarization RADARSAT-2 SAR sea ice imagery to improve sea

ice segmentation has been investigated in this thesis. An initial investigation of

using dual-polarization RADARSAT-2 in the MIRGS algorithm has shown that it

can substantially improve the segmentation accuracy, particularly with regards to

separating open water from ice at near range incidence angles. This has confirmed

that automated algorithms can benefit from the improvements provided by dual-

polarization data, just as other researchers have found that the dual-polarization

data have been useful for human interpretation.

The evaluation of RADARSAT-2 data with the standard MIRGS algorithm

revealed that some segmentation detail was still lost and that full scene segmentation

was still not possible due to the appearance of open water changing across the range

of incidence angles. To improve the accuracy of MIRGS, several data fusion schemes

for the dual-polarization data were investigated. These included classic feature space

fusion approaches such as principal components analysis (PCA), as well as non-linear

dimensionality reduction (NLDR) techniques and gradient combination techniques

that attempted to combine the edge information from the dual-polarization channels

in an intelligent manner. Image fusion by means of a dual-polarization channel

ratio (HV / HH) and wavelet methods were also investigated. MIRGS parameter

selection was also investigated to determine the best set of parameters to use for

dual-polarization data. A hierarchical segmentation scheme was also introduced

to take advantage of the HV channel’s insensitivity to incidence angle in order to
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reduce errors caused by incidence angle related changes in sea ice appearance.

Experiments were performed on three images: a limited incidence angle range

real RADARSAT-2 image with manual ground-truth (Figure B.1), a synthetic

limited incidence angle range RADARSAT-2 image (Figure B.2) and a full scene

RADARSAT-2 image with incidence angle effects (Figure B.3). According to

the experiments, the best data fusion method for dual-polarization data is the

standard MIRGS algorithm with no changes. Intelligent gradient combination rules

had very little effect on overall accuracy, while feature space and image fusion

approaches did not retain all the separability information when the two channels

were combined into one channel. The best fusion technique, a NLDR technique

called locally linear embedding (LLE), consistently produced the best single channel

image segmentation results from the dual-polarization data but was still unable to

match the segmentation performance of the dual-polarization feature set.

The best values for the two MIRGS parameters C1 and C2 were found to be

C1 ∈ [3, 3.5], with C2 having very little influence if the C1 value was set correctly.

The default MIRGS parameters are in this range and produced results that were

very close to the best results obtained. Use of the standard MIRGS algorithm is

recommended for dual-polarization imagery as it performs as well as or better than

any of the proposed methods, with greater than 80% segmentation accuracy on

both the real and synthetic images.

The hierarchical segmentation scheme was able to overcome the incidence angle

variation of the appearance of open water. It involves first segmenting the HV channel

to separate open water and ice, each of which is then segmented independently

using information from the HH channel. However, automatic generation of the

segmentation hierarchies was not successful because it requires prior estimation of the

number of clusters distinguishable in each channel. The estimation technique used

here, the Davies Bouldin (DB) index, was frequently in error by one class in terms

of its estimation of the number of classes, affecting the accuracy of the segmentation

results. It is therefore recommended that the hierarchies be constructed by trained

users until a solution to this is found. An additional problem with the hierarchical

segmentation scheme is that if the open water portion of the segmentation needs to

be further segmented using the HH band, the incidence angle effect can still confuse

the segmentation algorithm. Finally, the hierarchical segmentation technique should

not be used on images without the incidence angle effect because the best accuracy

obtained is lower than that of using the standard MIRGS algorithm with the correct
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parameters.

The answers posed in Section 2.9 can now be answered:

1. What methods can be used to increase the accuracy in the dual-polarization

segmentation results?

MIRGS does not benefit from intelligent gradient combination and data

fusion of the dual-polarization data. The standard MIRGS algorithm consis-

tently produces the highest segmentation accuracy. The default parameters

are already near the optimal values as determined by the experiments.

2. Can the incidence angle effect that causes confusion between open water and

ice be eliminated by using dual-polarization data?

The hierarchical segmentation scheme is able to eliminate the confusion be-

tween open water and ice, but only when the hierarchies are user-defined.

There remains some question as to whether the hierarchical segmentation

works for all scenes, specifically those where ice types that are hard to separate

in the HV channel are all present.

5.2 Future Work

Several lines of future work can be identified. First, the tests should be performed

with additional CIS validated data to strengthen the conclusions. This would require

creation of additional ground-truth images and / or synthetic images from additional

operational RADARSAT-2 data sets with the help of expert sea ice analysts. Much

of the future work should be focused on solving the issues with the incidence angle

effect, as this is one of the obstacles to fully automatic, full scene segmentation.

Because none of the data fusion methods improved on the performance of the

standard MIRGS algorithm, the next step would be to improve the model used by

MIRGS, perhaps to take into account the incidence angle as part of the segmentation

process. Another possibility is to incorporate an incidence angle aware classification

step after MIRGS is used in order to deal with the segmentation errors caused by

the incidence angle.

Finally, the hierarchical segmentation process could be improved. Better ways

to automatically generate the hierarchies, such as investigating other methods for
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determining the number of clusters than can be distinguished, would reduce the

user input requirements of the method. The DB index could be modified so that

the index is aware of the spatial context model. Such an index can be used to

evaluate a MIRGS segmentation result as opposed to the K-means segmentation

result. While the K-means segmentation result is similar to the MIRGS result, it is

sufficiently different that the number of clusters estimation may also be different.

Other areas for investigation include whether the post-process merging criterion can

be improved and whether some other feature set could be added to the hierarchy

to resolve remaining ambiguities. For example, incorporation of passive microwave

image data or texture features derived from the dual-polarization imagery might be

considered.
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Appendix A

Conversion and Calibration of

RADARSAT Data

The procedure for converting and calibrating RADARSAT-2 data to a format

readable by the MAGIC / IRGS system is described in the following sections. The

corresponding process for RADARSAT-1 data, as implemented in the existing source

code, is also documented here.

A.1 RADARSAT-2 data

The R2 products are described in the RADARSAT-2 Product Format Definition

document [32]. R2 data products consist of several extensible markup language

(XML) files containing product metadata and a set of GeoTIFF image files containing

the image raster data with one GeoTIFF file for each polarization. The metadata

contains ground control points (for georeferencing), satellite orbit and calibration

information while the GeoTIFF files contain digital numbers (DNs) that can be

converted to backscatter σ◦ by an appropriate function.

The calibrateR2 program was developed to convert and calibrate R2 files into

a format readable by MAGIC (a choice of BMP or BIL format). The program also

rasterizes an appropriate land mask from a vector land database [33] based on the

ground control points (GCPs) for the image. The following are the steps of the

calibration procedure when calibrateR2 is executed:

1. Parse the XML files included with the R2 data and extract the ground control

points (GCPs) and calibration constants. The calibration constants consist of
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an offset B and a list of gains A(j) for each sample j in the range direction of

the image.

2. Save an ASCII text file with the GCP information.

3. Based on the ground control points, generate the rasterized land mask and

save it as a BMP file.

4. Convert the DNs in the GeoTIFF file to DNs representing σ◦ in decibels (dB).

5. Save the calibrated data as either an 8 bits per pixel (bpp) BMP or an 8 or

16 bpp BIL file.

Experiments in this thesis used the 8 bpp workflow to conserve memory due to

the large size of some of the images. The DNs in the GeoTIFF files are converted

to σ◦ by one of two functions [32]. For DNs that represent real numbers (which is

the case with the dual-polarization ScanSAR Wide data used in this thesis), the

function used to convert the DN(i, j) at line i and range sample j is:

σ◦(i, j) = 10 log10

(
DN(i, j)2 +B

A(j)

)
[dB] (A.1)

where A(j) is the gain at range sample j and B is a constant offset. For DNs that

represent complex numbers, the function used is:

σ◦(i, j) = 10 log10

(
|DN(i, j)|2

A(j)2

)
[dB] (A.2)

The σ◦ in dB is then clamped to a range of [−35,−5] dB and then linearly

scaled to DNs with a range of [0, 255] or [0, 65535] (for 8 bpp and 16 bpp output,

respectively). The clamp range is user configurable; the values chosen here provide

reasonable visual contrast and little clipping of the image histogram. Both HH and

HV are clamped to the same range to ensure that the output DNs are the same

units.
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A.2 RADARSAT-1 data

R-1 data are received from the CIS in a special format that consists of AVG files.

There is no documentation for this file format. The calibrateR1 program is able

to read these files and convert them into BIL files for MAGIC to read. The process

is very similar to that used for calibrating R2 data, except the output is always

8 bpp and there is no automatic land mask generation. The following steps are

derived from a code audit of the calibrateR1 program:

1. Parse the SAR trailer file (with extension .SART.AVG) file included with the

R-1 data and extract the orbit information and a look up table of calibration

constants. The calibration constants consist of an offset B and a list of gains

A(jLUT ) for some regularly spaced samples jLUT in the range direction of the

image.

2. Read the SAR data file (with extension .SARD.AVG) and extract ground

control points. Save these to an ASCII GCP file.

3. Calculate incidence angle I(j) at each range pixel and interpolate the gain

look up table A(jLUT ) in order to get the gains A(j) at each range pixel j.

4. Convert the DNs in the SAR data file to DNs representing σ◦ in dB.

5. Save the calibrated data as an 8 bpp BIL file.

Rather than Equation A.1, R-1 DNs are calibrated by the following expres-

sion [53]:

σ◦(i, j) = 10 log10

(
DN(i, j)2 +B

A(j)

)
+ 10 log10 (sin I(j)) [dB] (A.3)

The incidence angle I(j) is calculated from the orbit information contained in the

SAR trailer file. The calculation of the incidence angle is described in [53]. Once

the σ◦ in dB is calculated, it is clamped to a range of [−25, 0] dB and then linearly

scaled to DNs with a range of [0, 255].
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Appendix B

Test Images

This chapter provides some details about the test images used in the thesis.

B.1 Real image

The real image is a subimage extracted from the February 25, 2009 Gulf of St.

Lawrence scene. The image dimensions are 512× 512 pixels. Since the image was

extracted from the near range of the scene, it represents the appearance of ice for

incidence angles of less than 10◦. A manual ground-truth image was created based

on information from the CIS ice chart, which indicated four types of ice. Manual

segmentation was performed by grouping the pixels based on their appearance in

an RGB composite (R=HV, G=HV, B=HH). The image and the manually created

ground-truth is shown in Figure B.1.

B.2 Synthetic image

A synthetic image was created in order to test the effectiveness of each of the

techniques considered in the thesis. Although a real R2 image was manually

segmented to create a ground-truth segmentation for testing, the segmentation may

not be fully accurate. The synthetic image solves this problem by providing an

unambiguous ground-truth.

The synthetic image was created by first creating a template image corresponding

to the desired ground-truth with size 1024 by 1024 pixels. Various shapes such as
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(a) HH (b) HV

(c) Ground-truth

Figure B.1: Real image and its associated ground-truth.
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circles and small lines were drawn manually in a vector drawing program to create

both large and small details. A class number from 1 to 4 was assigned to each shape.

Each ice class in the ground-truth image was then filled with a texture derived

from real dual-polarization imagery. The main requirement for the texture was for it

to be sourced from only a single ice class. To do this, CIS ice charts were consulted

to find ice polygons which were dominated by one ice class. The ice classification

of these polygons can therefore be considered unambiguous. A dual-polarization

subscene was extracted from 4 polygons corresponding to open water, smooth gray

ice, gray ice and first year ice. Due to the highly inhomogeneous nature of sea ice,

areas with only a single ice class are very rare and tend to be small. Thus, only

very small subscenes could be extracted for each ice class.

The IceSynth II [61] image synthesis system was used to extend the size of the

subscenes to 1024 x 1024 pixels. The final synthetic image was then composed by

filling all pixels marked with a certain class by the corresponding dual-polarization

texture image.

The subscenes used for texture generation were all extracted from the mid-range

incidence angles (30◦ to 35◦). In this particular incidence angle range, all of the

classes except smooth ice look very similar in the HH band, which explains the low

contrast nature of the HH channel.

The synthetic image and the template used to create it are shown in Figure B.2.

B.3 Full scene image

The full scene image was extracted from the March 4, 2009 Gulf of St. Lawrence

scene. It covers the entire incidence angle range of ScanSAR wide. The original

scene dimensions are 10000 × 4000 pixels but this was 4 × 4 block averaged to

2500× 1000 pixels. The CIS performs 2× 2 block averaging of all R1 scenes before

processing [19]. The additional block averaging performed here is due to memory

limitations as the RAG used by MIRGS requires more than the test system’s 2 GB

of memory for large images.

The full scene image is shown in Figure B.3. The expected segmentation was

derived from a user defined SITH result that appeared reasonable. Since it is not a

true ground-truth, quantitative accuracy statistics cannot be calculated from it.
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(a) Synthesized HH (b) Synthesized HV

(c) Template / ground-truth

Figure B.2: Each class in the template / ground-truth image is filled with a
synthesized sea ice texture in order to create the HH and HV images.
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(a) HH image

(b) HV image

(c) Expected segmentation

Figure B.3: Full scene image and its expected segmentation.
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