OSTRICH: An Optimization Software Tool;
Documentation and User’s Guide

L. Shawn Matott
State University of New York at Buffalo
Department of Civil, Structural and Environmental Engineering

Version 1.6



Contents

1 Introduction

1.1 Motivation . . . . .. ... ...
1.2 Calibration vs. Optimization . . ... ... ... .......
1.3 Summary of Features . . . . . . .. ... ... L.
1.3.1 Algorithms . . ... ... ... ... ... ... ..
1.3.2 Regression Statistics . . . . .. .. ... ... ...
1.3.3 Supported Platforms . . . . . ... ... ... ... ..

Calibration and Optimization Algorithms

2.1 Levenberg-Marquardt Regression . . . . . ... .. ... ...

2.2 Regression Statistics . . . . . .. ... 0oL
2.2.1 Observation Residuals . . . . . ... ... ... ....
2.2.2  Error Variance and Standard Error of the Regression .
2.2.3 Parameter Variance-Covariance . . . . . . . .. .. ..
2.2.4 Confidence Intervals . . . . . ... ... ... .....
2.2.5 Normality of Residuals . . . . . . ... ... ... ...
2.2.6 Influential Observations . . . .. .. ... ... ....
2.2.7 Parameter Sensitivities. . . . . . . ... ... L.
2.2.8 Model Linearity . . . ... ... ... ... .. ....

2.3 Unconstrained Numerical Optimization . . .. .. ... ...
2.3.1 Zero-Order Methods . . . . . ... ... ... .....
2.3.2 First-Order Methods . . . . . .. ... ... ......
2.3.3  One-Dimensional Search Procedures . . . . ... ...

2.4 Heuristic Optimization . . . . . . ... ... ... ... ....
2.4.1 Genetic Algorithm . . . . .. ... ... 0.
2.4.2 Simulated Annealing . . . . . ... ... ... ... ..
2.4.3 Particle Swarm Optimization . . . . .. ... ... ..
2.4.4 Exhaustive Search (GRID) . .. ... ... ......



3 Pump-and-Treat Optimization (PATO) 37

3.1 Imtroduction to PATO . . . . ... ... ... ... ...... 37
3.2 PATO Constraints . . . . . ... ... ... ... ....... 38
3.3 Cost Formulations . . . ... ... ... ... ... ... 39
3.3.1 Total Pumping Rate . . . . ... ... ... .. .... 39
3.3.2 Operational Costs . . . . ... ... ... ....... 39
3.3.3 Operational and Capital Costs . . . . ... ... ... 42
3.34 Mayer Costs . . . .. ... ... ... 43
3.3.5 Time Value of Money . . ... ... ... ....... 43

3.4 Penalty Functions . . . .. ... ... ... ... ... .... 43
3.4.1 Capacity Constraint Penalty Function . . . ... . .. 44
3.4.2 Drawdown Constraint Penalty Function . . . . . . .. 44
3.4.3 Plume Capture Constraint Penalty Function . . . . . 45
3.4.4 General Constraint Penalty Function . . . . . . . . .. 46

3.5 Objective Function . . . . . . .. .. ... oo 47
4 Creating an OSTRICH Input File 49
4.1 Input File Organization . . . . ... ... ... .. .. .... 49
4.2 Basic Configuration . . ... ... ... ... ... 52
4.3 FilePairs . . . . . . .. 54
4.4 Observations . . . . . . . .. ..o 55
4.4.1 Assigning Observation Weights . . . . . .. ... ... 56

4.5 Parameters . . . . . . . . . ... 59
4.6 Integer Parameters . . . . . . .. .. .. ... L. 60
4.7 Combinatorial Parameters . . . . . . . .. ... ... ... .. 61
4.8 Tied Parameters . . . . . .. .. ... ... ... 62
49 ExtraFiles . . . .. . ... . o 64
4.10 Algorithms . . . . . . . ... 65
4.10.1 Levenberg-Marquardt . . . ... .. ... ... ... .. 65
4.10.2 Powell’s Method . . . . . ... ... ... ... .... 66
4.10.3 Steepest-Descent . . . . . . .. ... ... 66
4.10.4 Fletcher-Reeves . . . . . . . .. . ... ... .. .... 67
4.10.5 Genetic Algorithm . . . . ... ... ... ... ..., 67
4.10.6 Simulated Annealing . . . . . .. ... ... ... ... 68
4.10.7 Particle Swarm Optimization . . . . .. .. ... ... 69
4.10.8 GRID Algorithm . . . .. ... ... ... ... .... 70

4.11 Math and Statistics . . . . . . ... ... oo, 71
4.12 One-Dimensional Search . . . . . ... ... ... ....... 73
4.13 Comment Lines . . . . . . .. .. .. oo 73
4.14 Case Sensitivity . . . . . . ... Lo oo 73

ii



5 Using OSTRICH for Pump-and-Treat Optimization 74

5.1 Response Variables . . . . .. ... ... ... ... ..., 7
5.2 Pump-and-Treat . . . ... ... ... ... ... ... ..., 78
5.3 Constraints . . . . . . ... L 81
5.4 Candidate Wells . . . . .. ... ... ... ... ....... 83
5.5 Plume Geometry . . . . . .. ... ... .. 85

6 Using OSTRICH for General Constrained Optimization 87
6.1 Response Variables . . . . . ... ... ... .. ........ 90
6.2 Tied Response Variables . . . . . . ... ... ... ...... 90
6.3 GCOP . . . .. . 91
6.4 Constraints . . . . . . . . . . ... e 91

7 Using OSTRICH for General Optimization 93
8 Running OSTRICH 95
8.1 Serial Execution . . .. ... ... ... oo 96
8.2 Parallel Execution . . ... ... ... ... ... ...... 96
8.2.1 Running OSTRICH in Parallel . . . .. .. ... ... 96

8.2.2 Running Model in Parallel . . . . .. ... ... .. .. 97

9 Evaluating OSTRICH Output Files 98
9.1 Main Output File . . . . . . . .. ... ... .. ... ..... 98
9.2 Statistical Output . . . . . . .. ... Lo 100
9.2.1 Observation Residuals . . . . . ... ... ... .... 100

9.2.2 Error Variance and Standard Error of the Regression . 100

9.2.3 Parameter Variance-Covariance . . . . . . . .. .. .. 100

9.2.4 Confidence Intervals . . . . . ... ... ... ..... 101

9.2.5 Model Linearity . .. ... ... ... ... ...... 102

9.2.6 Normality of Residuals . . . . . .. ... ... ... ... 102

9.2.7 Influential Observations . . . .. ... ... ... ... 102

9.2.8 Parameter Sensitivities . . . . . . . . .. ... ... .. 103

9.2.9 Matrices . . . . . ... 103

9.3 OSTRICH Error Messages . . . . . . . . .. ... ... .... 103
9.4 Redirected Model Output . . . . ... ... ... ... .... 106
9.5 Model Run Record . . . .. ... ... ... ... ....... 106

10 Example Exercises 107
10.1 3-Parameter Groundwater Model Calibration . . . . .. . .. 107
10.2 6-Parameter Diffusion Model Calibration. . . . . .. ... .. 109

iii



10.3 6-Parameter Pump-and-Treat Optimization . . . . . .. ...
10.4 Parallel Processing Example . . . . . . .. .. ... ... ...

iv



Preface

This document describes the software package known as OSTRICH, a model-
independent optimization and calibration tool. The OSTRICH package in-
cludes a diverse set of algorithms that can be used either for weighted least-
squares calibration of model parameters, for optimization of pump-and-treat
and other well-field design problems, or for optimizing a set of model pa-
rameters according to a user-defined objective function. Parameters to be
calibrated or optimized can be log-transformed using either logiy or log.
logarithms.

For calibration problems, OSTRICH is also capable of computing an ex-
tensive set of statistics, include confidence intervals, parameter correlation,
tests of normality and non-linearity, and observation influence and parame-
ter sensitivity measures.

As mentioned, OSTRICH is model-independent, and can be configured
to operate with any modeling program that utilizes text-based input and
output file formats. Executable versions of OSTRICH are available for both
Windows and Linux-based computing environments. A parallel version of
OSTRICH, utilizing industry standard MPI interface, is also available. Ad-
ditionally, OSTRICH can be configured to execute a parallel version of the
underlying model executable.

To facilitate integration of OSTRICH into graphical model development
tools (e.g. Visual ModFlow, Visual BlueBird), a set of Visual Basic modules
is available. These modules encapsulate the OSTRICH input/output file
format into a series of Get()/Set() routines, freeing the GUI developer from
concerns over file syntax.



Revision Summaries

For those already familiar with OSTRICH, this chapter summarizes the
modifications that have been made since the original version 1.0 release. As
such, information regarding OSTRICH behavior in this chapter enhances
and/or supersedes the descriptions given in the main body of the manual.

Version 1.1

Version 1.1 contains the following modifications:

e Added the option to use a deterministic quad-tree assignment of initial
PSO and GA populations in lieu of random assignment. This option
is selected by including the following line within the appropriate PSO
or GA configuration section:

InitPopulationMethod QuadTree

e The internal OSTRICH memory checker now reports the line number
and source file where a memory allocation failure occurs (if one is
detected).

e In the tournament selection routine, a GA elitism bug was fixed. A
memory access failure (i.e. NULL pointer exception) could occur if all
members of the population had the same fitness.

e A bug was fixed in the routine to calculate matrix determinants (1-
parameter arrays were not being handled properly, causing a memory
access failure).

Version 1.2

Version 1.2 contains the following modifications:
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e Added initial support for combinatorial parameters. The base classes
for such parameters are defined and can be initialized from the ostIn.txt
input file, but the actual optimization/calibration code does not yet
utilize these parameters.

e The move limit criterion in the Levenberg-Marquardt algorithm was
modified so that moves which take the design outside of the parameter
limits are adjusted to move half the distance from the current value
to the upper or lower limit, whichever is applicable.

e The parallel model execution code no longer tries to dynamically assess
available resources. Instead, number of CPUs and wall-time will have
to be entered manually by the user in ostIn.txt or will revert to
some reasonable defaults. Parallel model execution is not yet fully
operational, but is getting closer!

e An experimental hybrid of PSO and Levenberg-Marquardt was added.
To use this option, include the following ProgramType line:

ProgramType PSO-LevMar

and configure the ParticleSwarm, LevMar, and MathAndStats sec-
tions as you would in previous versions.

e An option to have Ostrich compute the optimal finite-difference step
size was added. To use this option, include the following line in the
MathAndStats section:

DiffRelIncrement optimal

e Adjustments were made to make the string parsing of the ostIn.txt
input file more robust.

Version 1.4

Version 1.4 contains the following modifications:

e Added full support for combinatorial and integer parameters. Com-
binatorial parameters are parameters that take on a finite number of
discrete values (for example on/off parameters), while integer parame-
ters take on a range of integer values. For details see Sections 4.7 and
4.6.
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Added support for tied parameters, parameters that are computed as
a function of other parameters. For details see Section 4.8.

Added support for pump-and-treat optimization (PATO), including
response variables (the PATO equivalent of WSSE observations), con-
straints, and plume geometry. A full description of PATO is given in
Chapter 3 and instructions on it’s use are given in Chapter 5.

Added detection of insensitive observations and parameters, based on
all-zeroes within a row or column of the Jacobian matrix. Such a
condition makes the matrix singular and non-invertible, and therefore
causes the Levenberg-Marquardt algorithm to abort.

Added a check of template files to ensure that all parameters and tied
parameters appear in at least one template file.

Added collection and reporting of algorithm metrics.

Added user-friendly output for intermediate algorithm loops (lambda
trials, generation/swarm evaluation, annealing transitions, and one-
dimensional searches).

Several memory leak and memory fragmentation bugs were discovered
and addressed. A memory utilization macro was added to prevent and
diagnose future memory problems. As part of RAM fixes, the number
of error messages stored in the error log is now limited to 100.

Added support for user requested abortion of the program. If the user
creates a file named ” OstQuit.txt”, Ostrich will terminate at the end
of its current algorithm iteration.

Reworked the Golden Section search to be more deterministic (max
iterations is pre-calculated) and also added some logic to improve
Golden-Section performance when it is applied to a multi-modal ob-
jective.

Added explicit consideration of parameter side-constraints to Fletcher-
Reeves, Powell and Steepest-Descent algorithms. As with Levenberg-
Marquardt algorithm, moves which take the design outside of the pa-
rameter limits are adjusted to move half the distance from the current
value to the upper or lower limit, whichever is applicable.
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e Rewrote simulated annealing algorithm to follow the procedure out-
lined by Vanderbilt and Louie (1984). These changes have affected
some of the SA input parameters, see Section 77 for details.

e Added time and date of build to version output.

e Heuristic algorithms (i.e. GA, PSO, and SA) now have a convergence
criteria, which is based on the relative difference between median and
minimum objective functions following a given algorithm iteration.

e Modified observation input so that each observation may be assigned
a different parsing token. As a result, the ObsToken parameter used in
previous versions of OSTRICH is no longer used. See Section 4.4 for
the revised syntax of the Observation Group section of the OstIn.txt
input file.

Version 1.6

Version 1.6 contains the following modifications:

e Added support for geometry-constrained calibration, including con-
straints on vertices and insertion of vertices where element geometries
overlap. Geometry calibration code was created to support a poster
presented at the AGU Fall 2004 Meeting, and the use of the geometry-
constrained calibration module is not documented in this manual at
the present time. OSTRICH users who are interested in using the
module should contact: lsmatott@buffalo.edu

e Added support for generalized constrained optimization (GCOP), in-
cluding tied response variables. This allows the user considerably more
flexibility in incorporating OSTRICH into a general optimization prob-
lem, and in many cases will alleviate the need to write a user-supplied
driver program. See Chapter 6 for details on how to utilize the GCOP
option.

e For non-population based algorithms, added the option to have the de-
sign parameters be randomly initialized (this is already possible with
population-based algorithms, such as PSO and GA). To use this op-
tion, use the keyword random in the parameter section in lieu of an
actual value for the initial value field. The example below illustrates
the syntax, as applied to a set of integer parameters:
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#Model Parameters
BeginIntegerParams
#name initial lwr upr
CO1 random 1 19

CO02 random 1 18

CO03 random 1 18

EndIntegerParams

e Added option to seed some or all of the initial PSO swarm or GA pop-
ulation. This allows the user to incorporate prior information (such as
previous optimization results) into the optimization, and may enhance
the efficiency and/or effectiveness of the algorithm. To use this option,
insert an 'InitParams’ section, which uses the following syntax:

BeginInitParams

P11 P21 P31 - - - DPnl
P12 P22 P32 - - . Dn2
Pim P2om P3m - - -+ Pam
EndInitParams

where, n is the number of parameters, m is the number of seeds, and
pi,; is the j-th seeded value of the i-th parameter (ordered according
to the order of the parameters section(s)).

e Added algorithm metrics to Levenberg-Marquardt and Statistics mod-
ules. Information about these modules is now collected during program
execution and reported upon program completion.

e Added checks for the existence of model executable and model output
file(s). Also added more meaningful error messages.

e Added the GRID and BGA algorithms, along with two SA variants.
The GRID algorithm can be used to perform an exhaustive search



and/or to generate contours of the objective function surface. The
BGA is a binary coded genetic algorithm and the SA variants are a
basic SA for continuous parameters, and an SA for discrete parameters.
These SA variants are provided in addition to the Vanderbilt-Louie im-
plementation of the version 1.4 OSTRICH release. Information about
these new algorithms are available in the following sections:

— GRID: The GRID algorithm is described in Section 2.4.4, and
the input syntax is given in Section 4.10.8.

— BGA : The OSTRICH implementation of the BGA algorithm
is described in Section 2.4.1. The input syntax is described in
Section 4.10.5.

— SAs : The OSTRICH implementation of the SA variants is de-
scribed in Sections 2.4.2. The input syntax is described in Section
4.10.6.

The appropriate ProgramType setting for selecting these algorithms is
provided in Section 4.2.

Added real-time tracking of program status. This results in the gen-
eration of an OstStatus.txt file that is updated as the program pro-
gresses.

Added a cost formulation to PATO that corresponds to the cost func-
tion defined by Mayer et al. (2002). The mathematical equation for

this cost is given in Section 3.3, and the syntax is described in Section
5.2.

Added support for alternative scientific notation formats when reading
in text files. Previous versions would not accept numbers such as
1.0000D-4, due to the use of the 'D’ character (as opposed to the
usual ’E’ character); this has been corrected.

Added support for parameter-specific relative increments in the cal-
culation of Jacobian and derivatives. That is, rather than applying
the same relative increment to all parameters, users may specify such
values on a per-parameter basis. To use this option, follow the follow-
ing syntax for the DiffRelIncrement parameter when configuring the
MathAndStats section of the input file:

DiffRelIncrement pl p2 . . . pn
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where p1 through pn are the relative increments to use for each para-
meter, ordered as they appear in the Params section.

Added support for ON/OFF thresholds in PATO pumping rates. When
a pumping rate parameter is assigned a value below the ON/OFF
threshold, the well is automatically turned off by assigning a rate of
zero. The syntax for this option has been added to the PATO module
documentation (Section 5.2).

Added support for linearly reducing the PSO inertia weight to zero. To
select this option, include the following syntax in the ParticleSwarm
section:

InertiaReductionRate linear

xii



Chapter 1

Introduction

This chapter begins by discussing the motivation behind OSTRICH and
follows this up with a brief discussion of the differences between calibration
and optimization. The chapter concludes with a summary of the various
calibration/optimization features that OSTRICH provides.

1.1 Motivation

OSTRICH has been created as a model-independent program that allows
researchers and field-practitioners to automate the processes of model cali-
bration and design optimization. For example, consider a hydrologist who
desires to model groundwater flow as a first step in modeling contaminant
transport. The hydrologist may want to calibrate values of recharge and
hydraulic conductivity using head observations taken from wells throughout
the model area. Lacking calibration software (such as OSTRICH, UCODE,
or PEST), this calibration exercise could be performed manually using a
trial-and-error approach.

The trial-and-error approach starts with the hydrologist deciding on a
range of possible values for each parameter. This range can be based on
previous experience, literature review, or a combination of the two. Next,
the hydrologist selects a set of parameter values from the pre-determined
range and runs the model. When the model completes, the hydrologist
compares the head values predicted by the model with those collected in
the field. This process of selecting parameter values, running the model and
comparing results with head observations continues until the hydrologist is
satisfied that the set of parameter values that best fits the observed data
has been discovered.



A major short-coming of the trial-and-error approach is that the hy-
drologist ends up with a single set of parameters and little more than a
gut feeling that these parameters are the best-fit parameters. Conversely,
the algorithms used during the automated calibration process yield best-fit
parameter estimates along with a variety of statistics that characterize the
uncertainty associated with these best-fit estimates. This statistical charac-
terization of the calibration results can help the hydrologist identify ways in
which the model may be further improved. For example, influential obser-
vations may indicate areas in which additional sampling is desirable.

To understand the motivation for automated optimization, imagine that
the hydrologist has completed the groundwater model and has concluded
that a pump-and-treat system must be installed to address contaminant
transport concerns. Following this assessment, an environmental engineer
is tasked with designing the required system of treatment wells. In particu-
lar, the engineer must determine the required number of wells, the location
where each well should be installed, and the pumping rate of each well.
Furthermore, the system must be designed in such a way that it alleviates
contaminant transport concerns at the lowest possible cost without incurring
excessive draw-down in the aquifer.

The optimization problem described above could be solved via trial-
and-error, but the engineer will not be able to give any assurances that
the resulting system design is truly optimal. Furthermore, in the process
of finding a single feasible design (which may or may not be the optimal
design) the engineer tends to wind up mired in the tedium of configuring
and analyzing countless manual runs of the model. On the other hand,
the optimization strategies employed in OSTRICH alleviate the tedium of
manual optimization and are, in principle capable of determining the optimal
design, and in practice able to rapidly identify near-optimal designs.

1.2 Calibration vs. Optimization

In general, model calibration is a specific type of optimization wherein the
objective is to find the values of certain model parameters such that the
resulting sum of squared error between field-measured and model-computed
observations is minimized. This so-called least-squares regression problem is
different from other optimization problems in that its solution yields optimal
parameters along with a set of statistics related to the goodness of fit of the
optimal parameter set.

In OSTRICH, another difference between calibration and optimization



is that the use of least-squares error as the objective function for calibration
problems is embedded into OSTRICH. Conversely, objective functions for
all other optimization problems are not built into OSTRICH. Instead, the
user must write a small program that interfaces between OSTRICH and the
model executable. This program is called upon by OSTRICH to calculate
the value of the objective function for a given set of parameters. Chapter 7
has more information on this procedure.

1.3 Summary of Features

One of the most important features of OSTRICH is that it is model-independent;
that is, OSTRICH can be configured to calibrate and/or optimize nearly
any modeling program. Chapter 4 discusses the details of preparing an
OSTRICH input file that can be used for model calibration. Additional
OSTRICH features are summarized in the following sub-sections.

1.3.1 Algorithms

OSTRICH implements classic numerical methods and popular heuristic al-
gorithms, all of which are suitable for both calibration and optimization
problems. Additionally, OSTRICH provides an algorithm (Levenberg-Marquardt)
tailored to non-linear least-squares calibration problems. Together, these
algorithms provide the user with a fair degree of flexibility and enable the
present version of OSTRICH to tackle linear and non-linear continuous vari-

able problems. The present version of OSTRICH is capable of handling dis-
crete, mixed-integer and combinatorial problems. The following list briefly
describes each of the algorithms provided by OSTRICH. A detailed descrip-

tion of these algorithms can be found in Chapter 2.

e Powell’s Method: This zero-order method (i.e. does not require deriv-
ative information) utilizes a conjugate direction approach to locate
locally optimal parameters.

e Steepest-Descent: This first-order method (i.e. requires derivative in-
formation) follows the so-called path of steepest descent to find locally
optimal parameter values.

e Fletcher-Reeves: This is a first-order method that uses a conjugate
gradient approach to locate locally optimal parameter values.



e Levenberg-Marquardt: This hybrid optimization algorithm combines
variable-matric (also called quasi-Newton) and conjugate gradient tech-
niques to efficiently solve non-linear least squares minimization prob-
lems; making it an ideal choice for solving many calibration problems.

e Genetic Algorithm: This heuristic algorithm operates on a population
of parameter sets. A random survival-of-the-fittest process involving
selection, crossover, and mutation, is applied to successive generations
of the population. In this manner, the genetic algorithm evolves the
initial population in a directed-random search for the globally optimal
solution. Two GA variants are available in OSTRICH a binary-coded
GA (BGA), suitable for discrete-parameter problems, and a real-coded
GA (RGA), suitable for continuous-parameter problems.

e Simulated Annealing: This heuristic method is based on an analogy to
the physical process of annealing; wherein a solid is rapidly heated then
slowly cooled so as to reach the lowest energy state. In simulated an-
nealing, a highly randomized search algorithm is slowly transitioned
into a focused descent onto the globally optimal set of parameters.
Three SA variants are available in OSTRICH an SA for discrete pa-
rameter problems (DSA), an SA for continuous parameter problems
(CSA), developed by the author, and an SA for continuous parameter
problems (VSA) developed by Vanderbilt and Louie (1984).

e Particle Swarm Optimization: This heuristic method was developed
from attempts to simulate the flocking behavior of birds, fish and other
animals. A swarm of particles (analogous to a population in a GA)
containing both local and collective knowledge is 'flown’ through the
parameter space in search of the optimal solution.

1.3.2 Regression Statistics

Regardless of which algorithm is used, OSTRICH can calculate numerous re-
gression statistics following a successful calibration exercise. These statistics
are summarized below, while the mathematical formulae used to compute
the statistics are discussed in section 2.2. A description of how OSTRICH
formats the output of regression statistics is given in Chapter 9.2.

e Estimated Parameters, Error Variance, and Standard Error of the Re-
gression: The most basic statistics computed by OSTRICH are the



estimated parameters along with the error variance and standard er-
ror of the regression. These statistics provide a rough indication of the
goodness-of-fit of the calibrated model.

Observation Residuals: At the end of a calibration, OSTRICH out-
puts a list of observations and the corresponding weighted residuals.
Visual inspection of this list allows the user to quickly identify prob-
lematic observations. Alternatively, this list can be imported into a
spreadsheet, where plots of observations vs. residuals can generated.

Confidence Intervals: OSTRICH can compute arbitrarily sized confi-
dence intervals (CI) for each parameter. In addition, OSTRICH com-
putes the *Volume Ratio’; an indicator of the degree to which the CI
block can be treated as a joint confidence region.

Parameter Variance-Covariance: The variance-covariance matrix for
the estimated parameters is used to derive the parameter standard
error and parameter correlation coefficient statistics. Parameter stan-
dard error is an indicator of the overall goodness-of-fit of respective
parameter estimates, while the parameter correlation coefficient is a
measure of the dependence between parameters.

Normality of Residuals: The normality of residuals provides a test of
the statistical assumption that residuals are normally distributed over
the pool of observations used in the regression.

Influential Observations: OSTRICH can compute the Cook’s D and
DFBETAS measures of observation influence. These measure assist
the modeler in identifying observations having the greatest impact on
the calibration. Cook’s D measures overall observation influence, and
results in an vector of observation influence values. Meanwhile, DFBE-
TAS measures observation influence with respect to each parameter,
resulting in a matrix of influence values (one influence measure for
each observation-parameter pair).

Parameter Sensitivities: OSTRICH computes dimensionless and 1%
scaled sensitivities, which are measures of the sensitivity of simulated
observation values to changes in parameter values. In addition, OS-
TRICH computes the composite scaled sensitivity for each parameter,
a measure of the overall sensitivity of the model with respect to each
parameter. Parameters that have extremely low sensitivity values may



not have a significant impact on model calibration and robust calibra-
tion of such parameters may not be straightforward task.

e Model Linearity: Many of the statistics computed by OSTRICH rely
on the assumption that the model is approximately linear in the region
near the estimated parameter set. To test this assumption, OSTRICH
can compute the Linssen and Beale measures of linearity. For models
that are linear or moderately non-linear, either measure is appropriate,
but Linssen’s measure is more accurate for highly non-linear models.

e Matrices: OSTRICH can be configured to output the values of the Ja-
cobian, Normal and Inverse Normal matrices, used during Levenberg-
Marquardt regression and/or statistical calculations. These matrices
can be used to compute statistics that are not currently offered within

OSTRICH.

1.3.3 Supported Platforms

OSTRICH is available for both Linux and Windows platforms and an MPI-
parallel version of OSTRICH is available for Linux-based parallel clusters.
Additionally, OSTRICH can be configured to execute parallel versions of
the underlying model executable, if one is available. Section 8.2 contains
detailed instructions for utilizing the parallel options of OSTRICH. Finally,
an OSTRICH GUI module has been developed using Visual Basic. This
module provides an interface for integrating OSTRICH configuration, exe-
cution, and output with model-specific GUIs, such as Visual ModFlow and
Visual BlueBird.



Chapter 2

Calibration and
Optimization Algorithms

In this chapter, the mathematical and/or algorithmic underpinnings of the
optimization and calibration methods implemented within OSTRICH are
described in detail. In addition, this Chapter discusses the formulae and
statistical theory associated with various regression statistics.

2.1 Levenberg-Marquardt Regression

Levenberg-Marquardt regression is a method, originally developed by Lev-
enberg (1944) and extended by Marquardt (1963), that focuses on the prob-
lem of non-linear least-squares parameter estimation. The term ’non-linear’
refers to the scenario in which the model output (i.e. the simulated observa-
tions) varies non-linearly with the model input (i.e. the model parameters),
and the term ’least-squares’ refers to the idea that the optimal parameter
set is found by minimizing the sum of the squared differences between field-
measured and model-simulated observations. Equation (2.1), gives a math-
ematical expression for a generic non-linear model, while equation (2.2) is
an expression of the weighted least squares objective function.

Yim = f(X) where, (2.1)
Yz,;m = [ysiml Ysimg - - - ysimm] and, (213)
Xt = (21 22 . .. oz (2.1b)



Where Y, is a vector of m simulated observations generated by evaluating
model f() using a set of n parameters, denoted in vector format as X.

m
d = Z (wi<yobsi - ysimi)>2
=1

. . (2.2)
( obs — szm) Q(Yobs - Yszm)
= (Yobs — f(X)"Q(Yops — f(X)) where,
Yg;)s = [yobsl Yobsy - - - yobsm] and, (228.)
(w? 0 . . . 0]
0 wi . . . 0
Q= (2.2b)
0 0 . . . w]

Where @ is the weighted sum of squared errors objective function, Y s is
a vector of m measured observation values, w; is the weight given to the "
observation, and the matrix Q is an m x m matrix with diagonal values @Q;;
equal to the square of the corresponding observation weight (w;).

The goal of non-linear least-squares regression is to minimize ¢ by vary-
ing X subject to the constraint that the parameters take on physically mean-
ingful values (e.g. in the groundwater model described in Section 1.1, the
hydraulic conductivity must be a non-negative quantity). Equation (2.3) is
a formal optimization problem statement for non-linear least-squares regres-
sion.

Minimize ® = (Yops — f(X))TQ(Yobs — f(X))

(2.3)
such that: X7 < X < Xy

Where X, and Xy are vectors containing the lower and upper parameter
bounds, respectively. The Levenberg-Marquardt solution of equation (2.3)
begins by considering an initial vector of parameters Xy and corresponding
simulated observations Yg;mo. A Taylor series expansion about X, yields



a linearized approximation for Y g,:

Ysim = Ysimo + J(X — Xp) where, (2.4)
[ aysiml 6ysim1 aysiml 1
0x1 Ox2 Tt Oy
Ysimo aysimg dysimg
0x1 O0x2 o Oxn
J— : - : : (2.4a)
aysimm 8y5imm aysi'mm
o0z 0T : : : 0zn n

Where J is the m x n Jacobian matrix, consisting of the partial deriva-
tives of each simulated observation with respect to each parameter(J;; =
O0Ysim,; /0x;). Substituting the linearized expression for Y, into equation
(2.2) yields:

D ~ (Yobs — (Ysimo + J<X - XO)))TQ(Yobs - (YsimO + J(X - XO))) (2'5)

It can be shown that the vector (X — X() which minimizes equation (2.5)
is given by:
(X —Xo) = (I7QI) 1 I"Q(Yobs — Yimo) (2.6)

Since equation (2.4), is an approximation, it follows that the solution given
by equation (2.6) is also only an approximation. Therefore, an iterative
solution procedure is utilized, wherein equation (2.6) is treated as an up-
grade vector (U) for the estimated optimal parameter set (X). Figure 2.1
illustrates the general procedure for iteratively solving the non-linear least-
squares regression problem.

The Levenberg-Marquardt method follows the general procedure illus-
trated in Figure 2.1, except that the formula for the upgrade vector, equation
(2.6), is modified slightly:

U= (JTQJ + aI)ilJTQ(Yobs - Ysimﬂ) (27)

Where « is the Marquardt parameter and I is the n x n identity matrix.
For large values of «, the revised upgrade vector is approximately equal to
the direction of steepest descent (i.e. the negative gradient of the objective
function, —V®); and as «a approaches zero, the upgrade vector in equation
(2.7) approaches that of equation (2.6). This formulation of the upgrade
vector allows the Levenberg-Marquardt method to smoothly transition be-
tween a Steepest-Descent approach far away from the optimal parameter set
to a Taylor series approximation close to the optimal parameter set.



. Compute Ysimo by evaluating f(Xo)

. Compute ®; using equation (2.2)

. Compute U = (X — Xj) using equation (2.6)
. Compute X =Xy + U

. Compute Ysim by evaluating f(X)

. Compute @2 using equation (2.2)

N O Ot ks W N

. Test for convergence by comparing ®; and P2

(a) If converged, iteration is complete. X minimizes ®.

(b) If not converged, set Xo = X and return to Step 1.

Figure 2.1: General Iterative Procedure for Non-Linear Regression

In many calibration problems, elements within the observation vectors
(Y sim and Y ) can differ by several orders of magnitude (consider the case
of a calibration which combines the use of head[m] and streamflow[m?/d]
observations). Such variation can lead to numerical roundoff error in the
computation of the Jacobian. Therefore, a scaling matrix is introduced into
the upgrade vector such that the overall equation is mathematically identical
to equation (2.7), but numerical errors are avoided:

U =S(((JS)TQJIS + aST8) 1 (IST)Q(Yops — Yeimo)) where,  (2.8)

1
T (1) o 0
0 - - - 0
S — . : . ) (2.8a)
0 o . . . m

Where S is an n x n diagonal scaling matrix, with entries S;; = 1/(Jw;).
Finally, Marquardt introduced the 'Marquardt-lambda’, defined as A =
a X max(Sizi); the largest term in «S”S. Adjusting the Marquardt-lambda
provides direct control over the weight given to the steepest-descent direc-
tion; when A is very large, the steepest-descent direction will dominate the
upgrade vector, whereas the Taylor series approximation will dominate for
small values of A.

Figure 2.2 describes the iteration procedure followed in the Levenberg-
Marquardt regression method, where A is adjusted during each iteration in
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search of a value that provides the optimal balance between the compet-
ing steepest-descent and Taylor series upgrade vectors. Figure 2.2 captures

Initialize A

Compute Ysimo by evaluating f(Xo)
Compute ®; using equation (2.2)

Compute U = (X — Xp) using equation (2.8)
Compute X = Xo+ U

Compute Ysim by evaluating f(X)

Compute P2 using equation (2.2)

Adjust A

® N o ot w N

(a) If # X adjustments is optimal or exceeds maximum,
goto Step 9.

(b) If(P2 < ®1), reduce A, set Xo = X, and return to
Step 2.

(c) If(®2 > @), increase A and return to Step 4.
9. Test for convergence by comparing ®; and ®»

(a) If converged, iteration is complete. X minimizes ®.

(b) If not converged, set Xo = X and return to Step 1.

Figure 2.2: Iterative Procedure for Levenberg-Marquardt Regression

the essence of the Levenberg-Marquardt algorithm as it is implemented in
OSTRICH. Behind the scenes, OSTRICH performs additional steps to: (a)
compute the Jacobian matrix using finite-difference derivative approxima-
tions; (b) determine optimal step size in the direction of the computed up-
grade vector; and (c) restrict parameter changes to fall within user-specified
move limits. OSTRICH provides numerous user-configurable parameters
that can be adjusted to tune the performance of the Levenberg-Marquardt
algorithm to a given calibration exercise. These parameters are discussed in
detail in Chapter 4.

2.2 Regression Statistics

This section discusses the mathematical formulas used by OSTRICH to
compute various regression statistics.
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2.2.1 Observation Residuals

An observation residual is the difference between a field-measured obser-
vation and the corresponding model-simulated observation. Individual ele-
ments (r;) of the vector of weighted observation residuals (r) are computed
as:

Ty = wi(yobsi - ysimi) (29)

Where w; is the weight given to the ¥ observation, and Yobs; and Ysim,;
are the i*" field-observed and model-simulated observations, respectively.
Observation residuals that are grossly out of proportion to other residu-
als are an indicator of gross errors; either in the model, the weighting, or
field-observation associated with the given residual. Hill (1998) and Cooley
and Naff (1990) suggest the following formula for computing the correlation
between weighted residuals and measured observations (R,):

(wiyobsi - yg:sg)(wzyszmz - yg;}ri)

[NgE!

R, =

(2.10)

k=1

2 av av
E (wiyobsi - yobsg)2(wiy5imi - ysingl)Q
k=1

Where m is the number of observations, yo,? and yg;9 are the averages of
the weighted measured and weighted simulated observations, respectively.
Cooley and Naff (1990) suggest that R, > 0.9 indicates a good fit between
the calibrated model and the measured observations.

2.2.2 Error Variance and Standard Error of the Regression

The error variance and standard error of the regression provide statistical
measures of the goodness-of-fit of the calibrated model to the observation
data, and are calculated as (Draper and Smith, 1998):

2= 2 (2.11)

(m —n)

Where s? is the error variance, s is the standard error of the regression,
® is the weighted sum of squared errors, calculated using the calibrated
parameter set, and (m—mn) is the number of degrees of freedom, where m and
n are the number of observations and number of parameters, respectively.
Hill (1998) suggests that if the fitted model is consistent with the observation
weights (w;), then the expected value of s? and s should approach 1.0 with
large m.
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2.2.3 Parameter Variance-Covariance

The n x n parameter variance-covariance matrix, evaluated using the cali-
brated parameter set, is computed as (Hill, 1998):

V=57Q)"

[ Vary Covip . . . Coviy]
Cova1 Vary . . . Covyp
(2.12)
| Covp1 Covpo . . . Vary, |

Where V is the variance-covariance matrix, s>

is the error variance, J is
the Jacobian matrix, Q is a diagonal matrix with elements Q);; equal to the
square of the corresponding observation weight (w;), (JT'QJ)~! is known
as the inverse normal matrix, Var; is the variance of the i** parameter,
and Cov;; is the covariance between parameter z; and parameter ;. The

standard error (se;) of the i*" parameter is defined as (Hill, 1998):
se; =/ Var; (2.13)

and is a measure of the reliability of the estimated parameter. Meanwhile,
the correlation coefficient between parameters z; and z;, defined as (Hill,
1998):
1.00 if i =j,
Corig =\ _Covs i 4
is a measure of the linear dependence between the two parameters, and can
range from -1.0 to +1.0. Cor; ; = 0.0 indicates no correlation (z; and z; are
independent), while Cor; j = —1.0 indicates negative correlation (z; o< —x;),
and Cor; ; ~ 41.0 indicates positive correlation (x; o< x;). In general, highly
correlated parameters cannot be uniquely estimated by the model, f(X),
used in the given calibration exercise.

(2.14)
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2.2.4 Confidence Intervals

Linear confidence intervals are computed using the student t-distribution,
which is defined as (Draper and Smith, 1998):

F,(a) = /oo“fl,(t)dt where, (2.15)
v+l 2\ —(v+1)/2
fu(t) = ;};ﬂ%(z) (1 + ty) and, (2.15a)
2
I'(q) = /oo e e (2.15b)
0

Where F,(a) and f,(t) are the respective cumulative distribution function
(cdf) and probability density function (pdf) of the student t-distribution,
I'(¢q) is the gamma function, and v is the number of degrees of freedom
(m —n). A 100(1 — «)% confidence interval for parameter x; is calculated
as (Draper and Smith, 1998):

v+ t(u, 1- ‘;‘) sei (2.16)

Where t(v,1 — «/2) is the inverse cdf of the student t-distribution, « is the
significance level, and x; and se; are the estimated value and standard error
of the parameter, respectively. The confidence interval of a given parameter
is a range with probability 100(1 — a/2)% of containing the true value of
the parameter. As such, narrow confidence intervals are indicative of good
parameter estimates.

Because confidence intervals do not take into account parameter correla-
tion, confidence blocks (created by simultaneously considering the confidence
intervals for multiple parameters) do not generally representant a joint con-
fidence region for the given parameters. Draper and Smith (1998) suggest a
measure, known as the volume ratio’, which indicates the degree to which a
confidence block approximates the true joint confidence region. The volume
ratio is defined as:

E
R= V¢ where, (2.17)
1.00 Corip . . . Corip
COT’QJ 1.00 e COT'QJL
¢p = det Cor = ’ ’ ' ' (2.17a)
Corp1 Corpo . . . 1.00
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Where n is the number of parameters, (E/R) is the n-dimensional volume
ratio, F is the n-dimensional volume of the true joint confidence ellipsoid, R
is n-dimensional volume of the rectangular block, and ¢, is the determinant
of the parameter correlation coefficient matrix. The volume ratio will vary
from 0 to 1; a value of &~ 1.00 indicates that the confidence block is an
acceptable approximation of the joint confidence region, while a value of
~ 0.00 indicates a poor approximation.

2.2.5 Normality of Residuals

The confidence intervals discussed in Section 2.2.4 are computed under the
assumption that the observation residuals are independent and normally dis-
tributed. Normal probability plots of the residuals is a means to test these
assumptions and detect possibly spurious field-data. A normal probability
plot is a graph of the expected values of the standard normal ordered resid-
uals (regp,) versus the ordered residuals(rorq, ). The ordered residuals are
formed by taking the weighted observation residuals (r) and sorting them
in increasing order, such that r,.q, is the kth smallest residual. If the ob-
servation residuals are normally distributed, then the values of 7,.q, will
be approximately equal to their corresponding expected standard normal
values, Tezp,, and the plotted points (reap,, rora,) Will fall on a straight line
whose slope is ~ 1.00. As suggested by Sabo (1999), OSTRICH uses the
Snedecor & Cochran approximation to compute values of regp, :

1 (k—0.375
Teapy, = 2 1<m+ 0_25> , k=1.m (2.18)

Where m is the number of observations, and Z~! is the inverse cdf of the
standard normal distribution. Visual inspection of the reyp, vs. ropq, plot
can reveal outliers; points that lie far from the ideal normal probability line
(i.e. a straight line with slope of 1.00). Possible causes of outlier residuals
are: (a) the accuracy of associated field data is not properly reflected in
the weighting of the residual; (b) the model contains a conceptual error in
the vicinity of the associated observation; and (c) the model is affected by
non-uniform numerical error near the associated observation.

In addition to providing the user with the (7cyp,,7orq,) normal prob-
ability plot data points, OSTRICH also computes the normal probability
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correlation coefficient (R%/), defined as (Hill, 1998):

_ T 2
R% = ((rm;? Favg) Texp) 7 where, (2.19)
((rord - I'avg) (rord - I'avg))(rexp I'exp)
T
Tord = [rordl Tordy - - - rordm] and, (219&)
T
rexp = [T€$p1 rexpz ... Texpm] and, (219b)
m
Tavg = <Z ”) [1.00 1.00 . . . 1.00]" (2.19¢)
m
i=1

Where rorq is the vector of ordered residuals, rexp is the vector of expected
values of the standard normal ordered residuals, and rayg is a vector with all
elements equal to the average value of the weighted residuals. If the residuals
are independent and normally distributed, RJQ\, will be close to 1.00.

2.2.6 Influential Observations

OSTRICH can compute both the Cook’s D (Cook and Weisberg, 1982)
and the DFBETAS (Belsley et al., 1980) measures of observation influence.
These measures are useful in identifying observations that had a large effect
on the estimated parameter set and can provide additional insight into the
behavior of the model. For example, Yager (1998) examined the influential
observations of several groundwater flow models and found (a) that each
calibration was significantly influenced by a few discharge measurements,
and (b) that a recharge zone within one of the models had been assigned an
erroneous value.

The Cook’s D measure is a vector of m values corresponding to the rela-
tive distance between the parameter set, X, estimated using all observations
and the parameter set, X;), estimated when the ith observation is not used.
Individual elements, D;, of the Cook’s D vector are computed as (Cook and
Weisberg, 1982):

D; = —Tstui T » where, (2.20)
L

Tstu; = T—h” al’ld, (220&)

H = (Q21)(I"Qy) ' (Q"*1)” (2.20D)

Where n is the number of parameters, 7y, is the weighted standardized
residual of observation i, h;; (known as the leverage of observation i) is a
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diagonal element of the hat matrix H, r; is the weighted residual of observa-
tion 7 (as defined in equation (2.9), s is the standard error of the regression,
J is the Jacobian matrix, and Q is defined in equation (2.2b).

To decide whether or not a given D; signifies an influential observation,
Rawlings (1988) suggests using a threshold of 4/m, where m is the number
of observations. Therefore, if D; > 4/m, OSTRICH will report observation
i as influential with respect to the Cook’s D parameter. Yager (1998) also
uses the leverage, h;;, as a measure of observation influence, with a threshold
value of n/m. Based on this criteria, OSTRICH will report observation i as
influential with respect to the leverage if hy; > n/m.

The DFBETAS measure is calculated by removing an entire row of obser-
azéz;ni ‘93({;7;2% oL %Ti}) from the Jacobian
matrix, and calculating the effect that this deletion has on the estimated
parameters. This procedure results in a m x n DFBETAS matrix (m is
the number of observations and n is the number of parameters, with element
DFBETAS;; corresponding to the influence of observation ¢ on parameter
j. DFBETAS elements are computed in OSTRICH using (Belsley et al.,
1980):

vation sensitivity data ([

DFBETAS; = /7: s(z’)(lri— hii) where, (2.21)
> C?k
k=1
(= —Lfm-me -] and, (2210
S’L—(m_n_l) m n)s 1—h” and, . a
C=I"QytaQ»T” (2.21b)

Where C is the n x m change matrix, with elements cj;, s(7) is an estimate
of the standard error of the regression with observation ¢ removed, r; is
the weighted residual of observation i, h;; is a diagonal element of the hat
matrix, H, and s? is the error variance. Following the suggestion of Belsley
et al. (1980) OSTRICH reports observation ¢ as influential to parameter j
it DFBETAS;; > 2/y/m.

The validity of the Cook’s D and DFBETAS measures of observation
influence are dependent on the degree of linearity of the model. If the model
is effectively linear in the vicinity of the parameter set at which the Cook’s
D and DFBETAS are calculated, the measures will be accurately computed;
otherwise, the measures should be treated as qualitative indicators of obser-
vation influence (Yager, 1998).

Even under sufficiently linear conditions, correct interpretation of the
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Cook’s D and DFBETAS measures generally requires additional investiga-
tion. The influential observations may be providing valuable information for
the calibration, or they may be sources of error, reducing the reliability of
the calibration. To this end, the modeler might pose the following questions
regarding the influential observations:

Are the influential observations subject to larger than average mea-
surement error? If so, the observation weights should be adjusted
accordingly.

Is the model subject to increased numerical error around the influential
observations? This could suggest the need to refine the element mesh
or finite difference grid, if such a model is being used.

Is there a logical error in the model configuration which causes the
observations to be unduly influential? For example, Yager (1998) used
DFBETAS to track down an erroneously assigned recharge zone.

Is there some physical aspect of the model that causes the observations
to be influential? For example, Yager (1998) found that influential
head observations were located in areas having steep head gradients
and high flow rates.

Are certain kinds measurement data (e.g. head, flow, or temperature
data) disproportionately represented by the influential observations?
In the Yager (1998) study, there were 214 observations containing only
six discharge measurements; yet five of these six measurements were
identified as being influential.

Are the influential observations clustered in space or time? If influ-
ential observations are clustered, the investigator would then seek out
the cause. For example, the clustering could indicate an important
region of the model, or it might be an artifact of poor data sampling.

Do the influential observations represent spatial or temporal outliers
(i.e. are they distant from other observations)? If so, the calibration
exercise may benefit from an additional round of data sampling near
the influential observation.

2.2.7 Parameter Sensitivities

Whereas influential observations consider the effect of observations on para-
meter estimates, parameter sensitivity is a measure of parameter influence
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on the value of simulated observations. Three parameter sensitivity mea-
sures are calculated in OSTRICH: dimensionless scaled sensitivities (DSS),
composite scaled sensitivities (CSS), and one-percent scaled sensitivities
(1%SS).

The DSS measure is a m X n matrix, where m is the number of ob-
servations and n is the number of parameters, and element DSS;; is the
dimensionless scaled sensitivity of simulated observation ¥, with respect
to estimated parameter x;, and is computed as (Hill, 1998):

DSS” = Jijxjwi = 6yszmi ZL‘jwi (2.22)
aiL'j
Where J;; is an element of the Jacobian (also known as the sensitivity ma-
trix), and w; is the weight of observation i, equal to the square root of the
i" diagonal element of the Q matrix defined in equation (2.2b). Multiply-
ing the sensitivity (J;;) by the parameter value (z;) has a scaling effect,
while multiplication by w; makes the result dimensionless (assuming that
wj is computed as 1/sd;, where sd; is the standard deviation of the field-
measured value Yops, ).
1%SS are computed similar to DSS, except that the weighting term is
omitted. Thus, elements of 1%SS that refer to different observation types
may have different units, and comparisons of such values is not meaningful.
The formula to calculate one-percent scaled sensitivities is (Hill, 1998):

T OYsim; T
7100 Oz; 100

1%5S;; = J; (2.23)

Thus, 1%SS is a m x n matrix whose elements 1%5.5;; estimate the change
in simulated observation ysim, as a result of a 1% increase in parameter xj.

Composite scaled sensitivities (CSS) are an aggregate form of DSS, and
are calculated as (Hill, 1998):

(2.24)

Where m is the number of observations. Composite sensitivities measure
the overall sensitivity of the model to a given parameter. In general, very
low values of C'SS; are an indication that the model is not sensitive to
parameter x;, and the calibration exercise will likely have difficulty obtaining
reliable estimates of the parameter. Conversely, very high values of CSS;
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indicate high sensitivity to parameter z;, and the calibration should be able
to reliably estimate the value.

As noted by Madsen and Jacobsen (2001), the utility of the DSS, 1%SS
and CSS parameter sensitivity measures is somewhat limited by their depen-
dence on the estimated values of the parameters. For example, if the esti-
mated value of a parameter is = 0, then the scaled sensitivities could appear
insensitive, even if the Jacobian value is large. Additional care must be taken
if some (or all) of the estimated parameters are log-transformed. There-
fore, these sensitivity measures should be evaluated carefully and should be
cross-referenced with other measures (such as the Jacobian and standard
parameter error).

2.2.8 Model Linearity

Several of the statistical and diagnostic measures discussed in this chapter
(namely Cook’s D, DFBETAS, and linear confidence intervals) are only ac-
curate if the model in linear, or nearly linear, in the vicinity of the estimated
parameter values. Therefore, various measures have been developed to test
this linearity assumption. Beale (1960) developed a measure of non-linearity
which selects several parameter sets and compares actual simulated observa-
tion values (calculated by executing the model) with observation values that
are approximated using the assumption of linearity. Differences between ac-
tual and linearized values for each parameter set are aggregated and scaled
to form a single scalar measure of non-linearity. Linssen (1975) made an ad-
justment to Beale’s measure, correcting the behavior of the Beale measure
in severely non-linear problems, while Bates and Watts (1980) developed a
measure of non-linearity based on the geometric concept of relative curva-
ture.

The present version of OSTRICH provides an implementation of both
the Beale and Linssen (sometimes called the modified Beale) measures of
model nonlinearity. Beale’s measure (V) is expressed as (Christensen and
Cooley, 1999):

N = ns’— Pl . (2.25)
2 | (FO%) = f(Xesr)) QU (Xp) = f (X))

While the square of Linssen’s measure (M?) is computed as (Christensen
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and Cooley, 1999):

> (f(Xp) = fiX) T Q(F(Xp) — fi(X,))

M? = ns? p=1

é (F1(X,) = (X)) " QUUK,) — F(Xeur)

. (2.26)

Where f;(X,) is a vector of simulated observations obtained using the fol-
lowing linear approximation (Christensen and Cooley, 1999):

fl(Xp) = f(Xest) + J(Xp - Xest) (227)

and n is the number of parameters, ¢ is the number of parameter sets (X,)
used to compute the non-linearity measure (N or M?), s? is the error vari-
ance, Q is the weight matrix, as defined in equation (2.2b), J is the Jacobian
matrix, f(X,) is the vector of simulated observations obtained by executing
the model using parameter set X, and f(Xes) is the vector of simulated ob-
servations corresponding to the regression-estimated parameter set (Xest).
Note that the equations for M? and N are quite similar; in fact, Linssen’s
modification was to replace the f(X,) term in the denominator of N with
SiXp).

Cooley and Naff (1990) suggest that parameter sets (X,,) be taken from
points in parameter space that lie on the maximum and minimum 95% joint
confidence limits for each parameter, yielding a total of ¢ = 2n parameter
sets. The formula for calculating such parameter sets is (Cooley and Naff,
1990):

nky(n,m—mn)

Xy, = Xest £ V; where, (2.28)

S@j

VJ-:[COULJ‘ Covoj . . . C’oan]T (2.29)

Where X, is the upper or lower (depending on the sign of the equation) joint
confidence limit of parameter j, m is the number of observations, « is the
significant level corresponding to the desired confidence interval, Fi,(n,m —
n) is the inverse CDF of an F-distribution containing n and m —n degrees of
freedom in the numerator and denominator, respectively, se; is the standard
error of parameter j, and Vj is the vector corresponding to the 4% column
of the parameter variance-covariance matrix (Cov;; = Var;).

Based on thresholds suggested by Beale (1960), OSTRICH reports the
following linearity assessment for N and/or M?:
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e > 1/F,(n,m —n) : non-linear
e <0.01/F,(n,m—mn) : effectively linear

Since the Linssen and Beale measures are aggregate values, they are ef-
fectively an average measure of non-linearity. Therefore, low N and/or
M? values suggest, but do not guarantee, the linearity of all parameters.
Nonetheless, if these measures indicate a linear model, they lend an ad-
ditional level of credibility to the use of confidence intervals, DFBETAS,
and Cook’s D measures. Conversely, if N and/or M? indicate a non-linear
model, the user should regard the Cook’s D and DFBETAS measures as
qualitative, rather than quantitative, guides; and he/she also might want to
consider alternative, non-linear, confidence intervals, such as those described
by Diciccio and Romano (1988), Efron and Gong (1983), and Vecchia and
Cooley (1987).

2.3 Unconstrained Numerical Optimization

This section describes the three unconstrained numerical optimization meth-
ods implemented by OSTRICH. These techniques are appropriate for opti-
mization problems which satisfy the following criteria:

o All parameters are continuously varying.

e The user can bound the parameters such that he/she is confident that
there is a single optimal parameter set within these boundaries. If
the user cannot guarantee this condition, then the unconstrained opti-
mization procedure can still be used, but should be repeated multiple
times using different initial parameter sets. Figure 2.3 illustrates the
aforementioned scenarios.

e The only constraints placed on the parameters are the upper and lower
boundaries (so-called ’side constraints’). If other constraints exist, the
user may use unconstrained optimization techniques if the objective
function can be modified to incorporate constraints via a penalty func-
tion approach. Vanderplaats (2001) discusses several penalty function
techniques that utilize unconstrained optimization algorithms and fall
under the general category of sequential unconstrained minimization
techniques (SUMT). Use of SUMT requires iterative solution of more
and more restrictive unconstrained optimization problems. At present,
it is up to the user to perform these iterative OSTRICH optimizations,
either manually or via a separate driver program.
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Figure 2.3: Single vs. Multiple Optima Objective Functions

The general algorithm for the numerical solution of unconstrained optimiza-
tion problems is shown in Figure 2.4, (Vanderplaats, 2001). Where X is the
vector of parameters to be optimized, Xg is the vector of initial parameter
values, ®,q and Dy, are the values of the objective function from the pre-
vious and current iterations, respectively, f(X) is computed by executing
the model using parameter set X, S is the search direction, a vector which
describes the n-dimensional (where n is the number of parameters) direc-
tion in which the algorithm will move next, and a* is the optimal step which
should be taken in direction S. The unconstrained optimization algorithms

Initialize algorithm, X = Xy, and ®qq = f(X)

Compute search direction S

Compute optimal step (a*) using one-dimensional search
Compute X = X + a*S

Evaluate ®pnew = f(X)

Test for convergence by comparing ®,q and $rew

A R

(a) If converged, iteration is complete. X minimizes f().

(b) If not converged, set ®oig = Pnew and return to Step 2.

Figure 2.4: ITterative Procedure for Unconstrained Optimization

described in the following sections are differentiated by the way in which the
search direction is computed (Step 2 of Figure 2.4).
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2.3.1 Zero-Order Methods

Zero order methods are a general class of unconstrained optimization meth-
ods which do not utilize derivative information. Determination of the search
direction (Step 2 in Figure 2.4) is based solely upon evaluation of the objec-
tive function.

Powell’s Method

Powell’s method utilizes the concept of conjugate directions to determine

search directions. Two directions, S; and Sg, are conjugate if (Vanderplaats,
2001):

S1THS2 =0 where, (2.30)
[92f(X)  92f(X) ?f(X) ]
Oz O0x10xs = ° °  0x10xn
Pf(X)  9*f(X) 92 f(X)
Ox20x1 8x% ot Oze0xn
H=V0 = - ~ : - (2.31)
PHX)  P2H(X) )
| Ozndz1  Bxpdza =~ T 02

Where H is the Hessian matrix of 2" order partial derivatives of the objec-
tive function ® = f(X) with respect to some n-dimensional parameter set,
X =[r129...7)7.

In Powell’s method, n orthogonal search directions are initially assigned,
such that:

1 0 0
0 1 0
Si=||Sz=1]1]...Sa=|" (2.32)
0] 0] 1]

Powell’s method then 'moves’ in each of these directions by applying Steps 3-
6 in Figure 2.4 for each direction, at which point a new, conjugate, direction
is computed: Spi11 = X + Xy, where Sy41 is the new search direction,
Xy is the initial parameter set, and Xy, is the parameter set after moving
in the n* search direction. Next, a move is made in the new, Sy, 1, search
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direction and a shift is performed on the search directions, such that:

S1=19S2
S, = S3 (2.33)
Sn = SnJrl

This process of making n moves, computing and moving in conjugate di-
rection (n + 1), and shifting the search directions constitutes one complete
iteration of Powell’s method, as shown in Figure 2.5.

Initialize algorithm (equation 2.32), X = Xo, and @4 = f(X)
Move in each of the n search directions

Compute new search direction: Sp+1 = Xo + Xn

Move in the S,41 search direction

Shift search directions (equation 2.33)

Return to Step 2

A A

Figure 2.5: Tterative Procedure for Powell’s Method

2.3.2 First-Order Methods

First order methods are a general class of unconstrained optimization meth-
ods that utilize derivative information, such that the search direction is
based on the gradient of the objective function, which is approximated in
OSTRICH using finite differences.

Steepest-Descent

The steepest-descent method computes the search direction (Step 2 of Figure
2.4) for any given iteration as the negative of the gradient:

T
_ — _ |oIX) 9f(X) 9f(X)
S_—v¢_—Lﬁf ux Wﬁi (2.34)
Where V@ is the gradient vector of partial derivatives of the objective
function ® = f(X) with respect to some n-dimensional parameter set,
X =[xy 22 ... iL'n]T. Convergence of the steepest-descent method tends

to slow to a crawl as the minimum is approached, and for this reason it
is not appropriate for high-quality optimization or calibration. However,
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if the user is only interested in ballpark parameter estimates or quick-and-
dirty optimization, a few iterations of steepest-descent method can be very
effective.

Fletcher-Reeve’s Method

The Fletcher-Reeves method is similar to Powell’s method in that it utilizes
the concept of conjugate directions. However, whereas Powell’s method
requires n moves to be made prior to calculation of a new conjugate di-
rection (see Section 2.3.1), the Fletcher-Reeves method uses gradient in-
formation (V®) to compute conjugate directions before every move. After
using steepest-descent direction (equation 2.34) as the initial search direc-
tion, the Fletcher-Reeves method computes subsequent search directions as
(Vanderplaats, 2001):

S=-V®+ (5So1a (2.35)

Where, S and Sg1g are the revised and previous search directions, respec-
tively, and [ is a scalar multiplier. As suggested by Press et al. (1995),
OSTRICH uses the Polak-Ribiere variant to compute (G as:

(VO + V@old)T(Vé)
(vq)old)T(vq>old)

6= (2.36)
Where, ®,4 is the gradient vector from the previous iteration. The ap-
pearance of ®,, in the [ calculation allows the Fletcher-Reeves method
to utilize information across successive iterations. This feature makes the
Fletcher-Reeves method highly efficient, assuming gradients can be reliably
computed using finite differences.

2.3.3 One-Dimensional Search Procedures

As shown in Step 3 of Figure 2.4, unconstrained methods utilize a one-
dimensional search to determine the optimal step size for a given search
direction. Two one-dimensional search algorithms are implemented within
OSTRICH: the Golden-Section Method and Brent’s Method.

Golden-Section Method

The Golden-Section method uses the so-called ’Golden Ratio’ to subdivide
a region that is known to bound the minimum into a smaller region that is
also known to bound the minimum. Each subdivision generates a new region
that is 38.2% smaller than the previous region. Successive subdivisions are
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performed until the region bounding the minimum reaches an acceptably
small value (e.g. 1 x 107%).

Brent’s Method

Brent’s Method is a hybrid of polynomial interpolation and Golden-Section
techniques. At each iteration, Brent’s method attempts to use polynomial
interpolation to estimate the location of the minimum. Then, the algorithm
computes the true value of the objective function at this estimated location
and one side of the minimum bounding region is altered accordingly. If
polynomial interpolation fails to reduce the bounding region by more than
38.2%, Brent’s method instead uses the Golden-Section technique described
previously.

2.4 Heuristic Optimization

Unconstrained numerical optimization methods (Powell, Steepest-Descent,
and Fletcher-Reeves) and the Levenberg-Marquardt nonlinear regression
method, utilize mathematical properties of the objective function (such
as the gradient, the Jacobian matrix, or conjugate direction) to guide the
search for the optimum parameter set. Conversely, heuristic optimization
techniques are derived from processes that have been observed in the phys-
ical world. As such, these techniques do not have mathematically rigorous
formulae, but rather are guided by empirical guidelines which attempt to
simulate some real world optimization process. Additionally, whereas nu-
merical optimization techniques are deterministic, the heuristic techniques
described in this section incorporate elements of randomness, and can be
viewed as directed random search techniques.

2.4.1 Genetic Algorithm

Genetic algorithms are based on Darwin’s theories of natural evolution, such
as inheritable traits and survival of the fittest. Before discussing the me-
chanics of a genetic algorithm, it is useful to first elaborate on some of the
terminology used:

e population: Rather than operating on a single set of parameters, X,
during each iteration, genetic algorithms work with a population of
parameter sets; Pga = {X1,X2,..Xp}, where p is the population
size.
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e generation: Each iteration of the genetic algorithm corresponds to one
generation.

e fitness: In a genetic algorithm, different parameter sets are com-
pared with reference to their fitness functions, F'(X), such that bet-
ter parameter sets have greater fitness functions. Since OSTRICH
formulates the optimization or regression as a minimization problem,
F(X) = —f(X), where f(X) is the objective function to be minimized.

e selection: Selection is an operation wherein members are selected from
the population for the purpose of crossover.

e crossover: The crossover operation is the process by which the para-
meter values of two population members are combined to create a new
(i.e. child) set of parameter values.

e mutation: The mutation operation causes parameter values of a given
population member to be randomly altered. Determination of whether
a given parameter mutates is random and is based on a user-specified
mutation probability.

e encoding: To facilitate crossover and mutation, genetic algorithms
typically employ some form of encoding of the parameters; whereby
parameters are stored in a form that may be different from the form
used in the underlying model executable.

The basic idea behind a genetic algorithm is to iteratively modify a popula-
tion of solutions by applying selection, crossover and mutation operations,
as described in Figure 2.6. These operations are applied in such a way
that the population will evolve towards the optimal solution over successive
generations.

The following subsections explain the OSTRICH implementation of the
selection, crossover and mutation operations along with a discussion of the
parameter encoding method and the elitism enhancement.

Selection Operation

The first step in evolving a population from the current generation to the
next generation is to select a set of members (known as the mating pool)
from the current generation. This mating pool is then used as a basis for
producing the next generation of solutions. Applying the concept of survival
of the fittest, it is desirable that mating pool selection be biased towards
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1. Initialize Population
The initial population is assigned in a random fashion.

2. Preserve Elites
Pass elite population members,unchanged, to the next generation.

3. Create Mating Pool
Perform repeated selections to generate mating pool.

4. Perform Crossover
Form a child by performing crossover on two members of the mating pool.

5. Perform Mutation
Subject each parameter of the new child to the possibility of mutation.

6. Update Next Generation
Pass new child along to the next generation.

7. If next generation is full, continue.
Else, goto step 4.

8. Report average and best members of the new generation.

9. If current gen. num. > max. gen., stop.
Else, goto step 2.

Figure 2.6: Iterative Procedure for Genetic Algorithm

more fit members of the population. To this end, two methods are com-
monly employed: (a) roulette wheel selection and (b) tournament selection.
OSTRICH presently implements a two-member tournament selection.

In tournament selection, a number of individuals (i.e. two) are chosen
randomly from the population and the best individual from this group (based
on comparison of fitness functions) is added to the mating pool. This process
is repeated until the mating pool has been filled. OSTRICH uses a mating
pool of size (p — N), where p is the population size and N is the number of
elites.

Encoding Methods: Real-Coded GA

The encoding method specifies the representation of parameters within the
genetic algorithm. Depending on the type of optimization problem, different
encoding methods can be employed; and the method chosen results in the
utilization of different crossover and mutation operators. The real-encoding
method uses double precision real variables to represent parameter values.
This coding method allows continuous parameters to be encoded such that
no manipulation is required. In this way, the real encoding method can be
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thought of as a direct, or transparent, encoding of continuous parameters.

Crossover Operation: Real-Coded GA

Three crossover methods are typically considered for real encoded parame-
ters. The first crossover method utilizes a biased weighting scheme that
favors the more fit of the two members, and is expressed mathematically as:
2§ = (0.5 + rnd; a2 + (0.5 — rndy)at”
25 = (0.5 4 rndy)zh' + (0.5 — rndg)zh’

(2.37)

x¢ = (0.5 + rndy,) 2Pt + (0.5 — rnd,, )2
Where, X¢ = [2§ x5 . . . 2¢]T is a vector of child parameter values,
RND = [rnd; rndy . . .rnd,)? ia a vector of randomly generated values,
each in the range of (0.00,0.50), and XPt = [z2' 28" . . . 28T and
XP2 = [P 222 2PHT are vectors of parameter values of the most

and least fit of the two members undergoing crossover, respectively.
The second crossover method uses a non-biased weighting scheme, whereby
no favoritism is provided to more-fit members:

x{ = Tndlxllﬂ +(1- 7“7”Lal1):1:'71’2

x5 = Tndzajgl +(1- rnalg)azg2

(2.38)

¢ = rndpaP + (1 — rnd,)zP?

Where the variables are as defined previously, except that the range of ran-
dom values in RND is (0.00,1.00) instead of (0.00,0.50).

The final crossover type is a yes/no weighting scheme, whereby all of the
value of a given parameter comes from just one member. For this calcula-
tion, equation (2.38) is used, except that random values in RND are either
1 or 0. In the current version of OSTRICH, the non-biased weighting scheme
is used.
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Mutation Operation: Real-Coded GA

Mutation is implemented on a per-parameter basis. For each parameter
in a population member, a random number between 0 and 1 is generated
and compared against the user-defined mutation probability (also called
mutation rate). If the random number is less than the mutation probability,
then the parameter is assigned a uniformly distributed random value chosen
from the range of possible values for the given parameter.

Encoding Methods: Binary-Coded GA

The binary-encoding method encodes parameters into a string of binary bits.
This coding method allows efficient GA manipulation of discrete parameters.
An example of binary encoding of two parameters is given below:

P} =156 — 010011100
P, =43 — 000101011

Crossover Operation: Binary-Coded GA

For binary-coded variables, the crossover operation operates by performing
between-parent bit swapping for each parameter string. First, a crossover
bit location is randomly selected. Then the parents exchange the bits at
this location and all subsequent locations in the given string. Finally, one of
newly formed strings is chosen to represent the 'child’ population member.
A 2-parameter example of crossover between parents is given below:

P; 1 =156 —0100111|00

P51 =043 —0001010|11
C1 = 040 —000101000

Py 5 =037 —00001/00101
P, 5 =085 —00010/10101
Cs = 069 —0001000101

Mutation Operation: Binary-Coded GA

Mutation of binary-coded parameters is implemented on a per-parameter
basis. If a random number is less than the mutation probability, then the
bits in a randomly selected section of the string are 'flipped’ (i.e. converted
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from 1 to 0, or vice versa). An example of the mutation of two paramters is
given below:

P, =156 —010011|100
P =155 —010011011

P, = 037 —00001/00101
P} = 058 —0000111010
(2.39)

Elitism

The OSTRICH implementation of the genetic algorithm contains an en-
hancement known as elitism. Under the elitism enhancement, the top N
most-fit members of the population are identified at the beginning of each
generation; where N is a user specified parameter. These top N members
are passed, unchanged, onto the next generation of solutions. In this way,
the genetic material of the most elite solutions are protected from being lost
or degraded by the selection, crossover and mutation operations.

2.4.2 Simulated Annealing

Simulated annealing is an algorithm derived from an analogy to the physical
annealing of metals. In physical annealing, a metal is liquified by heating to
a very high temperature. In this state, the molecules move about randomly
and are unordered and highly energized. The liquid metal is then cooled
very slowly, reducing thermal mobility such that a completely ordered, pure
crystalline lattice is formed. It is important to cool the material very slowly,
otherwise the molecules will not be given sufficient time to form an or-
derly lattice. If cooled slowly enough, the resulting crystal lattice represents
the minimum possible energy state for the molecules. Simulated annealing
generalizes this minimization process to arbitrary, numerically computed,
objective functions.

Simulated annealing mimics physical annealing by first 'melting’ the de-
sign space; whereby the objective function is evaluated at random locations
so as to estimate the initial temperature of the system (which is based on
the variance of the objective function). Next, the optimization undergoes
equilibration, where a set of transitional moves is made while maintaining
a constant 'temperature’; where temperature’ is a control parameter that
dictates the amount of randomness in the algorithm.
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The idea behind equilibration is to find the best possible objective func-
tion at a given temperature. Once the system is equilibrated, the tempera-
ture is reduced slightly (10% is a typical reduction value) and the equilibra-
tion process is repeated at the new temperature. The process of equilibration
and gradual temperature reduction is repeated until a user-specified maxi-
mum number of iterations is exceeded. Figure 2.7 illustrates how the various
processes of simulated annealing are utilized in an iterative optimization al-
gorithm.

1. Perform Melting Operation

(a) Generate random parameter set (X)
(b) Evaluate and store f(X)

(c¢) If num. melts > max. melts, goto Step 2.
Else, return to (a).

2. Initialize Temperature (based on variance of melt-
ing operation)

3. Equilibrate at Current Temperature

(a) Make transitional move via Metropolis
(Figure 2.8)

(b) If all moves made
Select best and goto Step 4

(c) Else return to (a)

4. Reduce Temperature
5. Report current parameter set.

6. If current iteration > max. iterations, stop.
Else, goto Step 3

Figure 2.7: Iterative Procedure for Simulated Annealing

The equilibration process of simulated annealing is depicted in Step 3
of Figure 2.7. During equilibration, a series of transitional moves are made.
These transitional moves are generated by successive applications of the
Metropolis algorithm. The Metropolis algorithm randomly perturbs the
current parameter values and decides whether to move to the location of
the new parameter set or remain at the current location and try another
perturbation. Within OSTRICH the three SA variants (Vanderbilt, Con-
tinuous, and Discrete) are differentiated by the manner in which the range
of these perturbations are assigned:
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e Vanderbilt: In this SA implementation, the range of perturbations is
estimated based on the monte-carlo statistical approach of Vanderbilt
and Louie (1984). When applied to problems involving continuous
parameters, the method can be expected to speed SA convergence.

e Continuous and Discrete: In these SA implementations, the amount of
parameter change induced by a given transitional move is conditioned
to fall within a 'neighborhood’ of adjacent solutions. For the Continu-
ous SA implementation, the neighborhood is defined as +/-10% of the
parameter range. For the Discrete SA, the neighborhood is defined as
a parameter change of +/-1.

After all transitional moves have been made, the equilibration process chooses
the best transitional move as the equilibrated parameter set and returns con-
trol back to the main simulated annealing control loop.

The Metropolis algorithm (shown in Figure 2.8) defines two criteria for
accepting a given move: (a) if the move results in a decrease in the ob-
jective function, it is always accepted; and (b) the move is accepted if a
randomly generated number between 0 and 1, rand(), satisfies: rand() <
exp(—Af()/T), where Af() is the difference between the objective func-
tions of the parameter set under consideration and the parameter set at
the current location, and T is the temperature. Because of the 2"¢ criteria,
the Metropolis algorithm allows the equilibration process to accept ”up-
hill” moves, or moves that can increase the objective function. This uphill
movement gives the simulated annealing algorithm a measure of protection
against being trapped in areas of local minima.

Inspection of the exponential term in the acceptance criteria of the
Metropolis algorithm reveals that low values of temperature correspond to
less randomness in the system (i.e. the left-hand-side of the acceptance test
is driven to zero). At the limits, a temperature of 0 results in a completely
deterministic algorithm (one that cannot make uphill moves), and a tem-
perature of co results in an undirected random search (one that accepts all
moves). If the cooling process is too rapid, the algorithm may switch to
a deterministic method too soon and will be unable to escape from a lo-
cal minima. Therefore, like physical annealing, rapid cooling in simulated
annealing is undesirable.

2.4.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was introduced by Kennedy and Eber-
hart (1995) as an outgrowth of their attempts to simulate the cooperative-
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1. Generate random perturbation (AX)
2. Evaluate f(X + AX)
3. If f(X 4+ AX) < f(X)

(a) Accept move (X = X + AX)

(b) Return to equilibration process
4. Generate random number (rand(0, 1))
5. Compute Af() = f(X + AX) — f(X)
6. If rand() < exp(—Af()/T)

(a) Accept move (X = X + AX)
(b) Return to equilibration process

7. If num. attempts > max. attempts
(a) Reject move
(b) Return to equilibration process

8. Reject move and goto step 1.

Figure 2.8: Metropolis Algorithm

competitive nature of social behavior; they were attempting to replicate the
flocking behavior of birds as they fly about in search of food. After success-
fully accomplishing this task, the simulation program was simplified into
a general optimization algorithm. The PSO algorithm consists of a set of
solutions known as the ’'particle swarm’; each particle corresponds to one
possible solution, and the entire set of particles makes up the swarm. Dur-
ing iteration, the particles 'fly’ through the design space, using the following
calculations to determine their new location (Beielstein et al., 2002):

v = X(wof + err(pf, — ) + carb(py, —})) j=1l.n (2.40)
i+l _ i+l |

Where, ¢ is the iteration number, n is the number of parameters, x;, and v;
are the value and velocity of parameter j, respectively, x is the constriction
factor, w is the inertia weight, r1 and ro are independent and uniformly
distributed random numbers, ¢; is the cognitive parameter, the weight of
a particles own experience, co is the social parameter, the weight of the
combined experience of the swarm, p; is the parameter value corresponding
to the best solution ever personally visited by the given particle, and py, is
the parameter value corresponding to the best solution ever visited by any
particle (the current global best). Examination of equation (2.40) reveals
three components for updating a particle: (a) the previous velocity, (b)
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the current local best, and (c) the current global best. The particle will
retain some fraction (w) of its previous velocity while moving in the general
direction of the global (py) and local (p;) best solutions. These directions
are randomly weighted (71 and r3) and scaled by their respective cognitive
(c1) and social (c2) parameters. Figure 2.9 illustrates the particle swarm
optimization iterative procedure.

1. Initialize Particle Swarm
The initial swarm is assigned in a random fashion.

Move each particle using equation (2.40)
For each particle, revise current local best (p;), if necessary.
Revise current global best pg, if necessary.

Report average and globally best particle of the revised swarm.

A

If current iteration > max. iterations, stop.
Else, goto step 2.

Figure 2.9: Iterative Procedure for Particle Swarm Optimization

Since its introduction, the PSO algorithm has been studied rather in-
tensively and has been applied to a wide variety of applications. One of the
appeals of PSO is that it has relatively few configurable parameters (com-
pare PSO with the GA, which has a multitude of configuration parameters
along with several choices for selection, crossover and mutation methods).
Furthermore, PSO is straightforward to implement (just a few lines of vector
computation) and, like the GA, is readily parallelized.

2.4.4 Exhaustive Search (GRID)

OSTRICH provides a means by which the optimization design space may
be explored (possibly exhaustively) in a deterministic fashion via a gridding
procedure. The GRID algorithm instructs OSTRICH to evaluate the objec-
tive function at regularly spaced parameter intervals and write the ensemble
of results to a comma-separated output file (OstGrid.csv). The density of
the multi-dimensional grid of evaluation points is selected by the user, and
if the grid is sufficiently refined, the algorithm effectively operates as an
exhaustive search. Alternatively, a courser grid can be useful for contour-
ing the objective function surface and evaluating the non-linearity of the
problem.

36



Chapter 3

Pump-and-Treat
Optimization (PATO)

This chapter discusses the OSTRICH implementation of pump-and-treat
optimization, an example of constrained optimization which has been stud-
ied extensively in recent years. The PATO module can be used to optimize
various pump-and-treat strategies, including plume containment, mass re-
moval, and even a combination of mass-removal and plume-containment. In
fact, the PATO module is not limited to pump-and-treat remediation and is
suitable for solving a variety of well-field design problems (i.e. problems that
seek to identify optimal number, placement and pumping rates of wells).

3.1 Introduction to PATO

Remediation of sites containing contaminated groundwater is a continu-
ing problem for the industrialized world. At many contaminated sites, a
pump-and-treat system containing a series of extraction and injection wells
is installed to prevent further plume migration and/or remove contaminant
mass. Designers of such systems determine the number, location, and rates
of extraction and injection wells such that the remediation goal is realized at
the lowest cost. Given a modeling program which can adequately simulate
plume development, the OSTRICH PATO module automates the process of
pump-and-treat system design.
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3.2 PATO Constraints

OSTRICH uses the output of the modeling program to determine whether
or not the pump-and-treat constraints are being met. Constraints supported
in the PATO module are:

e Capacity: Capacity constraints limit total pumping so that the PAT
system does not overload an established treatment facility. Alterna-
tively, capacity constraints can be used to enforce a lower limit on
total pumping. For example, a lower limit may be used to ensure
that the pump-and-treat system meets some minimum extraction rate
established by a regulatory agency.

e Drawdown: Drawdown constraints prevent aquifer dewatering by lim-
iting the drop in water table elevation caused by pumping of the wells.

e Plume Containment: These constraints ensure that a given pump-and-
treat design prevents further plume migration. Depending on the type
of modeling performed (recall that OSTRICH is a model independent
package), different plume containment indicators may or may not be
available. For example, if only flow modeling is used (e.g. via MOD-
FLOW), then a standards compliance constraint will not be appropri-
ate (such a constraint would require a mass-transport model, such as
MT3D). The PATO module supports the following plume containment
constraints:

— Particle Capture: Particle tracking considers the advection of a
series of particles, initially located inside or along the perimeter of
the plume. Plume containment is suggested if all particles remain
within plume boundaries at the conclusion of the remediation
time frame.

— Hydraulic Gradient Control: Plume containment using hydraulic
gradient control is accomplished by specifying a series of control
locations along the perimeter of the plume. When the head gra-
dient at all control locations is oriented toward the interior of the
plume, plume containment is presumed to occur.

— Other: Other plume containment constraints (e.g. net flux out
of the plume and/or standards compliance at monitoring points)
can be realized via the general constraint format (see below).
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e General Constraints: Mass removal constraints, well proximity con-
straints and any other constraints not listed previously can be imple-
mented in the PATO module as General Constraints, so long as the
modeling program outputs the required constraint information in a

format parsable by OSTRICH.

3.3 Cost Formulations

PATO cost formulations can be divided into three categories: 1) total pump-
ing rate as a surrogate for cost, ii) operational costs only (i.e. energy, dis-
posal and labor costs), iii) both operational and capital costs, and iv) the
cost formulation of Mayer et al. (2002). These cost formulations, as imple-
mented in the PATO module are described below.

3.3.1 Total Pumping Rate

Neat Ninj
CrorQ = Cent Z |Qi ext| + ing Z |Qiinj | (3.1)
i=1 i=1
where,
Crorg is the cost as a function of total pumping rate
Qegt : cost conversion factor [$ per L3/T] for the total extraction rate
Quinj : cost conversion factor [$ per L3/T] for the total injection rate
Negt - the number of extraction wells
Ninj : the number of injection wells
Qi.ext : Tate of extraction of well 7.
Qi,inj : rate of injection of well 4

In the Ostrich input file, the user specifies the cost conversion factors (aeyt
and an;).
3.3.2 Operational Costs

This cost formulation considers the operational costs of extraction and injec-
tion wells. Formulations for operational costs within OSTRICH are based
on Mayer et al. (2002)(for energy costs) and RS Means ECHOS (2004)(for
all other operational cost components).

CopEr=[CL+Cg+Cy+Cp+Cy|T (3.2)
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where,

Copgr is the operational cost

C'p, : annual labor cost

Cg : annual energy cost

C4 : annual analytic cost

Cp : annual disposal cost

C'y : annual maintenance cost

T : remediation time frame (in years)

Labor Cost

Labor costs account for the hourly rate charged by professionals who must
maintain and operate the pump-and-treat system.

CL =Ry (110,/]?) (3.3)
where,

Ry, : the aggregate rate ($/hour) for all professional labor
NW : the number of active wells (both extraction and injection)

In the OSTRICH input file, the user specifies the labor rate (Rp).

Energy Cost

Energy costs reflect the electrical costs associated with operating the pumps
of extraction and injection wells. For extraction wells, these costs are af-
fected by the amount of lift required to pump the water out of the ground.

Next Ting
Cp =P Y |Qicat| (hi = Zgsq) + B1 Y _ |Quing] (3.4)
i=1 =1

where,

Bo : annual energy cost conversion factor for extraction

(1 : annual energy cost conversion factor for injection

h; : the head at extraction well 4

Zgs,i : the ground surface elevation at the ith extraction well

In the OSTRICH input file, the user specifies the annual cost conversion
factors (5p and f1).
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Analytic Cost

Analytic costs account for groundwater monitoring and sampling activities
that are performed during the course of the remedial action.

Cu=RaFa(10%x NW) (3.5)

where,
R4 : the analytic cost [$/sample]
F4 : the sampling frequency [samples/year]

In OSTRICH, the user must specify the analytic cost rate (R4) and the
sample frequency (Fjy).

Disposal Cost

Disposal costs are incurred when extracted groundwater is discharged to
publicly operated treatment works (POTW). Because POTW charges are
based on the volume of discharged water, disposal costs can become signifi-
cant in high flow rate systems.

C'D = RD (Qtot,ext - Qtot,inj) (36)

where,

Rp : the disposal rate [$ per year per L3/T of net discharge]
Qtot,eat : total extraction rate

Qtot,inj © total injection rate

Note that this formulation assumes that injected water is recycled from
extracted water, and such recycled water is not subject to disposal charges.
In OSTRICH, the user specifies Rp, the annual per-volume disposal charge.

Maintenance Cost

Maintenance costs are associated with replacement of pumps, treatment
components and other system parts that require regular service.

Cyv =Ry Y CoapFy (3.7)
where,

Rjs : the maintenance complexity factor
Ccoap : the capital cost
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Fy : a year-specific adjustment factor from RS Means ECHOS (2004)

Note that unless the user selects a cost formulation that includes capital
costs (Coppr+), Cam will be taken as zero. In OSTRICH, the user must
specify the Rj; and Fy parameters.

3.3.3 Operational and Capital Costs

This cost function adds consideration of capital costs to the operational costs
described previously (i.e. Coppr+ = Coper + Ccap). Capital costs are a
function of the cost of drilling a well and (for extraction wells) the cost of a
pump capable of pumping at the desired rate and depth.

NW
Corer+ = CopERr + B2(NW) + (3 Z (Zgsi — bi)
- = (3.8)

+ Z LKUP (FC,Q ‘Qi,ezt’ 7FC,H (ng,i - hz))
=1

where,

CopEgRr+ is the operational and capital cost
(Bo : the per-well fixed construction cost

Bs : the per unit length drilling cost

b; : the aquifer base at well ¢

LKUP : alookup table of pump costs
Fc g : units conversion factor for rate

Fc i @ units conversion factor for lift

The lookup table contains ranges of puming rate and lift along with as-
sociated pump costs. In this way, continuously varying lift and puming
rate values can be mapped to cost estimates of discrete pump sizes. The
OSTRICH software provides a default lookup table (in units of m3/day for
rate and meters for lift), based on the RS Means ECHOS (2004) publica-
tion. Users also have the option of explicity defining the table in the input
file, by including a ” LookupTable” section. Alternatively, users may supply
appropriate values for Fr g and Fg y to convert the OSTRICH table to an
alternative set of units.
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3.3.4 Mayer Costs

Mayer et al. (2002) provides a set of benchmark PATO problems, and the
suggested cost formulation has been included in the OSTRICH PATO mod-
ule, and is a combination of drilling and pumping costs.

Criavyer = CFprirt, x NW + CFpymp X Neat (3.9)

where,
CFpprrrr is the cost of drilling a well, and CFpyarp is the cost of pumping
(extraction wells only).

3.3.5 Time Value of Money

The operational (Copgr), and operational and capital (Copgr+) cost for-
mulations do not account for the time-value of money. If the user wishes to
include the time-value of money into cost calculations, then the time-frame
term (T) is replaced with the following expression:

1-(1- R[)fT
R

(3.10)

Where, Ry is the interest rate (in decimal units) and 7 is the remediation
time frame, in years. In OSTRICH, the user supplies values for both R;
and T. If Ry is set to zero (the default value), then the time-value of money
will not be incorporated into the cost function.

3.4 Penalty Functions

The pump-and-treat objective function is mathematically formulated as a
combination of the system cost function (either Crorg, Corer, CoPER+,
or Cyrayer) and a penalty function, Prorar, which accounts for the cost
of various constraint violations. Equations for Proras, and associated con-
straints are given below.

Prorar, = Pcpcy + Ppraw + Pprume + Paen (3.11)

where,

Prorar is the total penalty due to various constraint violations.
Popcey @ Penalty due to capacity constraint violations

Ppraw : Penalty due to drawdown constraint violations
Pprume @ Penalty due to plume capture constraint violations
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Pgen @ Penalty due to general constraint violations

The following subsections detail the penalty functions for the various con-
straints.

3.4.1 Capacity Constraint Penalty Function

Capcity constraints limit the total system pumping rate so that the treat-
ment system is not overloaded, and also so that some minimum pumping
rate is enforced. Therefore, the penalty is computed as either: i) the dif-
ference between the total rate and the maximum allowable rate, or ii) the
difference between the minimum rate and the total rate. This penalty is
then scaled via a conversion factor to represent dollar units.

ﬂCPCY (szn - Qtot) if Qtot < szn
Pepey = Berey (Qtot - Qmax) if Qtot > Qunaz (312)
0 if Qm'm < Qtot < Qmax

where,

Beopoy : converts the units of capcity violation (L3/T) to dollars ($)
Q1or : total pumping rate

Qmaz : maximum allowable pumping rate

Qmin : minimum allowable pumping rate

In OSTRICH, the user specifies Bcpcy, Qmaz and Qmin. Conversion factors
are generally set large so that optimization algorithms will avoid pump-and-
treat configurations that violate the constraint.

3.4.2 Drawdown Constraint Penalty Function

Drawdown constraints are applied to every active well in the PAT system.
The summation of all drawdown constraint violations are multiplied by a
penalty factor which converts drawdown units (L) to dollars ($).

NW
Poraw = Boraw >, Pprawi
=1 (3.13)
P — {(dhi — dhynag)  if dy > dynay
"o if dh; < dhoas

where,
Bpraw is the penalty factor
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Ppraw, is the drawdown penalty at the ith well
dhimaz 18 the maximum allowable drawdown ith well
dh; is the drawdown at the ith well

In OSTRICH, the user specifies Spraw and dhyq,. This formulation of
drawdown requires OSTRICH to first run the groundwater model with no
active wells, so that drawdown (defined as the change in head induced by
pumping) is explicitly computed. Such a formulation is useful if there is an
externally driven hard requirement on drawdown. Alternatively, the gen-
eral constraint format can be used to limit drawdown. This formulation is
useful if the only drawdown consideration is that the pumps must be fully
submersed in order to operate properly. The general constraint format uses
head at the wells (not the change in head), referenced against some minimum
allowable head. The equation below illustrates this alternative drawdown
formulation:

NW
Ppraw = Bpraw Z Ppraw,i
=1 (3.14)
Pomis — {(hmm — k) i hi < huin
’ if h; > hmin

where, h,ip, is the minimum allowable head a given well. In this formulation,
the user configures OSTRICH with Bpraw and hopin.

3.4.3 Plume Capture Constraint Penalty Function

The PATO mdule provides special constraint penalty formulations for hy-
draulic gradient control and particle capture plume containment strategies.
Other plume containment constraint penalties can be incorporated as a gen-
eral constraint penalty function.

m n
Pprume = Bucrap Y, Pucrapi+ Bpoap y_ Proapi (3.15)

i=1 i=1

where,

Bucrap : penalty factor for gradient control constraints

Boap : penalty factor for particle capture constraints

m : number of gradient control constraints

n : number of particle capture constraints

PrGrap,; : violation of the ith gradient control constraint

Ppcap,i : violation of the ¢th particle capture constraint
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Hydraulic Gradient Control Penalty Function

The hydraulic gradient control penalty function examines the difference in
head between control pairs, typically located along the perimeter of the
plume. Each control pair is associated with outside and inside head values,
and the constraint is that the inside head be less than the outside head
(causing flow inward to the plume).

(hin,i - hout,i) if hzm,z > hout,i
0 if Niing < houti

Prcrap: = { (3.16)

where,
hin; @ inside head at the ith control point
houti : outside head at the 7th control point

In OSTRICH, the user must specify Bgarap and the locations of the inside
and outside control points of each control pair.

Particle Capture Penalty Function

Particle capture constraint violations are computed as the squared distance
from a particles final resting position to the nearest plume boundary.

d% if particle outside plume

Ppcapi = { (3.17)

0 if particle inside plume

where, d; is the distance from the final position of the particle (following T
years of particle tracking) to the plume boundary. The user must specify the
starting coordinates of each particle, and provided a model executable that
is capable of particle tracking (for exmple, a batch file that runs MODFLOW
followed by MODPATH).

3.4.4 General Constraint Penalty Function

The constraints discussed in previous sections (i.e. gradient control, particle
capture, drawdown, and capacity) are unique in that there is code built
into the PATO module which assists in computing the penalty function.
Examples of such unique built-in computation are:

e running the model with no active wells, for computation of drawdown

e summation of the parameters included in a cpacicty contraint
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e computation of gradient differences for gradient control pairs
e computation of particle distances

Therefore, these constraint formulations calculate information about the
pump-and-treat system which are not normally outputs of the underlying
flow or transport model. Rather, the values of these special constraints
are derived from nomal model output. Conversely, general constraints have
values which can be read directly from model output. That is, general
constraint penalties are computed as the difference between a model-output
value and a user-specified target value. In this way, any numerical output
from the model may be used to constrain the pump-and-treat optimization.

g
Popn =) BauniPosn.
i=1

( - max z) if G’L > Gmax,i (318)
PGEN,Z' = (Gmm i i if G’L < Gmin,i
0 Gmin,i < Gz < Gmaw,i

where,

g is the number of general constraints

BaEn,i is the penalty factor for the ith general constraint

PcEn,; is the violation of the ¢th general constraint

G; is the value of the constraint, read directly from model output
Gmaz,i is the maximum allowable value of G;

Gmin, is the minimum allowable value of G

In OSTRICH, the user specifies the penalty factor and the minimum and
maximum allowable values for each general constraint.

3.5 Objective Function

The OSTRICH PATO module offers several techniques for combining cost
(Crorq, CorERr, CoPER+, or CrayER) and Prorar, to form the objective
function; namely the additive penalty method (APM), the multiplicative
penalty method (MPM), and the exponential penalty method (EPM). The
functional form of the three techniques, as applied in the PATO module, are

47



given below:

Fapu(NW,Q,X,Y) = Cost + Prorar
Frypu(NW,Q, X,Y) = max(Cost, Prorar)(1 + Prorar) (3.19)
Fppu(NW,Q,X,Y) = max(Cost, Prorar)exp(Prorar)

where,

Fapyr : objective function using APM

Fyrpar ¢ objective function using MPM

Frpyr ¢ objective function using EPM

Q : vector (Q = [Q1,Q2,...Qnw]") of pumping rates
Y : vector( Y = [Y1,Ys, ...Yw]?) of y-coordinates
X : vector( X = [Xx, X2, ...Xnw]|T) of x-coordinates
Cost : one of Crorg, CorEr, CorPER+ O CMAYER

In OSTRICH, the user provides ranges for the elements of Q, X, and Y
in the parameter section of the input file. Additionally, the user can choose
which method (APM, MPM, or EPM) should be used to combine the cost
and penalty functions.
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Chapter 4

Creating an OSTRICH Input
File

This chapter discusses the input file syntax of the OSTRICH program. If
OSTRICH is to be used for least-squares calibration, then the information
in this chapter will provide the user with all the information needed to
setup OSTRICH. If OSTRICH is to be used for general optimization, then
the user should also read Chapter 7 for information on how to prepare a
driver program to interface OSTRICH and the modeling program that is to
be optimized. Furthermore, if OSTRICH is to be used for pump-and-treat
optimization, then the user should also read Chapter 5. In any case, for
OSTRICH to work with a given modeling program, the modeling program
must meet the following requirements:

1. The modeling program must use a text-based input/output file format.

2. The modeling program must be able to run without prompting for
user intervention (e.g. the modeling program cannot prompt the user
to enter the name of an input file).

3. The output of the modeling program must be in a consistent format
that can be reliably parsed.
4.1 Input File Organization

OSTRICH utilizes a text-based input file format which specifies that config-
uration variables be organized on a line-by-line basis using loosely human-
readable syntax, where each line of text in the input file is assumed to be no
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longer than 160 characters. With a few exceptions (which will be explicitly
noted in the following text) the basic format for a line of input is:

<variable> <value>

Where <variable> is the name of the configuration variable and <value> is
the user-selected value for the variable. The whitespace separating <variable>
and <value> can be any number of spaces or tab characters, so long as the
resulting line does not exceed 160 characters.

Aside from any required model template files, there is only one input file
for OSTRICH, and it must be named ostIn.txt (Linux users: take note
of the case). Inside ostIn.txt, the OSTRICH configuration variables are
organized into groups, as follows:

e Basic Configuration: These variables describe the modeling program
that is to be optimized or calibrated and identify the optimization (or
regression) algorithm that OSTRICH should use.

e File Pairs: A file pair consists of a template file and a corresponding
model input file. The contents of the template file should be identical
to the paired model input file except that values of optimization (or
regression) parameters are replaced with unique parameter names de-
fined in the Parameters section. During optimization, OSTRICH uses
the template files to create syntactically correct model input files in
preparation of running the model at different parameter values. Figure
4.1 illustrates this process.

e Extra Files: Extra files are model input files not used by OSTRICH,
but required for proper execution of the model. In some parallel envi-
ronments, OSTRICH will need to know about these extra input files.

e Observations: For calibration problems, the Observations group is
used to list the observation names, values, and weights, along with
parsing instructions for reading simulated observations from model
output files.

e Parameters: This configuration group describes the parameters to be
calibrated or optimized. Parameter configuration variables include
names, initial values, lower and upper bounds, and input, output and
internal transformations. Parameters in this section are real and con-
tinuously varying.
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1. Given a set of parameters (X), evaluate the objective function, f(X)
(a) Use template files to generate model input files having desired pa-
rameters (X)
(b) Execute model program (or driver program, if optimizing)
(c) Read model output files and compute the objective function, f(X)

i. If calibrating: use observation variables to read simulated ob-
servations (Ysim) from model output files and compute WSSE
objective function.

ii. If using PATO, use response variables to read simulated re-
sponse data from model output files and compute cost and
penalty functions.

iii. If optimizing: read objective function value from the driver
program output file.

2. Proceed to next step of algorithm.

Figure 4.1: OSTRICH Usage of File Pairs

e Integer Parameters: This configuration group describes those para-
meters to be calibrated or optimized which can take on only integer
values. Like their real-parameter counterparts, integer parameter con-
figuration variables include names, initial values, and lower and upper
bounds.

e Combinatorial Parameters: This configuration group describes those
parameters to be calibrated or optimized which can take on a discrete
set of values, which can be in the form of real, integer or string (text)
values. Like integer and real parameters, combinatorial parameter
configuration variables include names and initial values; but instead
of lower and upper bounds, the user must supply a complete list of
the discrete values that may be assigned to the parameter.

e Tied Parameters: Tied parameters are parameters which are computed
as a function of integer, real or combinatorial parameter values.

Xtied = fried(X1, X2, ... Xpn,c1,¢2,...Cm) (4.1)

Where, X¢;eq is the tied parameter value which is a function of n non-
tied parameters (X1,Xo,...X,,) and a set of m coefficients (c1,c2,...c),
which depend on the functional form of fyeq(). Tied parameter con-
figuration variables include: i) the name of the tied parameter, ii) a
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list of the names of non-tied parameters used in the computation of
the tied-parameter value, iii) a specification of the functional form of
friea(), and iv) a list of coefficients used in the evaluation of fi;eq().

Algorithms: Each algorithm has its own configuration group, wherein
the user can specify the values for various algorithm variables.

Math and Statistics: The variables in this group describe the finite
difference method that OSTRICH will employ, if the chosen algorithm
requires such computation. If calibration is being performed, addi-
tional variables in this group are used to request various statistical
output.

One-Dimensional Search: This group is used for configuration of the
method (Brent or Golden-Section) and convergence criteria of the one-
dimensional search algorithm that underlies each of the unconstrained
numerical optimization procedures described in Section 2.3.

Although the list of configuration groups is rather extensive, most of the
groups do not need to be specified, as they are initialized within OSTRICH
to reasonable defaults if the user does not set a value for them. Groups
containing variables that must be configured by the user are: Basic Config-
uration, File Pairs, Observations (if calibrating), and Parameters. The fol-
lowing sections discuss the particular syntax required for each of the groups
that may be included in the ostIn.txt file.

4.2 Basic Configuration

The following variables make up the basic configuration group:

e ProgramType: This variable tells OSTRICH which algorithm should
be used to perform the optimization or calibration. The syntax is:

ProgramType <value>

Where <value> can be any one of the following:

— GridAlgorithm
— GeneticAlgorithm : (this is the Real-coded GA)
— BinaryGeneticAlgorithm : (this is the Binary-coded GA)

ParticleSwarm
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— SimulatedAnnealing : (this is the Continuous SA)

— DiscreteSimulatedAnnealing : (this is the Discrete SA)

— VanderbiltSimulatedAnnealing : (this is the Vanderbilt SA)
— Levenberg-Marquardt : (this is the default)

— Powell

— Steepest-Descent

— Fletcher-Reeves

— RegressionStatistics : Computes regression statistics at the

location specified by the initial parameter values.

e ModelExecutable : Specifies the model (or driver program, if opti-
mizing) executable. The syntax is:

ModelExecutable <value>

Where <value> is the full path and filename of the executable. On
Windows-based PC’s the path and filename may contain spaces; on
Linux machines, spaces are problematic. If the executable is in the
same directory as the working directory from which the program is
executed, then the path information may be omitted.

e ModelSubdir : In some parallel environments, creation of a dynamic
subdirectory prevents parallel runs from clobbering each others input
and output files. The syntax is:

ModelSubdir <value>

If set to any value other than ’.” (which is the default), the value of
ModelSubdir will cause OSTRICH to create unique subdirectories for
the model runs of each parallel processor. The subdirectory names are
created by concatenating the ModelSubdir value with each processors
MPI id number.

e ObjectiveFunction : Allows the user to select the objective function
to be optimized. The syntax is:

ObjectiveFunction <value>
Where <value> can be any one of the following:

— WSSE : Weighted sum of squared error calibration (this is default)
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— PATO : Pump-and-treat optimization
— GCOP : General Constrained Optimization (see Chapter 6)
— USER : User-defined objective function (see Chapter 7)

e ParallelModelExec : Tells OSTRICH to run the model in parallel.
If this line is present in the ostIn.txt file, OSTRICH will check for
available parallel resources and assemble and submit a PBS script to
the parallel cluster whenever the model needs to be run. If the parallel
cluster is unavailable or if needed PBS script commands (e.g. gsub,
showbf) are unavailable, then OSTRICH will report the error and
abort.

4.3 File Pairs

The syntax for this section is:

BeginFilePairs
<templatel><sep><inputl>
<template2><sep><input2>

<templateN><sep><inputN>
EndFilePairs

Where BeginFilePairs and EndFilePairs are parsing tags that wrap a list
of file name pairs such that <templatel> ... <templateN> are the names of
the template files corresponding to the <input1> ... <inputN> model input
files, and <sep> is a separator that tells OSTRICH when one filename ends
and the next begins. Valid file name separators are the semi-colon character
’;7 and the TAB character. Spaces are not valid separator characters because
OSTRICH allows spaces within file names.
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4.4 QObservations

Note:The observations section is only needed when the optimization objective
1s calibration. The syntax for this section is:

BeginObservations
<namel> <valuel> <weightl> <filel><sep><keywordl> <linel>

<name2> <value2> <weight2> <file2><sep><keyword2> <line2>

<nameN> <valueN> <weightN> <fileN><sep><keywordN> <linelN>

EndObservations

Where BeginObservations and EndObservations are parsing tags that
wrap a list of observations, which are made up of the following variables:

e <name> : The name of the observation, each observation should have
a unique name.

e <value> : The field-measured value of the observation.

e <weight> : The weight assigned to the observation. See Section 4.4.1
for guidelines to assigning observation weights.

e <file> : The model output file where the simulated value of the ob-
servation will be stored following execution of the modeling program.

e <keyword>, <line>, and <col>: These variables tell OSTRICH how
to extract model simulated observation values from the model output
file. First, OSTRICH Positions the output file parser at the first line
in <file> containing <keyword>. If OSTRICH should begin parsing
at the beginning of the file, then <keyword> should be set to 0ST_NULL
Next, the parser uses the <line> and <col> values to locate the po-
sition of the desired observation value. This value is then extracted
and converted to a double precision number. The parsing process is
repeated until all observation values are read.

The <1ine> variable tells OSTRICH how many lines must be skipped,
starting from the line containing <keyword>, before the line containing
the desired observation value is reached. Therefore, if the observation
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value is on the same line as <keyword>, then <line>=0; if the ob-
servation value is on the line immediately following <keyword>, then
<line>=1, and so on.

The <col> variable tells OSTRICH which column in the line contains
the desired observation value; where each column is separated by the
<tok> variable, and column numbering begins at 1.

The <sep> term is the filename separator described in the File Pairs
section (Section 4.3), and the <tok> variable is used to specify an
alternative column separator to use when parsing the model output
file; the default column separator is whitespace (any number of space
or TAB characters). If model output uses an alternative format (such
as comma separated values), then the <tok> variable should be set
accordingly.

Figure 4.4 illustrates the parse procedure using an example observation
list (Figure 4.2) and observation output file (Figure 4.3).

#0bservation Configuration

ObsToken s

BeginObservations

#name value weight file keyword 1line col
obsl 68.23 1 headerr.dat computed 2 3
obs2 68.10 1 headerr.dat computed 3 3
obs3 68.23 1 headerr.dat computed 4 3
EndObservations

Figure 4.2: Example Observation Group

Assigning Observation Weights

There are several ways to assign observation weights, and the appropriate
method depends on the particulars of the calibration problem. The most
straightforward method is to assign all observations an equal value (typically
1), making the calibration an un-weighted sum of squared errors. This tech-
nique is commonly employed when all observations are of the same type (e.g.
head observations) and the investigator is confident that all observations are
of equal validity (i.e. there is no reason to suspect that some observations
are more or less accurate than others).
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OUTPUT OF ACME GROUP GROUNDWATER FLOW PROGRAM
LIST OF COMPUTED VERSUS MEASURED HEADS

X , ¥y , computed head , measured head
17.64 , 77.24 , 68.3652 , 68.23
24.43 , 77.12 , 67.9723 , 68.10
17.32 , 70.64 , 68.3618 , 68.23

Figure 4.3: Example Model Output

(a)
(b
()
(d)

(a)

1. General Parse Algorithm

Locate <keyword>

) Skip <line> lines

Read and convert <col>*" column

If num. obs. read = total num. obs., stop.
Else, return to (a).

2. Application of Parse Algorithm to Figures 4.2 and 4.3

1% Tteration (Read obs1)

Locate ’computed’ — ’computed head , measured head’
Skip 2 lines — ’17.64 , 77.24 , 68.3652 , 68.23’
Read and convert 3" column — obsl value = 68.3652

2"? Tteration (Read obs2)

Locate ’computed’ — ’computed head , measured head’
Skip 3 lines — '24.43 , 77.12 , 67.9723 , 68.10’
Read and convert 3"¢ column — obs2 value = 67.9723

37 Tteration (Read obs3)

Locate ’computed’ — ’computed head , measured head’
Skip 4 lines — '17.32 , 70.64 , 68.3618 , 68.23’
Read and convert 3"¢ column — obs3 value = 68.3618

Figure 4.4: OSTRICH Parse Algorithm for Model Output

When observations are of mixed types (e.g. head and flow observations),
or if they are not of equal validity, then the weights should be assigned to
reflect these discrepancies. Hill (1998) suggests assigning weights equal to
1/sdops,, where sdyps, is the standard deviation of the ith observation and is
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a measure of the error or uncertainty inherent in the observation. Units of
sdops; are the same as obs;, so a weight of 1/sd,ps, results in a dimension-
less WSSE objective function; resolving the problem of mixed observation
types. Additionally, a weighting of 1/sds, causes observations with low un-
certainty to be more influential than observations that have a high amount of
uncertainty, thus compensating for varying levels of observation uncertainty.

One problem with the 1/sdgs, weighting technique is that the inves-
tigator may not have sd,ps, readily available. Hill (1998) suggests some
techniques for estimating sdps, based on professional judgement. The gen-
eral idea is to estimate a range (R) of possible values for the observation in
question and treat this range as a 95% confidence interval. If the observa-
tion is assumed to be normally distributed, then this 95% CI can be used
to obtain an estimate of standard deviation:

R

7 1 (
2 0.95

Sdobsi =

Where Z; ;5 is the inverse cdf of a normally distributed variable, computed
at the 95% confidence level (Z; 45 ~ 1.96). The following list contains some
suggestions for estimating the range:

e If multiple observations of the same type (e.g. multiple head ob-
servations) are available, then the combined range of these observa-
tions can be used to approximate R. For example, if the investiga-
tor has 100 head observations ranging from 100 to 300 meters, then
R =300 — 100 = 200 meters.

e If the investigator knows from past experience that the observations
are accurate + some value, then twice this value could be used as an
estimate of the range.

e If the investigator has a sense of the possible high and low values
(due to seasonal fluctuations, for example) of a given observation, the
difference could be used as a range estimate.

e If measurements are taken from published sources of known data qual-
ity (e.g. USGS digital elevation maps), the data quality information
can be used to estimate the range.

Sometimes observations are of the same type, but have dramatically
different magnitudes. For example, in aqueous and soil chemistry, it is not
uncommon to have some species with concentrations on the order of [mg/L],
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while other species may be on the order of [ug/L] or even [pg/L]. In such
cases, calibration using consistent units and uniform weighting can mute the
influence of the low-concentration species, which are typically the species
greatest interest. Therefore, two alternatives may be considered: (a)express
concentrations in different units, but use uniform weighting; or (b) use con-
sistent units, but assign greater weight to low-concentration species.

4.5 Parameters
The syntax for this section is:

BeginParams
<namel> <initVall> <lowBnd1> <uprBndl1> <txInl> <txOstl> <tx0Outl>
<name2> <initVal2> <lowBnd2> <uprBnd2> <txIn2> <tx0st2> <tx0ut2>

<nameN> <initValN> <lowBndN> <uprBndN> <txInN> <tx0stN> <txOutN>

EndParams

Where BeginParams and EndParams are parsing tags that wrap a list of
model parameters made up of the following variables:

e <name>: The name of the parameter, parameter names must be unique
and correspond identically to the names used in the template file(s).

e <initVal> : Initial value of the parameter, in units specified by txIn>.
e <lowBnd>: Lower bound of the parameter, in units specified by txIn>.
e <uprBnd>: Upper bound of the parameter, in units specified by txIn>.

e <txIn>, <tx0st>, and <tx0ut> : These specify the type of transfor-
mation units that OSTRICH should use. Transformations allow the
user to take advantage of any linearity relationships that exist between
a transformed parameter value (e.g. logio or log.) and the underly-
ing model. Three kinds of transformations are provided so that the
user can work with input and output transformations that are differ-
ent than the internal transformation. Typically, the user will request
no input and output transformation (so that input and output values
are the native units of the parameter), while instructing OSTRICH
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to perform a transformation internally. This approach allows the al-
gorithm to take advantage of a transformed relationship without re-
quiring manual conversion of input and output values. However, it
should be noted that some statistical output is reported in terms of
tx0st units, regardless of the value of txOut; namely (a)parameter
variance-covariances, (b) observation influence, (c)parameter sensitiv-
ity, (d) model linearity, and (e) matrices. OSTRICH supports the
following transformation values:

— none : no transformation.

— 1log10 : log base 10 transformation.

— 1n : natural logarithm transformation.

4.6 Integer Parameters
The syntax for this section is:

BeginIntegerParams
<name;> <init;> <low;> <upri>

<namep> <initge> <lowg> <upra>

<namey> <inity> <lowy> <upry>

EndIntegerParams

Where BeginIntegerParams and EndIntegerParams are parsing tags that
wrap a list of integer model parameters made up of the following variables:

e <name>: The name of the parameter, parameter names must be unique
and correspond identically to the names used in the template file(s).

e <init> : Initial value of the parameter.
e <low> : Lower bound of the parameter.

e <uprBnd> : Upper bound of the parameter.
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4.7 Combinatorial Parameters

The syntax for this section is:

BeginCombinatorialParams
<name;> <typei> <init;> <n1> <val><TAB><valy><TAB>...<val, >

<namey> <typez> <initg> <np> <valg><TAB><vals><TAB>...<val,,>

<namey> <typen> <inity> <nny> <valy><TAB><valny><TAB>...<val,,>

EndCombinatorialParams

Where BeginCombinatorialParams and EndCombinatorialParams are pars-
ing tags that wrap a list of combinatorial model parameters made up of the
following variables:

e <name>: The name of the parameter, parameter names must be unique
and correspond identically to the names used in the template file(s).

e <type> : The type used in representing the combinatorial parameter.
Valid type values are:

— real : If this type is selected, values of init, and <val;>,<vals>,...,<val,>
must be real, and input in either decimal or scientific notation.
This type would be appropriate if the model parameter could take
on a finite number of real values (for example, the thickness of
a material may only be available in 1/16, 1/8, 1/4 and 1/2 inch
sizes).

— integer : If this type is selected, values of init, and <val;>,<vals>,...,.<val,>
must be entered as integers.

— string: If this type is selected, values of init, and <val;> <valy>,...,<valy,>
must be entered as text strings. For example, a combinatorial
model parameter made up of string types might be used to enable
and disable different aspects of a model by inserting appropriate
text in the model input file.

e <init> : Initial value of the parameter.
e <n> : Number of combinations to consider.

e <vali><vals>,...,<val,> : A list of the n combinatorial values that
are valid for the given parameter. Values in the list must be separated
by <TAB> characters.

61



4.8 Tied Parameters

The syntax for this section is:

BeginTiedParams
<name;> <np;> <pname;> <pnames>.. .<pnamenp1> <type;> <type,data1>

<namey> <np2> <pname;> <pnames>...<phamepp,> <typesz> <type_datas>

<namey> <npy> <pname;> <pnames>...<pname,, > <typen> <type datay>

EndTiedParams

Where BeginTiedParams and EndTiedParams are parsing tags that wrap a
list of tied model parameters made up of the following variables:

e <name> : The name of the tied parameter, parameter names must be
unique and correspond identically to the names used in the template

file(s).

e <np> : The number of non-tied parameters used in the calculation of
the tied parameter value. Valid values for <np> depend on the choice
of functional relationship, specified in the <type> field.

e <pname;>,<pnamey>...<pname,p>: The list of non-tied parameter names
that are used in the computation of the tied-parameter.

e <type> : The type of function relationship between the tied and non-
tied parameters. Valid values for <type> are:

— linear : A linear relationship between the tied and non-tied
parameter(s). If this choice is selected, the value of <np> must
be either 1 or 2.

— exp : An exponential relationship between the tied and non-tied
parameter. If this choice is selected, the value of <np> must be
1.

— log: A log relationship between the tied and non-tied parameter.
If this choice is selected, the value of <np> must be 1.

— dist : The tied parameter is the distance between two (x,y) coor-
dinates, where these coordinates are parameters of the optimiza-
tion/calibration. If this choice is selected, the value of <np> must
be 4, and the ordering of parameter names should correspond to
(x1,y1),(x2,¥2)-
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— wsum : The tied parameter is the weighted sum of the listed
parameters.

e <type_data> : Depending on the choice of <type>, the syntax of this
field varies, as described below:

— If <type> = "linear” and <np> = "1" : The functional relation-
ship is linear and has the form:

Xtied = 0+ 1 X (4.3)

where, Xy;.q is the tied-parameter value, ¢y and c; are coefficients
and X is the non-tied parameter value. <type_data> should be
replaced with the following syntax:

<cy1> <cp>

— If <type> = "1linear” and <np> = "2" : The functional relation-
ship has the form:

Xiied = 3X1 X9+ 9 X9+ 1 X1 + ¢ (4.4)

where, Xyeq is the tied-parameter value, ¢y, c1, c2, and c3 are
coefficients, and X; and X5 are the non-tied parameter values.
<type_data> should be replaced with the following syntax:

<C3> <C2> <C]_> <C0>
— If <type> = "exp” : The functional relationship has the form:
Xiiea = 20! + ¢q (4.5)

where, Xj;0q is the tied-parameter value, ¢g, ¢1 and cy are coeffi-
cients, b is the exponent base, and X is the non-tied parameter
value. <type_data> should be replaced with the following syntax:

<base> <cy> <c1> <cp>

where <base> can be a numerical value, or exp if the natural base
is to be used.

63



— If <type> = "1og” : The functional relationship has the form:
Xtied = c3loga(caX + 1) + co (4.6)

where, Xyq is the tied-parameter value, cg, c1, ¢y and c3 are
coefficients, a is the logarithm base, and X is the non-tied para-
meter value. <type_data> should be replaced with the following
syntax:

<base> <c3> <cg> <c1> <cp>

where <base> can be a numerical value, or 1n if the natural log-
arithm is to be used.

— If <type> ="dist” : If the distance type is selected, the <type_data>
field is not parsed and may be omitted.

— If <type> = "wsum” : If the weighted sum type is selected, the
<type_data> field should list the values of each weight, using the
same ordering as the preceding named list of parameters.

4.9 Extra Files

The syntax for this section is:

BeginExtraFiles
<filel>
<file2>

<filelN>
EndExtraFiles

Where BeginExtraFiles and EndExtraFiles are parsing tags that wrap a
list of extra model input files. If the model is to be executed in a dynam-
ically generated subdirectory (as specified by the ModelSubdir variable),
then extra files must be identified so that OSTRICH can copy them to
the subdirectory. For serial execution, creation of a dynamic subdirectory is
unnecessary, and specification of the extra files section is not required. How-
ever, in some parallel environments (such as a dual-processor environment
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with shared file space), creation of a dynamic subdirectory (and therefore
specification of extra files) is needed so that parallel model runs don’t clob-
ber each others input and output files.

4.10 Algorithms

The following sub-sections describe the configuration of the various algo-
rithms that are available within OSTRICH. When OSTRICH parses the
input file, only the algorithm section which matches the ProgramType vari-
able will be evaluated. Also, OSTRICH will use reasonable default values
for any algorithmic parameters that are not specified by the user in the
algorithm section.

4.10.1 Levenberg-Marquardt

The syntax for this section is:

BeginlLevMar

InitialLambda <value>
LambdaScaleFactor <value>
MoveLimit <value>
AlgorithmConvergenceValue <value>
LambdaPhiRatio <value>
LambdaRelReduction <value>
MaxLambdas <value>
MaxIterations <value>
EndLevMar

Where BeginLevMar and EndLevMar are parsing tags that wrap a list of
configuration variables:

e InitialLambda : Initial Marquardt A (default is 10.00)

e LambdaScaleFactor : Marquardt A scale factor; the factor by which
A is multiplied or divided during A adjustment. (default is 1.10)

e MoveLimit : Parameter move limits; the maximum adjustment of a
parameter (relative to the range of the parameter) that is allowed in
a single iteration. (default is 0.10)
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e AlgorithmConvergenceValue : Algorithm convergence value; regres-
sion will stop when the relative reduction in ® over two iterations is
less that this value. (default is 1E-4)

e LambdaPhiRatio : ® reduction criteria for deciding on optimal A ad-
justments; when relative reduction in ® is greater than this value, A
adjustment for the given iteration is complete. (default is 0.30)

e LambdaRelReduction : ® reduction criteria for abandoning A\ adjust-
ment; when relative reduction in @ is less than this value, A adjustment
for the given iteration is halted. (default is 0.01)

e MaxLambdas : Max. A\ adjustments per iteration. (default is 10)

e MaxIterations : Max. iterations in overall method. (default is 30)

4.10.2 Powell’s Method

The syntax for this section is:

BeginPowellAlg
ConvergenceVal <value>
MaxIterations <value>
EndPowellAlg

Where BeginPowellAlg and EndPowellAlg are parsing tags that wrap a
list of configuration variables:

e ConvergenceVal : Algorithm convergence value; optimization will
stop when the relative reduction in ® over three iterations is less that
this value. (default is 1E-6)

e MaxIterations : Max. iterations in overall method. (default is 20)

4.10.3 Steepest-Descent

The syntax for this section is:

BeginSteepDescAlg
ConvergenceVal <value>
MaxIterations <value>
EndSteepDescAlg
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Where BeginSteepDescAlg and EndSteepDescAlg are parsing tags that
wrap a list of configuration variables:

e ConvergenceVal : Algorithm convergence value; optimization will
stop when the relative reduction in ® over two iterations is less that
this value. (default is 1E-6)

e MaxIterations : Max. iterations in overall method. (default is 20)

4.10.4 Fletcher-Reeves

The syntax for this section is:

BeginFletchReevesAlg
ConvergenceVal <value>
MaxIterations <value>
EndFletchReevesAlg

Where BeginFletchReevesAlg and EndFletchReevesAlg are parsing tags
that wrap a list of configuration variables:

e ConvergenceVal : Algorithm convergence value; optimization will
stop when the relative reduction in ® over three iterations is less that
this value. (default is 1E-6)

e MaxIterations : Max. iterations in overall method. (default is 20)

4.10.5 Genetic Algorithm

The syntax for this section is:

BeginGeneticAlg
PopulationSize <value>
MutationRate <value>
Survivors <value>
NumGenerations <value>
ConvergenceVal <value>
EndGeneticAlg

Where BeginGeneticAlg and EndGeneticAlg are parsing tags that wrap a
list of configuration variables:
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e PopulationSize : The population size. (default is 50)
e MutationRate : Mutation rate for child members. (default is 0.05)

e Survivors : Number of elites who pass unchanged to next generation.

(default is 1)

e NumGenerations : Number of generations in optimization. (default is
10)

e ConvergenceVal : This is the convergence value for the algorithm. If
the relative difference between the current minimum and the median
of the latest generation is less than or equal to this value, the algorithm
will halt. (default value is 0.0001)

4.10.6 Simulated Annealing

The syntax for this section is:

BeginSimulatedAlg
NumInitialTrials <value>
TemperatureScaleFactor <value>
OuterIterations <value>
InnerIterations <value>
ConvergenceVal <value>
EndSimulatedAlg

Where BeginSimulatedAlg and EndSimulatedAlg are parsing tags that
wrap a list of configuration variables:

e NumInitialTrials : This is the number of uphill moves that are
attempted in the melting process. Larger values will result in more
accurate estimates of the initial temperature, but at the expense of
additional model runs. (default is 100)

e TemperatureScaleFactor : After each (outer) iteration, the tempera-
ture is reduced by multiplying by this value (therefore, TemperatureScaleFactor
< 1.00). (default value is 0.90)

e OuterIterations : This is the number of iterations in the overall
algorithm, where one outer iteration corresponds to one temperature
reduction. (default value is 20)
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e InnerIterations : This is the number of iterations in each temper-
ature equilibration, where one inner iteration corresponds to a single
transitional move. (default value is 10)

e ConvergenceVal : This is the convergence value for the algorithm. If
the relative difference between the current minimum and the median
of the latest series of equilibration moves is less than or equal to this
value, the algorithm will halt. (default value is 0.001)

4.10.7 Particle Swarm Optimization

The syntax for this section is:

BeginParticleSwarm

SwarmSize <value>
NumGenerations <value>
ConstrictionFactor <value>
CognitiveParam <value>
SocialParam <value>
InertiaWeight <value>
InertiaReductionRate <value>
ConvergenceVal <value>
EndParticleSwarm

Where BeginParticleSwarm and EndParticleSwarm are parsing tags that
wrap a list of configuration variables:

e SwarmSize : The size of the particle swarm. (default is 20)

e NumGenerations : The number of generations in the PSO. (default is
50)

e ConstrictionFactor : The value of x in the PSO algorithm. Setting
x less than 1.00 will restrict the searchable design space after each
iteration and accelerate convergence, but can lead to entrapment in
local minima. (default is 1.00)

e CognitiveParam : The weight given to the local knowledge of each
particle. High values (relative to the SocialParam) will cause particles
to bias their search to the area surrounding each particles local best.
(default is 2.00)
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SocialParam : The weight given to the global (social) knowledge
of each particle. High values (relative to the CognitiveParam) will
cause particles to bias their search to the area surrounding the global
best.(default is 2.00)

InertiaWeight : The weight (w) given to the velocity used in each
particles previous generation of movement. High values tend to cause
particles to ’overshoot’ their destination, which is desirable in initial
generations because it allows for more complete exploration of the
design space. (default is 1.2)

InertiaReductionRate : Relative reduction rate for w. As the opti-
mization proceeds, w is reduced by InertiaReductionRate * 100% of
its current value. This reduces overshoot over successive generations
such that late-generation searches are clustered around the global best
solution. If this value is set to linear, then the inertia weight is lin-
early reduced from it’s initial value to a final value (i.e. at the last
generation) of zero.(default value is 0.10)

ConvergenceVal : This is the convergence value for the algorithm. If
the relative difference between the current minimum and the median
of the latest swarm evaluation is less than or equal to this value, the
algorithm will halt. (default value is 0.001)

4.10.8 GRID Algorithm

The syntax for this section is:

BeginGridAlg

Dimensions <d1> <d2> . . . <dn>
EvalsPerIter <value>

EndGridAlg

Where BeginGridAlg and EndGridAlg are parsing tags that wrap a list of
configuration variables:

e Dimensions : The size of the multi-dimensional grid, where <di> is
the dimension of the i-th parameter.

e EvalsPerIter : The number of model evaluations per ’iteration’ of
the GRID algorithm. If running in parallel, setting this value equal to
the number of available processors will achieve the maximum speedup.
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4.11 Math and Statistics

The syntax for this section is:

BeginMathAndStats

DiffType <value>
DiffRelIncrement <value>
CI Pct <value>
StdDev

StdErr

CorrCoeff

NormPlot

Beale

Linssen

CooksD

DFBETAS

Matrices

Confidence

Sensitivity

EndMathAndStats

Where BeginMathAndStats and EndMathAndStats are parsing tags that
wrap a list of configuration variables:

e DiffType : Selects the method of computing finite differences. OS-
TRICH supports the following values for DiffType:

forward : Forward difference; finite diff. is computed using cur-
rent parameter (z) and a forward step (x + Az). (this is the
default method)

outside : Central difference; finite diff. is computed using a
forward step (z + 3Axz) and a backward step (z — $Az).

parabolic : Parabolic interpolation; finite diff. is computed from
a parabola (f = axz? + bz + ¢) that is fitted through the current
parameter, and forward and backward steps.

best-fit : Least-squares fit; finite diff. is computed via the least
squares fit of a line (f = ax + bx) through points at the current
parameter, and forward and backward parameter steps.
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DiffRelIncrement : Relative increment (or decrement) to use as the
finite difference step size (Ax). Value is relative to the range of each
parameter. (default is 0.01)

CI_Pct : Confidence interval percentage level. Probability of the de-
sired confidence interval. (default is 95.00)

StdDev : If this line is present, OSTRICH will report the error variance
and the standard error of the regression.

StdErr : If this line is present, OSTRICH will report the parameter
variance-covariance matrix and the standard error of each parameter.

CorrCoeff : This line causes OSTRICH to report parameter correla-
tion coefficients.

NormPlot : This line causes OSTRICH to report a list of normalized
residuals along with the R?V correlation coefficient.

Beale : This will cause OSTRICH to report Beale’s measure of non-
linearity.

Linssen : If this line is present, OSTRICH will report Linssen’s mea-
sure of nonlinearity.

CooksD : This line causes OSTRICH to report Cook’s D measures of
observation influence.

DFBETAS : This line causes OSTRICH to report the DFBETAS mea-
sures of observation influence.

Matrices : This line causes OSTRICH to output the Jacobian, Normal
and inverse Normal matrices.

Confidence : This will cause OSTRICH to report linear confidence
intervals for each parameter along with the Volume Ratio (E/R) com-
parison of joint confidence ellipsoids and confidence blocks.

Sensitivity : If present, OSTRICH will report parameter sensitivi-
ties.
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4.12 One-Dimensional Search

The syntax for this section is:

BeginldSearch
1dSearchConvergeVal <value>
1dSearchMethod <value>
EndildSearch

Where BeginidSearch and EndldSearch are parsing tags that wrap a list
of configuration variables:

e 1dSearchConvergeVal : Convergence value for the one-dimensional
search. (default is 1E-4)

e 1dSearchMethod : Search method, either Brent or GoldenSection
(Brent is the default)

4.13 Comment Lines

Comment lines in the OSTRICH input files have the '#’ symbol as the first
character. These lines are ignored by the OSTRICH input file parser, and
allow the user to supply additional information that can make the input
file more readable. Additionally, comments allow the user to disable con-
figuration parameters and/or observations without completely deleting the
corresponding lines. Sample comment lines can be found in the examples
throughout Chapter 10.

4.14 Case Sensitivity

Variable names and section headings in the OSTRICH input file are case
sensitive; e.g. using beginfilepairs instead of BeginFilePairs will re-
sult in a parsing error. Meanwhile, values of variables are case insensitive;
e.g. GENETICALGORITHM, geneticalgorithm, and GeneticAlgorithm will
all correctly select the genetic algorithm ProgramType.

73



Chapter 5

Using OSTRICH for
Pump-and-Treat
Optimization

This chapter discusses the various input file sections that must be config-
ured to use OSTRICH for solving pump-and-treat optimization problems
(see Chapter 3). When using OSTRICH for PATO, start by following the
guidelines in Chapter 4 to fill out the following configuration groups:

e Basic Configuration

— ObjectiveFunction : Be sure and set this variable to PATO.

— ModelExecutable : Be sure to specify a model (or batch file)
that will generate the necessary output for OSTRICH to evaluate
constraint violations. If more than one executable is needed, (as
in a MODFLOW/MODPATH particle tracking scenario) a batch
file should be created and supplied as the model executable.

e File Pairs : Treat the template file pairs just as you would any opti-
mization or calibration exercise. There should be a template file pair
for any input files containing well parameters (i.e. pumping rate, x-
and y- coordinates).

e Extra Files : Treat the extra files section just as you would any opti-
mization or calibration exercise.

e Observations : The observations group is not used in PATO. Instead
an analogous group, the Response group, is used. The Response group
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is filled in which information on how to parse the model output files
to retrieve information (such as particle locations) that is required for
computation of the various penalty functions described in Section 3.4.

e Parameters : Include information on initial, upper and lower values
for PATO parameters. Typically there will be three parameters for
each well, corresponding to pumping rate and x- and y- coordinates.
Coordinates may be continuous, integer or combinatorial parameters;
the appropriate choice depends to some extent on the type of spatial
discretization used by the underlying modeling program (e.g. analytic,
finite difference or finite element). Pumping rates are typically treated
as continuous variables, but integer or combinatorial parameterization
could also be used.

e Tied Parameters : Set up any desired tied parameters as you would
for any optimization/calibration exercise. Typical uses for tied para-
meters in PATO are:

— Head at a Well : Some modeling programs cannot compute head
at the exact location of a well. In such cases, tied parameters
can be used to slightly offset the well location for the purposes of
computing head at the well.

— Conversion from global to local coordinates. Some modeling pro-
grams (such as MODFLOW) use a grid-based row-column index-
ing scheme for well-location, whereas user’s may be more com-
fortable working in global coordinates. Thus, a tied parameter
could be configured to convert from grid coordinates to global
coordinates.

e Algorithms : Set up the desired optimization algorithm as you would
any optimization/calibration exercise.

e Math and Statistics : Statistical output for PATO objective is not
meaningful, but if a gradient-based algorithm is used, this section is
useful for configuring finite-difference variables.

e One-dimensional Search : If appropriate for the chosen optimization
algorithm, set up the one-dimensional search parameters as you would
any optimization/calibration exercise.

Having fully configured the standard OSTRICH groups using the guidelines
described previously, the next step is to configure a series of groups that are
specific to the PATO module. These groups are:
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e Response Variables : In this section, the user specifies the response
variables that OSTRICH should read from model output files prior to
evaluating PATO constraints. The syntax is very similar to the obser-
vations group used in model calibration, and includes variable name,
output file name (from which the value of the variable is read), and
parsing instructions for retrieving the value of the variable from the
given model output file. The Constraints and Candidate Wells sections
build upon the Response Variable group by associating individual re-
sponse variables with a constraint or well parameter. Examples of
PATO Response variables include:

— Simulated Head Values : These may be computed at (or near) a
well, to facilitate drawdown and lift calculations, or they may be
located at inside and outside gradient control locations.

— Particle Locations : These response variables would be used in
the evaluation of particle capture constraints.

— Other Model Output : could also be specified as response vari-
ables, if they are used for computation of a general constraint,
as described in Section 3.4.4. For example, contaminant con-
centrations at compliance points could be specified as response
variables, assuming such data is computed by the modeling pro-
gram. These response variables could then be used in a general
constraint that specifies some maximum concentration value at
the compliance point.

e Pump-and-Treat : In the pump-and-treat section, the user specifies:

— Cost Function : One of Crorg, Corer, CoPER+, O CMAYER,
described in Section 3.3

— Penalty Function Method : One of APM, MPM or EPM, de-
scribed in Section 3.5

— Cost Coefficients associated with the chosen cost function.

e Constraints : In this section, the user supplies information about the
various constraints that are to be placed on the pump-and-treat sys-
tem. Any number and combination of the following five constraint
types are currently supported: capacity, drawdown, hydraulic gradi-
ent, particle capture and general. The configuration syntax for con-
straints consists of: constraint name, constraint type, conversion factor
(B-value), names of relevant response variables, and other constraint-
specific information.
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e Candidate Wells : The candidate wells sections is a list that associates
individual well parameters (e.g. rate, and (x,y) coordinates) and re-
lated response variables (e.g. head and base elevation at the well) with
a specific well.

e Plume Geometry : The plume geometry sections is required for PATO
problems in which particle tracking constraints are used. This section
contains a list of (x,y) vertices which describe the shape of one or more
plumes.

Configuration syntax for the PATO-specific groups is described in detail in
the following sections.

5.1 Response Variables

The general syntax for the response variables section is:

BeginResponseVars

<name;> <file;><sep><key;> <line;> <col;> <tok;>
<namey> <filep><sep><keys> <liney> <coly> <toky>
<name,> <file,><sep><key;,> <line;,> <col,> <tok;,>
EndResponseVars

Where BeginResponseVars and EndResponseVars are parsing tags that
wrap a list of response variables, which are made up of the following vari-
ables:

e <name> : The name of the response variable, each should have a unique
name.

e <file> : The model output file where the simulated value of the
response variable will be stored following execution of the modeling
program.

e <key>, <line>, <col>, and tok: These variables tell OSTRICH how to
extract model simulated response variable values from the model out-
put file. The parsing procedure is identical to that used in extracting
Observation group data (see Section 4.4 for details).
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5.2 Pump-and-Treat

The general syntax for the pump-and-treat section is:

BeginPumpAndTreat

CostFunction <val>
PenaltyFunction <val>
On0ffThreshold <val>
#TOTQ Cost Coefficients

ExtRateCF <val>
InjRateCF <val>
#0OPER/OPER+ Cost Coefficients
TimeFrame <val>
InterestRate <val>
LaborRate <val>

ExtEnergyRate  <val>
InjEnergyRate  <val>

AnalyticRate <val>
SampleFreq <val>
DisposalRate <val>
MaintFactor <val>
#0PER+ Cost Coefficients
FixedWellCF <val>
DepthDepWellCF <val>
RateUCF <val>
LiftUCF <val>
Mayer Cost Coefficients
MayerDrillCF
MayerPumpCF
EndPumpAndTreat

Where BeginPumpAndTreat and EndPumpAndTreat are parsing tags that
wrap a list of pump-and-treat cost configuration variables:

e CostFunction : The value of this parameter selects from the Crorg,
Corer, CorERr+, and Cyraypr cost functions described in Section
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3.3. Assuch, there are four options for this variable (default is PumpRate):

— PumpRate : Selects Crorq cost function
— OpCost : Selects Copgr cost function
— Cap&0OpCost : Selects Copgr+ cost function

— Mayer : Selects Cpray gr cost function

Note that if Coppr or Copgr+ are selected, then OSTRICH will use
the head at each well to compute the lift required to pull water from
the bottom of the well to the ground surface. Therefore, if Coppr or
Coprr+ are selected, then the head at each well must be included in
the response variables section.

PenaltyFunction : The value of this parameter selected from the
APM, MPM or EPM penalty function methods discussed in Section
3.5, and the three ooptions for this variable are APM, MPM and EPM.
(default is MPM)

On0ffThreshold : This optional line specifies a minimum active pump-
ing rate. If a well is assigned a rate below <val>, the well is turned
off by assigning a rate of zero.

ExtRateCF : This cost factor applies when Crorq is used, and corre-
sponds t0 ae,r in Equation 3.1.(default is 0.00)

InjRateCF : This cost factor applies when Crorq is used, and corre-
sponds to oy, in Equation 3.1.(default is 0.00)

TimeFrame : This is the remediation time frame (7') in years, and
applies when either Copgr or Copgr+ is used. (default is 0.00)

InterestRate : This is the interest rate (Rp), if the time value of
money is to be accounted for (see Equation 3.10), and applies when
either Coppr or Coppr+ is used. (default is 0.00)

LaborRate : Corresponds to Ry, in Equation 3.3 and is applicable for
Coper and Coppry cost functions. (default is 0.00)

ExtEnergyRate : Corresponds to By in Equation 3.4 and is applicable
for Coppr and Copgr+ cost functions. (default is 0.00)

InjEnergyRate : Corresponds to 31 in Equation 3.4 and is applicable
for Coppr and Copgr+ cost functions. (default is 0.00)
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AnalyticRate : Corresponds to R4 in Equation 3.5 and is applicable
for Coppr and Copgr+ cost functions. (default is 0.00)

SampleFreq : Corresponds to F4 in Equation 3.5 and is applicable for
Coper and Coppry cost functions. (default is 0.00)

DisposalRate : Corresponds to Rp in Equation 3.6 and is applicable
for Copgr and Coppr+ cost functions. (default is 0.00)

MaintFactor : Corresponds to Rj; in Equation 3.7 and is applicable
for Coppr and Copgr+ cost functions. (default is 0.00)

FixedWellCF : Corresponds to (s in Equation 3.8 and is applicable for
the Coppr+ cost function. (default is 0.00)

DepthDepWellCF : Corresponds to O3 in Equation 3.8 and is applicable
for the Coprpry+ cost function. (default is 0.00)

RateUCF : Corresponds to Fp g in Equation 3.8 and is applicable for
the Coprr+ cost function. (default is 0.00)

LiftUCF : Corresponds to F p in Equation 3.8 and is applicable for
the Coprr+ cost function. (default is 0.00)

MayerDrillUCF : Corresponds to C'Fpprrrr in Equation 3.9 and is
applicable for the Cyray pr cost function. (default is 0.00)

MayerPumpUCF : Corresponds to C'Fpyyp in Equation 3.9 and is ap-
plicable for the Cyraygr cost function. (default is 0.00)
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5.3 Constraints

The general syntax for the constraints section is:

BeginConstraints

#Particle Capture Constraints
<pname;> partcap <PCF> <pxloc;>
<pnamey> partcap <PCF> <pxlocy>

<pname,> partcap <PCF> <pxloc,>
#Hydraulic Gradient Constraints
<hname;> hydgrad <HCF> <hlwr;>
<hnames>  hydgrad  <HCF> <hlwro>

<hname,,> hydgrad <HCF> <hlwr,,>
#Capacity Constraints
<cname;> capacity <CCF> <clwr;>

<cnamey> capacity <CCF> <clwrp>

<cname.> capacity <CCF> <clwr.>
#Drawdown Constraints
<dname> drawdown <DCF> <clwr(>

<dnamegy> drawdown <DCF> <clwry>

<dnameg> drawdown <DCF> <clwrg>
#General Constraints
<gname;> general <GCF{> <glwr;>

<gnames> general <GCF2>  <glury>

<gname,> general <GCF,> <glwr,>

EndConstraints

<pyloci>
<pylocy>

<pyloc,>

<hupr;>

<huprsy>

<hupr,,>

<cupr;>

<cuprs>

<cupr.>

<cupri;>

<cupra>

<cuprgy>

<gupr1>

<gupr2>

<gupr,>

<plume;>

<plumes>

<plume,>

<hout> <hinj;>

<houto> <hing>

<hout,,> <hin,>

<paramj j,paramj?, ..

<param2,1 ,paramg 2, . .

<paramci,paramc2, . .

<head;>
<heads>

<headg>

<respi;>

<resps>

<respy>

Where BeginConstraints and EndConstraints are parsing tags that wrap
a list of pump-and-treat constraints, which can be any number of and com-
bination of five types (specified in the second field of each constraint), whose
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syntax are described below:

e Particle Capture Constraints: If the second field in the constraint
definition is partcap, then the constraint is interpreted as a particle
capture constraint, with the following fields:

<pname> : A unique name for the constraint (e.g. PCAP023).
<PCF> : The cost factor (Bpcap in Equation 3.15).

<pxloc> : The name of the response variable corresponding to
the x-coordinate of the particle.

<pyloc> : The name of the response variable corresponding to
the y-coordinate of the particle.

<plume> : The name of the plume, defined in the Plume Geome-
try section (Section 5.5), within which the particle should reside
after T' years of remedial activity.

e Hydraulic Gradient Constraints : If the second field in the con-
straint definition is hydgrad, then the constraint is interpreted as a
hydraulic gradient control constraint, with the following fields:

<hname> : A unique name for the constraint (e.g. HGRAD053).
<HCF> : The cost factor (Sggrap in Equation 3.15).

<hlwr> : Users should set this value to 0.

<hupr> : Users should set this to a large value (e.g. 1,000).

<hout> : The name of the response variable corresponding to the
head at the outside location of the gradient control pair (hoys; in
equation 3.16).

<hin> : The name of the response variable corresponding to the
head at the inside location of the gradient control pair (hjy; in
equation 3.16).

e Capacity Constraints : If the second field in the constraint defi-
nition is capacity, then the constraint is interpreted as a capacity
constraint, with the following fields:

<cname> : A unique name for the constraint (e.g. TOTALQ).
<CCF> : The cost factor (Bopcy in Equation 3.12).

<clwr> : This is the lower limit on capacity, and corresponds to
Qmin in Equation 3.12.
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— <cupr> : This is the upper limit on capacity, and corresponds to
Qnae in Equation 3.12.

— <param;>,<paramy>,...,<paramy>: This is a comma-separated
list of parameter names, whose values are summed up to form Q¢
in Equation 3.12.

e Drawdown Constraints : If the second field in the constraint defin-
ition is drawdown, then the constraint is interpreted as a drawdown
constraint, with the following fields:

— <dname> : A unique name for the constraint (e.g. DRAWO05).
— <DCF> : The cost factor (Bpraw in Equation 3.13).

— <clwr> : Users should set this value to 0.

— <cupr> : Max allowable drawdown (dh,q, in Equation 3.13).

— <head> : The name of the response variable corresponding to the
head at the drawdown location.

e General Constraints : If the second field in the constraint definition
is general, then the constraint is interpreted as a general constraint,
with the following fields:

— <gname> : A unique name for the constraint (e.g. CONC002).

— <GCF> : The cost factor (Bgen, in Equation 3.18).

— <glwr> : The lower constraint limit (G, in Equation 3.18).
— <gupr> : The upper constraint limit (Gpaqe,; in Equation 3.18).

— <resp> : The name of the response variable used to evaluate the
constraint (corresponding to G; Equation 3.18).

5.4 Candidate Wells

The general syntax for the candidate wells section is:

BeginCandidateWells
<name;> <xloc;> <yloc;> <rate;> <head;> <surface;> <base;>

<namey> <xlocy> <ylocg> <rates> <heady> <surfaces> <basey>

<name,> <xloc,> <yloc,> <rate,> <head,> <surface,> <base,>
EndCandidateWells
(5.1)
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Where BeginCandidateWells and EndCandidateWells are parsing tags
that wrap a list of pump-and-treat wells, whose rates and locations are
to be optimized. The syntax of a given candidate well is described below:

<name> : A unique name for the well (e.g. WELLOO5).

<xloc> : The name of the parameter which represents the x-location
of the given well.

<yloc> : The name of the parameter which represents the y-location
of the given well.

<rate> : The name of the parameter which represents the rate of the
given well.

<head> : The name of the response variable corresponding to the head
at the given well. Note that if Cror¢ is used as the cost function, this
variable is not read by OSTRICH and may be omitted.

<surface> : The name of the response variable corresponding to the
ground surface elevation at the given well. Alternatively, if this value
is constant throughout the given model, no response variable is neces-
sary and the user should enter the constant value instead. Note that
it Crorq is used as the cost function, this variable is not read by
OSTRICH and may be omitted.

<base> : The name of the response variable corresponding to the
aquifer base elevation at the given well. Alternatively, if this value is
constant for the given model, no response variable is necessary and the
user should enter the constant value instead. Note that if C'rorg is
used as the cost function, this variable is not read by OSTRICH and
may be omitted.
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5.5 Plume Geometry
The general syntax for the plume geometry section is:

BeginPlumeGeometry
PlumeName <plume;>
BeginPlumeCoords
<x11>  <y1,1>

<X1’2> <Y1,2>

<X1p>  <y1p>
EndPlumeCoords
#Next Plume
PlumeName <plumegp>
BeginPlumeCoords
<X271> <y271>

<X272> <y272>

<X2’n> <y27n>
EndPlumeCoords

#Next Plume
PlumeName <plumep>
BeginPlumeCoords
<XN1>  <yN1>

<XN72> <YN,2>

<XNR>  <yNR>
EndPlumeCoords
EndPlumeGeometry

(5.2)

Where BeginPlumeGeometry and EndPlumeGeometry are parsing tags that
wrap a list of plume geometries. The syntax of a plume geometry is described
below:
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e PlumeName : A unique name for the given plume (e.g. TCE_PLUME)

e BeginPlumeCoords : A tag that indicates the beginning of the list of
vertices for the plume.

e <x>: The x-coordinate of a plume vertex.
e <y>: The y-coordinate of a plume vertex.

e EndPlumeGeometry : A tag that indicates the end of the list of vertices
for the plume.

This section is required if particle tracking is used, otherwise the Plume
Geometry section may be omitted.
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Chapter 6

Using OSTRICH for General
Constrained Optimization

If OSTRICH is to be used for anything other than least-squares calibra-
tion or pump-and-treat optimization, the user has two options: i) generate
a driver program (see Chapter 7) or ii) incorporate the alternative objec-
tive function into the OSTRICH input file via the GCOP module. This
chapter discusses the various input file sections that must be configured to
use OSTRICH for solving such GCOP problems. When using OSTRICH for
GCOP, start by following the guidelines in Chapter 4 to fill out the following
configuration groups:

e Basic Configuration

— ObjectiveFunction : Be sure and set this variable to GCOP.

— ModelExecutable : Be sure to specify a model (or batch file)
that will generate the necessary output for OSTRICH to evalu-
ate system cost and any constraint violations. If more than one
executable is needed a batch/script file should be created and
supplied as the model executable.

e File Pairs : Treat the template file pairs just as you would any opti-
mization or calibration exercise. There should be a template file pair
for any input files containing design parameters.

e Extra Files : Treat the extra files section just as you would any opti-
mization or calibration exercise.

e Observations : The observations group is not used in GCOP. Instead
an analogous group, the Response group, is used. The Response group
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is filled with instructions for parsing model output files to retrieve (and
compute) constraint and cost information.

e Parameters : Include information on initial, upper and lower values for
GCOP parameters. There can be as many parameters as necessary,
and they may be continuous, integer and/or combinatorial parameters;
the appropriate choice is application specific.

e Tied Parameters : Set up any desired tied parameters as you would for
any optimization/calibration exercise. A typical uses for tied parame-
ters in GCOP is to convert a discrete-valued design parameter (used
by the optimization) to its continuous analog (used by the simulation).

e Algorithms : Set up the desired optimization algorithm as you would
any optimization/calibration exercise.

e Math and Statistics : Statistical output for GCOP is not meaningful,
but if a gradient-based algorithm is used, this section is useful for
configuring finite-difference variables.

e One-dimensional Search : If appropriate for the chosen optimization
algorithm, set up the one-dimensional search parameters as you would
any optimization/calibration exercise.

Having fully configured the standard OSTRICH groups using the guidelines
described previously, the next step is to configure a series of groups that are
specific to the GCOP module. These groups are:

e Response Variables : In this section, the user specifies the response
variables that OSTRICH should read from model output files prior
to evaluating costs and constraints. The syntax is very similar to the
observations group used in model calibration, and includes variable
name, output file name (from which the value of the variable is read),
and parsing instructions for retrieving the value of the variable from
the given model output file. The Constraints and GCOP sections build
upon the Response and Tied Response Variable groups by associating
response variables with a constraint or cost parameter.

e Tied Response Variables : In this section, the user specifies ’tied’
response variables; variables whose values are computed by OSTRICH
as functions of one or more response variables and/or parameters.

e GCOP : In the GCOP section, the user specifies:
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— Cost Function : The Cost Function identifies a single response
variable or tied response variable that represents the overall sys-
tem cost (Cgygs), which is to be minimized by the optimizer.

— Penalty Function Method : The overall GCOP objective func-
tion is a combination of the system cost (Csys) and a penalty
function, Prorar, which accounts for the cost of all constraint
violations. The OSTRICH GCOP module offers several tech-
niques for combining Csyg and Prorar to form the objective
function; namely the additive penalty method (APM), the mul-
tiplicative penalty method (MPM), and the exponential penalty
method (EPM). The functional form of the three techniques are
given below:

Fapm(X) = Csys + Prorar
Fyrpyv (X) = max(Csys, Prorar)(1 + Prorar) (6.1)
Fepu(X) = max(Csys, Prorar)exp(Prorar)

where,

Fapyr : objective function using APM

Fyrpas : objective function using MPM

Frpar : objective function using EPM

X : vector( X = [X1, X, ...Xn]7) of design parameters

e Constraints : In this section, the user supplies information about the
various constraints that are to be placed on the user-defined opti-
mization problem. Any number and combination of constraints are
supported. The configuration syntax for constraints consists of: con-
straint name, constraint type, conversion factor, and names of relevant
response (or tied-response) variables.

Configuration syntax for the GCOP-specific groups is described in detail in
the following sections.
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6.1 Response Variables

The general syntax for the response variables section is:

BeginResponseVars

<namej> <file;><sep><key;> <line;> <col{> <tok;>
<names> <filep><sep><keyy> <lines> <colp> <toky>
<name,> <file,><sep><key,> <line,> <col,> <tok,>
EndResponseVars

Where BeginResponseVars and EndResponseVars are parsing tags that
wrap a list of response variables, which are made up of the following vari-
ables:

e <name> : The name of the response variable, each name should be
unique.

e <file> : The model output file where the simulated value of the
response variable will be stored following execution of the modeling
program.

e <key>, <line>, <col>, and tok: These variables tell OSTRICH how to
extract model simulated response variable values from the model out-
put file. The parsing procedure is identical to that used in extracting
Observation group data (see Section 4.4 for details).

6.2 Tied Response Variables

The general syntax for the tied response variables section is:

BeginTiedRespVars
<name;> <np;> <pname;> <pnames>...<pnamepp > <type:> <type_data;>

<nameg> <nps2> <pname;> <pnames>...<pnamepp,> <typesz> <type_datas>

<namey> <npy> <pname;> <pnames>...<pnamepyp, > <typen> <type_datay>
EndTiedRespVars

Where BeginTiedRespVars and EndTiedRespVars are parsing tags that
wrap a list of tied response variables. The parameters in this section are
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identical to those in the Tied Parameters (see Section 4.8), except that the
list of non-tied items (used in the calculation of the tied response variable)
may be parameters and/or response variables.

6.3 GCOP

The general syntax for the GCOP section is:

BeginGCOP

CostFunction <val>
PenaltyFunction  <val>
EndGCOP

Where BeginGCOP and EndGCOP are parsing tags that wrap a list of GCOP
cost configuration variables:

e CostFunction : The value of this parameter must be the name of a
response variable (or tied response variable) and corresponds to the
system cost (Cgyg).

e PenaltyFunction : The value of this parameter selected from the
APM, MPM or EPM penalty function methods, and the three options
for this variable are APM, MPM and EPM. (default is MPM)

6.4 Constraints

The general syntax for the constraints section is given below. Note that if
no constraints exist, this section may be omitted.

BeginConstraints
<namej> general <CF1> <lwr;> <upri> <resp;>

<namey> general <CFg9> <lwro> <upry> <respsz>
<name,> general <CF,> <lwr,> <upr,> <respy>
EndConstraints

Where BeginConstraints and EndConstraints are parsing tags that wrap
a list of general constraints. The syntax of a given constraint is described
below:
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<name> : A unique name for the constraint.

<CF> : A cost factor that is multiplied by the amount of constraint
violation. This converts a constraint violation into a penalty cost.

<lwr> : The lower constraint limit (gm,). If the actual constraint
value (g) is less than gpin, a penalty of P = CF X (g — gmin) will be
added to Prorar.

<upr> : The upper constraint limit (gmqz). If the actual constraint
value (g) is greater than gpmaz, a penalty of P = CF X (gmaxr — g) will
be added to Prorar,.

<resp> : The name of the response variable (tied or non-tied) used to
evaluate the constraint.
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Chapter 7

Using OSTRICH for General
Optimization

Rather than configuring the GCOP input sections described in Chapter 6,
some users may find it easier to generate a driver program which executes
the simulation model and computes the objective function on behalf of OS-
TRICH, as shown in Figure 7.1. The driver program must write the objective

1. Given a set of parameters (X), objective function, f(X), is desired.
2. OSTRICH prepares model input file(s) using the template file(s).
3. OSTRICH runs the driver program.

(a) Driver runs model program.
(b) Driver reads model output and computes f(X)
(¢) Driver writes f(X) and any errors to standard output (stdout).
(d) Driver exits.
4. OSTRICH redirects stdout of driver to OstExeQut.txt.
5. OSTRICH reads f(X) and any errors from OstExeOut.txt
6. OSTRICH proceeds to next step of algorithm.

Figure 7.1: OSTRICH and Driver Program Interface

function value and model error to stdout using the following syntax:

0ST_ObjFuncVal <value>
0ST_ModelErrCode <value>
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The lines containing 0ST_ObjFuncVal and 0ST_ModelErrCode can occur
anywhere in the output file (beginning, middle or end), so long as they
are unique; otherwise, OSTRICH will parse the first occurrences of the
required syntax. The value of 0ST_ObjFuncVal must be in integer, deci-
mal (e.g. 68.345) or scientific (6.835E1) format and must not use a thou-
sands separator (e.g. use 12345.678 instead of 12,345.678). Meanwhile,
the 0ST_ModelErrCode value should be a single line of text which describes
any errors that may have occurred. If there were no errors, the value of
0ST_ModelErrCode should be no_errors.
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Chapter 8

Running OSTRICH

This chapter describes the execution of OSTRICH from the command line
and parallel computing environments. A total of three OSTRICH executa-
bles are available: a serial version which runs on Windows, a serial version
which runs on Linux, and a parallel version which runs on Linux-based par-
allel clusters.

Regardless of which version of OSTRICH is used, the following com-
ponents must be created and stored in a working directory before running
OSTRICH:

1. ostIn.txt : Main configuration file, created using the syntax de-
scribed in Chapter 4.

2. Template File(s) : File(s) that OSTRICH uses to create a syntacti-
cally correct model input file(s), so as to evaluate some set of model
parameters (X).

(a) Create a template file by making a copy of the corresponding
model input file.

(b) Edit the template file by replacing parameter values with the
corresponding parameter names.

(c) Check that template file has been listed in the FilePairs section
of ostIn.txt.

(d) Check that parameter names in Params section of ostIn.txt are
consistent with those used in template file.

3. Extra Model Input Files : Any model input files not required by OS-
TRICH (i.e. there is no corresponding template file), but needed by
the model.
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8.1 Serial Execution

Once all files have been created and placed in the working directory, serial
execution of OSTRICH is straightforward: open a command line prompt,
change directory (cd) to the working directory, and run OSTRICH by typing
/<path>/0strich (if using Linux) or <path>\Ostrich.exe (if using Win-
dows), where <path> is the path to the location of the OSTRICH executable
(e.g. c:\Program Files\Ostrich or /home/usr/bin). When run in serial,
an optimization run record is printed for each iteration of the chosen algo-
rithm.

8.2 Parallel Execution

To run OSTRICH in parallel, or to have OSTRICH run a parallel version
of the modeling program the user must have access to a parallel computing
environment that supports the MPI (Message Passing Interface) libraries.
After logging on to such a system the user can follow the general guidelines
given below to run the desired parallel job.

1. Create working directory and OSTRICH component files as described
previously.

2. Create script file for parallel job.
3. Submit parallel job to scheduler.

The details of creating and submitting parallel jobs depends on the con-
figuration of the parallel cluster. Section 10.4 provides an example using
PBS script files and the gsub command, run on the Clearwater cluster at
the Center for Computational Research (CCR) at the University at Buffalo
(UB).

8.2.1 Running OSTRICH in Parallel

The present version of OSTRICH contains a parallel implementation of the
Genetic Algorithm. While any of the other algorithms can be successfully
run in a parallel environment, doing so will not result in any performance
improvement unless the underlying model is to be run in parallel (see Section
8.2.2). Future revisions of OSTRICH will provide parallel implementations
of Particle Swarm Optimization and Simulated Annealing, along with par-
allelized computation of finite differences and regression statistics.
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8.2.2 Running Model in Parallel

Running a parallel model from within OSTRICH is accomplished by hav-
ing OSTRICH dynamically assemble and submit parallel runs of the model
executable whenever a run of the model is needed. After submitting such a
job, OSTRICH then uses job monitoring commands to wait for the parallel
run to complete. To utilize this feature, the following requirements must be
satisfied:

1. The model must be MPI-parallel; meaning that it must be parallelized
using the MPI interface.

2. The model must be compiled for a Linux parallel cluster.
3. The cluster must support PBS (portable batch system) scripts.
4. The cluster must support the following commands:

e gsub : To submit the parallel model run.
e gstat : To monitor the job.

e sleep : To pause OSTRICH while waiting for the parallel run to
complete.

If all of these requirements are met, then running OSTRICH with a parallel
model can be accomplished as follows: (a) select parallel model execution by
include the ParallelModelExec line in the ostIn.txt input file, (b) follow
the guidelines in 8.2 to submit a one (or two, if required by the cluster
environment) processor OSTRICH job.
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Chapter 9

Evaluating OSTRICH
Output Files

Upon completion, OSTRICH will have generated four output files per proces-
sor N, where N=0 for serial runs:

e OstOutputN.txt : Main output file, contains an optimization (or re-
gression) record along with statistical output (if applicable).

e OstErrorsN.txt : Error file, any errors encountered by OSTRICH are
stored in this file.

e OstModelN.txt : A sequential record of every model run is stored in
this file.

e OstExeOut.txt : The output of Model runs are redirected to this file.

The next few sections describe these files in more detail using example out-
put.

9.1 Main Output File

The main output file always contains the following elements (i) a GNU Pub-
lic License disclaimer, (ii) a summary of the basic configuration variables,
(iii) an OSTRICH run record detailing each iteration of the optimization al-
gorithm, and (iv) the resulting optimal parameter set and objective function
value. An example of elements (ii)-(iv) is shown in Figure 9.1. In Figure 9.1,
the run record contains the parameter and objective function values at each
iteration along with the value of an algorithm-dependent (e.g. A\) parameter.
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Ostrich Setup

Model : Split.exe > OstExeQOut.txt
Algorithm : Levenberg-Marquardt
Objective Function : WSSE

Number of Parameters : 3

Number of Observations : 25

Ostrich Run Record

iter obj. function Kback K2 K1 lambda

0 2.419552E+002 1.100000E+000 5.500000E+000 1.570000E+001 1.000000E+001
1 1.812830E-001 9.973903E-001 5.226647E+000 1.563847E+001 9.090909E+000
2 6.332663E-004 9.999858E-001 5.103630E+000 1.560503E+001 8.264463E+000
3 4.618933E-004 1.000013E+000 5.025882E+000 1.556041E+001 6.830135E+000

Optimal Parameter Set
Objective Function : 4.614216E-004

Kback : 1.000008E+000
K2 : 5.026354E+000
K1 : 1.553661E+001

Figure 9.1: Sample Optimization Output

For population based algorithms (i.e. particle swarm optimization and the
genetic algorithm), the parameter and objective function values for the cur-
rent best solution are reported. Algorithm-dependent parameters reported
in the run record are:

e Genetic Algorithm : The average objective function for the population.

e Particle Swarm Optimization : The average objective function for the
population.

e Simulated Annealing : The temperature.

e Levenberg-Marquardt : The Marquardt .

e Powell : The change in objective function.

e Steepest Descent : The change in objective function.

e Fletcher-Reeves : The change in objective function.
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9.2 Statistical Output

If regression is being performed, then various statistical measures may be
reported, depending on whether or not they were selected in the input file
(see Section 4.11). The following sub-sections describe this output of these
statistics.

9.2.1 Observation Residuals

Observations residuals are reported automatically at the end of every re-
gression. An example list of observation residuals is given in Figure 9.2.
Also included in the observation residual output is the correlation between
measured and simulated observations (Ry).

Observation Residuals

Observation Measured Simulated Weighted
Residual

obs1 6.809246E+001 6.809238E+001 +7.555000E-005
obs2 6.570953E+001 6.570943E+001 +9.844000E-005
obs3 6.166319E+001 6.166321E+001 -1.707000E-005
obs4 6.807076E+001 6.807044E+001 +3.207400E-004
obsb 5.936214E+001 5.936215E+001 -7.620000E-006
obs6 6.449409E+001 6.449413E+001 -4.088000E-005
Correlation between measured and simulated observations

Ry : 0.923

Figure 9.2: Sample Observation Residuals

9.2.2 Error Variance and Standard Error of the Regression

If the user includes StdDev in the MathAndStats section of the input file,
then the error variance (s?) and standard error of the regression (s) will be
reported. Figure 9.3 provides an example of resulting output file syntax.

9.2.3 Parameter Variance-Covariance

Including StdErr in the MathAndStats section of the input file will cause
OSTRICH to output the parameter variance-covariance matrix along with
the standard error of each parameter, as shown in Figure 9.4. Including

100



Error Variance and Standard Error of the Regression
SA2 : 2.097371E-005
S : 4.579706E-003

Figure 9.3: Example of Basic Statistics

Parameter Variance-Covariance

_ Kback K2 K1

Kback +1.856038E-010 -1.428247E-008 +3.418409E-008
K2 -1.428247E-008 +5.830411E-006 -4.090841E-006
K1 +3.418409E-008 -4.090841E-006 +7.805281E-005

Parameter Standard Error

Kback : 1.362365E-005
K2 1 2.414624E-003
K1 : 8.834750E-003

Figure 9.4: Sample Parameter Statistics

CorrCoeff in the input file will cause OSTRICH to output the parameter
correlation matrix, as shown in Figure 9.5.

Parameter Correlation

_ Kback K2 K1
Kback +1.000 -0.434 +0.284
K2 -0.434 +1.000 -0.192
K1 +0.284 -0.192 +1.000

Figure 9.5: Sample Parameter Correlation

9.2.4 Confidence Intervals

If the user includes Confidence in the MathAndStats section of the input file,
then OSTRICH will use the CI_Pct configuration variable to compute linear
confidence intervals (CI) for each parameter along with the volume ratio
(a comparison between CI block and ellipsoidal joint confidence regions).
Figure 9.6 illustrates OSTRICH output for a 95% confidence interval.
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Linear Confidence Intervals (95.00%)

Parameter Lower Limit Upper Limit

Kback +9.999433E-001 +1.000073E+000
K2 +4.968730E+000 +5.084646E+000
K1 +1.489478E+001 +1.620610E+001

Volume Ratio : 0.861

Figure 9.6: Sample Confidence Interval Output

9.2.5 Model Linearity

Including either Beale or Linssen in the MathAndStats section of the in-
put file will trigger computation and output the corresponding non-linearity
measures. An example, where both Beale and Linssen have been included
is shown in Figure 9.7.

Non-Linearity Measures
Beale (N) : 1.056831E-004

Assessment : Linear

Linssen (MA2) : 1.070575E-004

Assessment : Linear

Thresholds for N and/or MA2
Non-linear : > 3.279620E-001
Linear : < 2.951658E-002

Figure 9.7: Example of Non-Linearity Measures

9.2.6 Normality of Residuals

Inclusion of the NormPlot variable will cause OSTRICH to report a list of
normalized residuals and the corresponding correlation coefficient (R%;), as
illustrated in Figure 9.8.

9.2.7 Influential Observations

When either the CooksD or DFBETAS variable (or both) is set, OSTRICH
will generate and output the corresponding measures of observation influ-
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Normalized Residuals

r_expected r_ordered

-1.964216E+000 -5.833990E-003
-1.519197E+000 -5.208840E-003

etc.

+1.519197E+000 +6.445870E-003
+1.964216E+000 +1.501312E-002

Normal probability correlation coefficient
R2N : 0.859

Figure 9.8: Example of Normalized Residuals Output

ence, along with an assessment of which observations are influential, based
on influence thresholds suggested in the literature. Figure 9.9 contains an
example of influential observation measures for a hypothetical 2-parameter
problem.

9.2.8 Parameter Sensitivities

If the Sensitivity variable is found in the MathAndStats input file section,
OSTRICH will report parameter sensitivity measures. An example of such
output is shown in Figure 9.10.

9.2.9 Matrices

OSTRICH can be configured to output matrices used for various statistical
calculations, using the Matrices variable. An example of such output is
shown in Figure 9.11.

9.3 OSTRICH Error Messages

During execution, OSTRICH logs errors to the file ostErrorsN.txt, where
N corresponds to the processor number. The most common error encoun-
tered is the violation of parameter boundaries; which occurs when the opti-
mization algorithm (or statistical calculation) tries to set a parameter value
that is greater than the upper bound or less than the lower bound of the given
parameter. OSTRICH reports such errors as PARAMETER BOUNDS errors and
continues running, but uses the upper (or lower) limit of the parameter
instead of the requested value.
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Measures of Observation Influence

Cook’s D

Observation Leverage infl.? Di infl.?
obs1 8.72E-001 yes 9.15E+001 yes
obs2 8.02E-002 no 9.16E-005 no
etc.

Number of Influential Leverage : 2
Number of Influential Di
Thresholds for Cook’s D

Di > 6.67E-001

Leverage > 3.33E-001

DFBETAS

Observation param_1 infl.? param_2 infl.?
obs1 -6.24E-002 no -2.06E-001 no
obs2 +2.06E-001 no -1.30E-002 no
etc.

Number of Influential DFBETAS : O
Threshold for DFBETAS
|DFBETASij| > 8.16E-001

Figure 9.9: Example of Influential Observation Measures

Parameter boundary violations can frustrate the optimization and even
invalidate optimization results, especially if they occur during statistics
calculations or during the execution of a numerical algorithm. Heuristic
algorithms are more tolerant of boundary violations since internal checks
within each algorithm prevent random perturbations from violating para-
meter boundaries.

The obvious technique for handling boundary violation errors is to adjust
the parameter limits (e.g. reduce or increase by a factor of 10) and re-run the
optimization. If a derivative-based scheme is being used (or if statistics are
being calculated), note that adjusting parameter limits will affect the finite
difference step size, and DiffRelIncrement may also need to be revised.

If OSTRICH encounters a singular matrix during Levenberg-Marquardt
regression or during statistical calculation, the program will abort and a
SINGULAR MATRIX error will be reported. Such an error could be an indica-
tion that some of the parameters in the calibration are linearly dependent
or have a very high parameter correlation.
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Parameter Sensitivities

Dimensionless Scaled Sensitivities

Observation param_1 param_2
obs1 -1.44737E-002 -2.26310E-001
obs2 +7.82751E-002 -4.12052E-002
etc.

1-Percent Scaled Sensitivities

Observation param_1 param_2

obs1 -1.44739E-004 -2.26319E-003
obs2 +7.82754E-004 -4.12052E-004
etc.

Composite Scaled Sensitivities
param_1 : 8.961414E-002
param_2 : 2.223486E-001

Figure 9.10: Example of Parameter Sensitivity Output

Matrices

Jacobian Matrix

Observation param_1 param_2

obs1 -1.232016E-002 -3.236455E-001
obs2 +6.662821E-002 -5.892727E-002
etc.

Normal Matrix

+3.491185E-002 -2.196855E-002
-2.196855E-002 +6.066642E-001
Inverse Normal Matrix
2.931148E+001 1.061429E+000
1.061429E+000 1.686795E+000

Figure 9.11: Example of Matrices Output

If OSTRICH encounters an error when reading the input file or the model
output file(s), a FILE I/0 ERROR will be reported. Depending on the nature
of the error, OSTRICH may be able to continue execution or may have to
abort. For example, if OSTRICH is unable to locate the algorithm setup
section of ostIn.txt, default values will be used. On the other hand, if
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OSTRICH cannot parse a model output file, it will abort.

If OSTRICH encounters the end of a line of input unexpectedly, a
COULDN’T PARSE INPUT error will be reported and the program will exit.
These errors can occur if the observation, parameter or file pair lists in
ostIn.txt are improperly formatted (e.g. a variable has been left out), or
if the model output file containing observations is not formatted according
the parsing instructions provided to OSTRICH.

If there are problems running a driver program (see Chapter 7) or run-
ning a parallel model (see Section 8.2), OSTRICH will report a MODEL
EXECUTION ERROR along with a description of the error that occurred.

During simulated annealing, if OSTRICH is unable to perform the num-
ber of melt operations specified by the NumInitialTrials variable, then
a MAX NUMBER OF TRIALS error will be reported and OSTRICH will begin
accepting all melting trials, even if they decrease the objective function.

9.4 Redirected Model Output

OSTRICH redirects the standard error and standard output of all model
runs to the file '0stExeOut.txt’. The output of each new model run will
overwrite the contents of the file, such that OstExeOut.txt always contains
the standard error and standard output of the most recent model run.

9.5 Model Run Record

OSTRICH maintains a file named ’'0stModelN. txt’, where N is the processor
number (0 for serial runs of OSTRICH), containing the parameter set and
objective function of each model run. This list of model runs is numbered
in increasing sequential order, with the highest value corresponding to the
most recent model run. Figure 9.12 shows and example OstModelO. txt file:

Run obj.func.(WSSE) K1 K2 Kback

1 8.230901E+004 5.000000E+001 5.000000E+001 5.000000E+001
2 8.230900E+004 5.002303E+001 5.000000E+001 5.000000E+001
etc.

Figure 9.12: Example of OstModel0.txt

106



Chapter 10

Example Exercises

This chapter provides a set of examples illustrating the usage of OSTRICH
in a variety of water resources and environmental engineering applications.
Two examples deal with model calibration, one example illustrates a solution
to a pump-and-tread optimization problem and the final example describes
parallel processing applied to a calibration exercise that utilizes particle
swarm optimization.

10.1 3-Parameter Groundwater Model Calibration

A hypothetical groundwater model was created using the analytical element
method (AEM) based program known as Split. The Split executable and
instruction manual are available for download from:

www.groundwater.buffalo.edu/software /software.html.

The model, a two-dimensional unconfined aquifer with no recharge and east-
ward regional uniform flow, contains three parameters that are to be cali-
brated: two-inhomogeneities (K1 and K2), and the background conductivity
(Kback). Twenty-five synthetically generated head measurements are used
as the observation data, with head values in the range of 65-70 meters.
Figure 10.1 illustrates the setup of the model. The Demol folder included
with the OSTRICH distribution contains the required input and template
files, along with the Split model executable. The head.dat file is a required
Split input file which instructs Split to output simulated head values in a
file named headerr.dat. The Observations section of the ostIn.txt in-
put file contains the required parsing information for OSTRICH to extract
these simulated heads.
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Figure 10.1: 3-Parameter Groundwater Model Setup

For this example, OSTRICH has been configured to use the Levenberg-
Marquardt algorithm and since the parameters are conductivities, a log
transformation has been applied within the Params section of the input file.
Finally, the A11Stats line in the MathAndStats section of the input file
instructs OSTRICH to calculate and output the entire suite of regression
statistics.

To run the calibration, open a command line prompt, change directory
to the Demo1 folder and execute OSTRICH from the command line. During
execution, the OSTRICH run record displays the progress of the calibration
and finally settles on the following parameter values: K1=15.6, K2=>5.0 and
Kback=1.0. The statistical output provides the following useful insights: i)
as indicated by the Linssen and Beale measures, the model is linear in the
vicinity of the calibrated parameter set, ii) the narrow confidence intervals
indicate that the parameter values for this model have been estimated with a
high degree of certainty, and iii) K2 and Kback exhibit a possibly significant
negative correlation.
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10.2 6-Parameter Diffusion Model Calibration

10.3 6-Parameter Pump-and-Treat Optimization

A hypothetical groundwater contamination problem was created and mod-
eled using the Split modeling engine. The Split executable and instruction
manual are available for download from:

www.groundwater.buffalo.edu/software /software.html.

The problem setup is illustrated in Figure 10.3; wherein plume capture
is desired so as to prevent migration to a nearby surface water body. The
site model is bounded by no-flow boundaries in the north and south and by
constant head boundaries in the east and west, resulting in easterly regional
flow. Also shown in Figure 10.3 are 11 hydraulic gradient control pairs and
50 particles, which are used as plume capture constraints in the OSTRICH
PATO module. Also included are the initial locations of two pump-and-
treat wells. The (x,y) coordinates and pumping rates (Q) of these wells
are the PATO parameters to be optimized; for a total of 6 parameters (i.e.
x1,41,Q1,%2,y2, and @Q2). Additional constraints for the pump-and-treat sys-
tem are:

e The minimum head at each well is limited to 10 meters, corresponding
to a roughly 20 meter maximum drawdown.

Well rates are between + 200 m?/day

Well (x,y) coordinates are between (0,0) and (335,243)

e Maximum total Q is 400 m?/day

Minimum total Q is 1 m3/day (reflecting a desire to have more extrac-
tion than injection)

The pump-and-treat section of the PATO module is configured to use
the Crorg cost function, with a;y,;=0.53 and ae,¢=21.17, and the Fapys
objective function. For this example, OSTRICH has been configured to
use the Fletcher-Reeves algorithm, with a Golden-Section 1-D search and
forward difference with 0.1% step size.

The Demo?2 folder included with the OSTRICH distribution contains the
required input and template files, and the Split model executable is located
in the Demo1 folder. To run the PATO, open a command line prompt, change
directory to the Demo2 folder and execute OSTRICH from the command line.
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Figure 10.2: PATO Problem Setup

Due to the particle tracking operation, execution of the split model may be
time consuming. During execution, the OSTRICH run record displays the
progress of the optimization and finally settles on the following parameter
values:

e 1 : 0.00 m
oy :125m
e () : -44 m?3/day (injection)
e x5 : 230 m
o yo: 116 m
e ()2 : 40 m?/day (extraction)

The optimal cost found using the Fletcher-Reeves algorithm is $875 with a
penalty of $44, incurred because there is a violation on the minimum pump-
ing capacity (more injection than extraction). The corresponding total ab-
solute pumping rate is 84 m3/day. Note that the Fletcher-Reeves algorithm
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is ineffective at varying the locations of the wells. User’s are encouraged to
try other algorithms to see how they perform in comparison.

10.4 Parallel Processing Example
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