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Abstract

Factor Analysis is a statistical method that seeks to explain linear variations in
data by using unobserved latent variables. Due to its additive nature, it is not suit-
able for modeling data that is generated by multiple groups of latent factors which
interact multiplicatively. In this paper, we introduce Tensor Analyzers which are a
multilinear generalization of Factor Analyzers. We describe a fairly efficient way
of sampling from the posterior distribution over factor values and we demonstrate
that these samples can be used in the EM algorithm for learning interesting mix-
ture models of natural image patches and of images containing a variety of simple
shapes that vary in size and color. Tensor Analyzers can also accurately recog-
nize a face under significant pose and illumination variations when given only
one previous image of that face. We also show that mixtures of Tensor Analyzers
outperform mixtures of Factor Analyzers at modeling natural image patches and
artificial data produced using multiplicative interactions.

1 Introduction
Exploratory Factor Analysis is widely used in statistics to identify underlying linear factors. Mix-
tures of Factor Analyzers have been used successfully for unsupervised learning [20, 18]. Factor
Analyzers (FAs) model each observation vector as a weighted linear combination of the unobserved
factor values plus additive uncorrelated noise. For many types of data, this additive generative pro-
cess is less suitable than a generative process that also contains multiplicative interactions between
latent factors.

In this paper, we introduce Tensor Analyzers (TAs) which are one way of generalizing FAs to include
multiplicative interactions between latent variables from different groups. A TA generates data in the
following way: First we sample all of the factor values in all of the groups independently from a zero-
mean unit-variance Gaussian. Then, for each possible way of choosing one factor from each latent
group, we take the product of the factor values and contribute this product times a learned parameter
to each component of the generated data-vector. Finally, we add independent Gaussian noise to every
component of the generated vector with the variance of the noise being learned separately for each
component. The number of “tensor loading” parameters is the product of the sizes of all the factor
groups and the dimensionality of the data-vector. We may additionally use lower order products that
do not include a factor from every group, but in this paper the only lower-order products we use are
the individual factors of every group. FAs are special cases of TAs that contain only one group of
factors.

Conditioned on all but one group of factors, a TA reduces to an ordinary FA in which the factor
loadings are a function of the factor values in the groups we are conditioning on. The posterior
distribution of the factor values in a FA can be computed analytically, so by cycling through each
group of factors, efficient alternating Gibbs sampling is therefore possible in the TA. A TA is a proper
density model so the extension to a mixture of TAs (MTA) is straightforward. When performing
inference or learning in a TA it is easy to make use of a supervisory signal that specifies the fact
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that 2 or more different observations are generated from the same factor values in some of the factor
groups.

The related tensor decomposition has been widely applied to signal processing and computer vi-
sion [16, 2, 9, 19]. The SVD algorithm was used to learn a bilinear model to separate style and
content [15] (henceforth referred to as the S&C model). Tucker decomposition was applied to a
5-mode array of face images in [17], finding multilinear bases called TensorFaces. However, tensor
decomposition based methods lack a probabilistic formulation and are not density models. Inference
given a single new test case is ill-posed and can be ad hoc1. Moreover, training data must be arranged
into a tensor [11]. More recently, bilinear models with priors on the latent variables have been pro-
posed. In [6], sparsity is induced in the codes of a bilinear model to learn translational invariant
representation from video. However, the model does not try to maximize the log p(x) but instead
finds the MAP estimate of the code activations à la sparse coding. [3] describe an outer-product
factorization of the bilinear model that is trained as a density model using EM, but expensive Hamil-
tonian dynamics is required for sampling from the posterior. In addition, their model only admits an
approximate M-step, and does not make it easy to incorporate label information.

In contrast, TAs do not have any of the above deficiencies. A TA is a density model that can be
learned directly from data vectors in an entirely unsupervised manner, but it can also make use of
supervision in the form of equality constraints that specify that one group of factors should have
the same vector of values for a subset of the training cases (Sec. 3.4). As an extension to FA, TA
inherits an efficient inference algorithm that is used in each step of alternating Gibbs sampling and
a closed-form M-step during learning. Unlike bilinear models, it can handle multilinear cases with
3 or more groups of latent factors (Sec. 4.3). It can also be easily extended to a mixture model,
provided we are willing to compute approximate densities as described in (Sec. 3.3). In addition,
posterior inference for a single test case is simple and accurate, as demonstrated by one-shot face
recognition experiments of Sec. 4.4.

2 Preliminaries
Following [8], we refer to the number of dimensions of the tensor as its order (also known as modes).
We will use bold lowercase letters to denote vectors (tensors of order one), e.g. x; bold uppercase
letters for matrices (tensors of order two), e.g. W. We use the notation w(i,:) to denote the i-th row
of matrix W. Higher order tensors are denoted by Euler script letters, e.g. a third-order tensor with
dimensions of I , J , and K: T ∈ RI×J×K .
Fibers: Fibers are higher-order generalization of row/column vectors. Elements of a tensor fiber is
found by fixing all but one index. Specifically, t(:,j,k) is the mode-1 fiber of the tensor T. Row and
column vectors are the mode-2 and mode-1 fiber of a 2nd-order tensor, respectively.
Matricization: Matricization is the process of “flattening” a tensor into a matrix, by reordering the
elements of the tensor. It is denoted by T(n), where the mode-n fibers of T are placed in the columns
of the resulting matrix T(n). For example, given T ∈ RI×J×K , T(1) ∈ RI×JK .
n-mode vector product: By multiplying a vector y ∈ RDn with a tensor T ∈ RD1×D2×···×DN

along the mode-n, the n-mode (vector) product is denoted by T ×̄n y. The resulting tensor is of
size D1 × · · · ×Dn−1 ×Dn+1 × · · · ×DN .

2.1 Factor Analyzers
Let x ∈ RD denote the D-dimensional data, let {z ∈ Rd : d ≤ D} denote d-dimensional latent
factors. FA is a directed model, defined as by a prior and likelihood:

p(z) = N (z; 0, I), p(x|z) = N (x; Λz + µ,Ψ), (1)

I is the d× d identity matrix; Λ ∈ RD×d is the factor loading matrix, µ is the mean; and a diagonal
Ψ ∈ RD×D represents the variance of the observation noise. By integrating out the latent variable
z, a FA model becomes a Gaussian with constrained covariance:

p(x) =

∫
z

p(x|z)p(z)dz = N (x;µ,Γ), Γ = ΛΛT + Ψ (2)

1E.g., the asymmetric model in (S&C) requires EM learning of a separate model during test time.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

For inference, we are interested in the posterior, which is also a multivariate Gaussian:

p(z|x) = N (z; m,V−1), (3)

where V = I + ΛTΨ−1Λ, and m = V−1ΛTΨ−1(x−µ). Maximum likelihood estimation of the
parameters is straightforward using the EM algorithm [14]. During the E-step, Eqs. 3 are used to
compute the posterior sufficient statistics given the current setting of the model parameters. During
the M-step, the expected complete-data log-likelihood Ep(z|x;θold)[log p(x, z; θ)] is maximized with
respect to the model parameters θ = {Λ,µ,Ψ}.

3 Tensor Analyzers
FA generates data by linear combining factors, as there are no multiplicative interactions involving
terms such as zizj , i 6= j. By using a (J + 1)-order “loading” tensor T ∈ RD×d1×···×dJ , a TA can
model multiplicative interactions among its J groups of factors: {z1, z2, . . . , zJ}. For j = 1, . . . , J ,
zj ∈ Rdj . We will use the notation TA{D, d1, d2, . . . , dJ} to denote the aforementioned TA with
latent factors {z1, z2, . . . , zJ} and interaction tensor T. We give each group of factors a standard
Normal prior:

p(zj) = N (zj |0, I), j = 1, 2, . . . , J (4)

For clarity and WLOG, we assume J = 3 for the following equations. The likelihood is defined as:

p(x|z1, z2, z3) = N (x|m + W1z1 + W2z2 + W3z3 + T(1)(z3 ⊗ z2 ⊗ z1),Ψ), (5)

Figure 1: Diagram of TA’s (J =
2) generative process. Vector-tensor
multiplications determines the mean of
p(x|z1, z2).

where x ∈ RD, m, and Ψ are same as in FA. Wj ∈ RD×dj
are the ”biases” factor loadings, T(1) ∈ RD×(d1d2d3) is the
matricization of the tensor T as discussed in Sec. 2, and “⊗”
is the Kronecker product operator. Multiplicative interactions
are due to the term: z3 ⊗ z2 ⊗ z1, which is a vector with
dimensionality of d1 × d2 × d3.

For clarity, we can concatenate the factors and loading ma-
trices: let y ∈ Rd1+d2+d3+1 , [z1; z2; z3; 1]; W ∈
RD×(d1+d2+d3+1) , [W1,W2,W3,m]; and u ∈ Rd1d2d3 =
z3 ⊗ z2 ⊗ z1. We note that T(1)(z3 ⊗ z2 ⊗ z1) is mathe-
matically equivalent to

∑
i,j,k t(:,i,j,k)z1(i)z2(j)z3(k), where

z1(i) is the i-th element of vector z1, and t is the mode-1 fiber
of T.

The joint/complete log-likelihood of the TA is:

log p(x, z1, z2, z3) =

3∑
j=1

(
− dj

2
log(2π)− 1

2
zT
j zj

)
− D

2
log(2π)− 1

2
log |Ψ| − 1

2
(x− e)TΨ−1(x− e),

(6)

where e = Wy + T(1)u. See Fig. 1 for a visual diagram of the TA’s generative process. The last
term in Eq. 6 indicates that the TA models contain higher-order interactions (squared of the outer
product of all factors). In comparison, FAs have only 2nd-order interactions among its latent factors.

Conditioned on any two of the three groups of factors, e.g. z2 and z3, the log-likelihood of x and z1
becomes:

log p(x, z1|z2, z3) = −d1
2

log(2π)− 1

2
zT
1z1 −

D

2
log(2π)− 1

2
log |Ψ| − 1

2
(x− e)TΨ−1(x− e) (7)

Here, e can be re-written as (m + W2z2 + W3z3) + (W1 + T ×̄3 z3 ×̄2 z2)z1. We can see that
conditioned on z2 and z3, we have a FA with parameters (c.f. Eq. 1):

µ = m + W2z2 + W3z3, Λ = W1 + T ×̄3 z3 ×̄2 z2 (8)

The marginal probability density function is a Gaussian: p(x|z2, z3) = N (x|µ,ΛΛT + Ψ).
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3.1 Inference
Higher order interaction in the TA means that inference is more complicated as the joint posterior
p(z1, z2, . . . , z3|x) has no closed-form solution. We resort to alternating Gibbs sampling: Step 1:
p(z1|x, z2, z3); Step 2: p(z2|x, z1, z3); Step 3: p(z3|x, z1, z2).

Conditioned on two groups of factors, the posterior of third is simple as the model reduces to a FA:

p(z1|x, z2, z3) = N (z1|V−1ΛTΨ−1(x− µ),V−1), (9)

where V = I + ΛTΨ−1Λ. µ, and Λ are defined by Eq. 8.

3.2 Learning
Maximum likelihood learning of a TA is similar to FA and is straightforward using a variant of
the EM algorithm. During the E-step, MCMC samples are drawn from the posterior distribu-
tion using alternating Gibbs sampling. In the M-step, the samples are used to approximate the
sufficient statistics involving u and y, followed by closed-form updates of the model parameters,
θ = {W,T(1),Ψ}. The expected joint log-likelihood function is:

Q = E
[

log
N∏
i

(2π)−D/2|Ψ|−1/2 exp{−1

2
(xi − ei)

TΨ−1(xi − ei)}
]

(10)

Algorithm 1 EM Learning for TA

1: Given training data with N samples:
X ∈ RD×N

2: Initialize θ: {W,T(1)} ∼ N (0, .012),
Ψ← 10 ∗ stddev(X).
repeat

//Approximate E-step:
for n = 1 to N do

3: Sample {z(n)
1 , z

(n)
2 , z

(n)
3 } from

p(z1, z2, z3|x(n)) using Eq. 9, and
alternating between z1, z2,& z3.

end for

//M-step:
4: Concatenate samples
{z(n)

1 , z
(n)
2 , z

(n)
3 } into {yn,un}

5: Approximate posterior expectations
using samples: E[yn] ' yn,
E[unyn

T] ' unynT, etc.
6: Update {W,T(1),Ψ} using

Eqs. 11, 12, and 13.
until convergence

Setting ∂Q
∂θ = 0, we have update equations:

W =
( N∑

i

xiE[y
T
i ]−T(1)

N∑
i

E[uiy
T
i ]
)( N∑

i

E[yiy
T
i ]
)−1

(11)

T(1) =
( N∑

i

xiE[u
T
i ]−W

N∑
i

E[yiu
T
i ]
)( N∑

i

E[uiu
T
i ]
)−1

(12)

Ψ =
1

N
diag

{
N∑
i

(
xix

T
i − 2T(1)

(
E[ui]x

T
i − E[uiy

T
i ]W

T

−
1

2
E[uu

T
]T

T
(1)

)
− 2W

(
E[yi]x

T
i −

1

2
E[yiy

T
i ]W

T))} (13)

(See Supplementary Materials for the derivation.)

3.3 Likelihood Computation
For model comparison, we are interested in evaluat-
ing the data log-likelihood log p(x|θ). As noted in
Sec. 3, a TA with J groups of factors reduces to a
FA when conditioned on J − 1 factor groups. Uti-
lizing the fact that log p(x|θ) can be easily computed
(Eq. 2), a Monte Carlo estimation of data log-likelihood
in TA can be performed by sampling from the prior of
the J − 1 groups of factors. For example, in a model
TA{D, d1, d2}, J = 2:

log p(x) = log

∫
z2

p(x|z2)p(z2)dz2 ' log
1

K

K∑
k=1

p(x|z(k)2 ), z
(k)
2 ∼ N (0, I) (14)

This simple estimator is asymptotically unbiased but has high variance unless the dimensionality of
z2, or d2, is very small. Since z1 can be analytically integrated out, the Monte Carlo technique can
be accurate when only one factor group has large dimensionality.

AIS estimation of likelihood
For large dj , however, simple Monte Carlo estimation is very inefficient as random samples from
the prior will mostly yield close to zero log-likelihoods, therefore giving an estimator with large
variance. In this situation, Annealed Importance Sampling [13] is a much better alternative. We
can treat the problem of estimating log p(x) as calculating the partition function of unnormalized
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Data (-2.58 nats) TA (-2.62 nats) FA (-2.85 nats)

(a) Data A

High Kurtosis

Data (-1.97 nats) TA (-2.04 nats) FA (-2.48 nats)

(b) Data B
Figure 2: TA vs. FA on 2D synthetic datasets. Training data log-likelihood of each model is in parenthesis. TA
better models more complex densities.

posterior distribution p∗(z|x) , p(x, z), where p∗(·) denotes an unnormalized distribution. The
basic Importance Sampling gives:

p(x) =

∫
z

dz
p∗(z|x)

q(z)
q(z) ' 1

M

M∑
i

w(i), where w(i) =
p∗(z(i)|x)

q(z(i))
, z(i) ∼ q(z) (15)

AIS provides a better estimate by first sampling from a tractable base distribution q(z). Subsequent
MCMC steps are taken in a set of intermediate distribution, annealing to the distribution of inter-
est: p(z|x). Annealing allows for a much better estimate of w(i). For TAs, we assume the base
distribution is the prior over the factors: q(z1, z2, z3) =

∏3
j p(zj). An intermediate distribution is:

pβ({zj}) ∝ q({zj})1−βp∗({zj}|x)β = p({zj})pβ(x|{zj}), (16)

where β is a scalar which varies from 0.0 to 1.0, as we anneal from the prior to the posterior. Deriva-
tions and experiments with the AIS estimator is provided in Supplementary Materials.

3.4 Equality Constraints
An equality constraint indicates that a set of observed vectors {x(k)}Kk=1 have the same factor values
for the j-th factor group zj . During learning, the availability of equlity constraints will only change
the inference step. Assuming we have constraints for the factor group j = 1, the posterior for zj
(Eq. 9) will be modified as follows:

p(z1|{x(k)}, {z(k)
2 }, {z

(k)
3 }) = N (z1|Ṽ−1

K∑
k=1

{Λ(k)TΨ−1(x(k) − µ(k))}, Ṽ−1) (17)

Ṽ = I +

K∑
k=1

Λ(k)TΨ−1Λ(k), Λ(k) = W1 + T ×̄3 z
(k)
3 ×̄2 z

(k)
2 , µ(k) = m + W2z

(k)
2 + W3z

(k)
3

The M-step is not affected by the presence of equality constraints so TAs can learn when equality
constraints are provided for arbitrary subsets of the data.

3.5 Mixture of Tensor Analyzers
Extending TAs to Mixture of Tensor Analyzers (MTAs) is straightforward. Each component c will
have its own parameters θc = {Wc,T(1),c,Ψc}. The data likelihood is marginalized over the C
components: p(x) =

∑C
c=1 p(x|c)p(c). Posterior distribution over the factors and components can

be decomposed as:
p({zj}, c|x) = p({zj}|x, c)p(c|x) (18)

where p({zj}|x, c) can be sampled using Eq. 9 with θc and p(c|x) ∝ p(x|c)p(c). Sec. 3.3 showed
how p(x|c) can be efficiently approximated, thereby making it feasible to train MTAs.

4 Experiments
We demonstrate the usefulness of TA on 2 synthetic and 3 real-life datasets. We plan to release
source code with implementation details of the experiments in the future.

4.1 Synthetic Data
As a proof of concept, we compared TA to FA on two synthetic datasets (Fig. 2 A & B). Data A is
highly structured and is generated using a TA with random parameters. Data B has high kurtosis,
with density concentrated at the origin. For both datasets, we learned using a TA{D = 2, d1 =
2, d2 = 2} and a FA with the same number of parameters as the TA until convergence. The TAs
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(a) Training Patches (b) Samples from MTA

ICA GRBM MFA MTA
-38.7±0.8 -44.9±1.2 -25.5±0.3 -24.7±0.2

(c) Average test log-likelihood (nats) (d) Filters of MTA
Figure 3: Learning MTA on natural image patches. (a) Training data. (b) Samples from MTA look realistic.
(c) Average test log-likelihood comparisons. ICA: Independent Component Analysis [1]. GRBM: Gaussian
Restricted Boltzmann Machine [7]. (d) Each row contains filters from a different MTA component.

performed model recovery nicely. The left panel of Fig. 2(a) plots training points. The data log-
likelihood of the true model is -2.58 nats. The middle panel plots the samples of a TA which
achieved -2.62 nats on the training data. The right panel plots samples drawn from a FA. Likewise
in Fig. 2(b), TA is a significantly better model than the FA: −2.04 ± 0.05 to −2.48 ± 0.09 nats.
We also tested mixtures of TAs vs mixtures of FA (MFA) on data generated by randomly initialized
MFA models. The performance of MTA and MFA were very similar, demonstrating that (M)TAs
can also efficiently emulate (M)FAs when necessary.

4.2 Natural Images
Learning a good density model of natural images is useful for image denoising and inpainting.
We compared MTAs to MFAs and other models on image patches. 100,000 8 × 8 patches were
extracted from the training set of the Berkeley Natural Images database [12] for training, while
20,000 patches from the test set were extracted for testing. PCA is performed to preprocess the
data to 30 dimensions, preserving 98% of the variance. For both MTA and MFA2, we used 10
mixture components and selected the number of factors per component using a validation set. For
MFA, 40 factors per component were used, resulting in an overcomplete representation. For MTA,
each component is a TA{30,8,2}. Convergence is achieved when the objective does not improve
by more than 0.01 percent. The average test log-likelihood of MTA is better than that of the MFA
by 0.8 nats3. Fig. 3(b) shows that samples of a MTA matches closely to the training patches in
Fig. 3(a). Each row of Fig. 3(d) shows filters (fibers of the tensor) of one of the MTA components.
Components of MTA specialize to model patches of different spatial frequencies and orientations.

4.3 Concept Learning with equality constraints
Human intelligence is characterized by the ability to form abstract concepts which allows for gen-
eralization across widely differing percepts. The color concept of “red” is perceived from both the
images of an small red apple and a red car. Concepts can be learned using TAs. We use images of
synthetic shapes for training. There are 4 different shapes: circle, triangle, square, and pentagon;
5 different colors: red, green, blue, yellow, and purple; 3 different sizes: small, medium, and big.
In total, there are 60 images of resolution 24 × 24 with 3 color channels per image. We learned a
TA{3 × 242, 5, 3, 4} using 30 iterations of EM. 200 alternating Gibbs steps were taken to estimate
the posterior during each E-step. Equality constraints were used during training, implicitly assigning
meanings to the latent factor groups, i.e. z1 , zshape, z2 , zcolor, and z3 , zsize.

After learning, to probe into the representation learned by the TA, we first infer the latent factors
{zshape, zcolor, zsize} for the training shapes by sampling from p(zshape, zcolor, zsize|x). To see
if zcolor truly represents the color concept, we fix the inferred factors {zshape, zsize} of a small
blue circle, while drawing a new znewcolor from its standard Normal prior. The top row of Fig. 4(b)
shows the generated images from the factors {zshape, znewcolor, zsize}. Old shapes with the same size
but novel (and more importantly) homogeneous colors are generated. This type of generalization
is possible if and only if zcolor models color. We further sample from the priors of both the color
and shape factors. Generations mix and match novel colors and novel shapes, shown in the middle
row of Fig. 4(b). Due to the fact that TA is a multilinear model, it can only linearly combine the 4
training shapes to synthesize new shapes. The bottom row of Fig. 4(b) are filters/detectors for the
concept red - tuned to red shapes of differing size and shape. They are the fibers of the tensor of the
TA conditioned on zcolor = red.

2MFA code [18] is downloaded from http://lear.inrialpes.fr/∼verbeek/software.php
3The gain is found to be statistically significant using the paired t-test at p = 0.05.
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(a) Training data (b) Generalization

Color Concept

Shape Concept Size Concept

(c) Test object
Figure 4: Learning color, shape, and size concepts. (a) Data contains 4 shapes, 5 colors, and 3 sizes. (b) Each
row demonstrates a particular generalization achieved by the TA. (c) Posterior distribution over the concept
mixture of Gaussians. the model is able to correctly activate previously learned concepts for a novel test object.
See text for details, best viewed in color and on-screen.

The aggregated posterior
∑N
n=1 p(z

(n)
shape, z

(n)
color, z

(n)
size|x(n)) is tightly clustered in distinct modes.

Since training data has 5 colors, 5 clusters will form in the space of zcolor. Likewise, there are 3 and
4 clusters for the size and shape factors. We train three second layer mixture of Gaussians (MoG)
models using the samples from the TA posterior as training data, e.g. z

(n)
color ∼ p(zcolor|x(n)). Using

prior knowledge, we set the number of components of the “color” MoG to be 5, “size” MoG to be 3,
and the “shape” MoG to be 4. Learning using EM and initializing the means of MoG components
to small values, the components of the MoGs become semantically meaningful, each representing
a separate concept. Using this hierarchical model, we demonstrate strong generalization by using a
24 × 24 image of a toy duck as the observed test image Fig. 4(c). A two stage inference step first
infers the factors using the parameters of the TA. We then compute the posterior probabilities over
the components of all 3 MoGs, conditioned on the inferred factors from the first stage. Interestingly,
our model perceive a big, yellow object which is mostly square but slightly circular.

4.4 Face Recognition with equality constraints
In a one-shot learning setting, classifiers must be trained from only one example per class. For face
recognition, only one example per test subject is used for training. We use the Yale B database and
its Extended version in this experiment [10]. The database contains 38 subjects under 45 different
lighting conditions. We use 28 subjects for training and test on the 10 subjects from the original
Yale B database. The images are first downsampled to 24×24 and we used a TA{576, 80, 4}, which
contains 2 groups of factors. Equality constraints specifying which images have the same identity
or lighting type are used during training.

The learned TA allows for strong generalization to new people under new lighting conditions. It
achieved an average log-likelihood of 836± 7 nats on the images of the 10 held-out subjects. As
a comparison, the best MFA model achieved only 791 ± 10 nats. The number of components and
factors of the MFA are optimally selected using grid search. The gain of 45 nats demonstrates a
significant win for the TA. Qualitatively, to see how well the TA is able to factor out identity from
lighting, we first sample from the posterior distribution conditioned on a single test image, exactly
as in Sec. 4.3. One factor group’s activation is fixed, while we sample the other group of factors
from its standard Normal prior. Results are in Fig. 5. A row in panel (b) shows the same person
under different lighting. A row in panel (c) shows a different person but under the same lighting.
We emphasize that only a single test image from novel subjects is used for inference (panel (a)).

For the recognition task, we first use the 28 training subjects to learn the parameters for the
TA{576,80,4} in the training phase. During the testing phase, a single image (under frontal light-
ing) for each of the 10 test subjects is used to compute the TA’s posterior mean using 200 alternating
Gibbs steps. For each one of the 10 zidentity factors, we use it to collapse the TA into a FA (See
Eqs. 7, 8). Each FA has 4 factors and is equivalent to a rank 4 Gaussian in pixel space. During
testing, an image is classified to be the same class as the FA which assigns it the highest likelihood.

We compared TA with Nearest Neighbor (NN), normalized Cross Correlation (CC), Support Vector
Machines (SVM), S&C bilinear model, Factor Analyzers, and Human. The CC method first subtract
the image mean from all pixels of the image. The image is then normalized to have unit norm.
The cosine similarity between test and training images is used for classification. Multiclass linear
SVM from the LIBLINEAR package [4] is used, where the hyperparameter C was chosen using

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

(a) Test (b) Fixing Identity (c) Fixing Lighting

(d) FA Transfer

NN CC SVM Bilinear FA TA Human
51.1 33.6 35.5 30.8 19.6 12.9 9.3

(e) Recognition Error in %
Figure 5: Tensor Analyzer is able to simultaneously decompose a test image into separate identity and lighting
factors. (a) 4 test images with frontal, left, right and top light sources. (b) Random samples with identity factor
fixed to the inferred values from the test faces in (a). (c) Random samples with lighting factor fixed to the
inferred values from (a). (d) Factor loading transferring in a FA model creates artifacts. (e) Recognition error
on the one-shot face recognition task.

validation. For the S&C bilinear method, we implemented the exact algorithm as stated in Sec.
3.2 of [15]. During one-shot learning, adapting the style and content codes is performed using the
algorithm described in Sec. 6.2 of [15]. Recognition using the FA method requires the transfer of
the factor loadings from the training phase. We first learned 28 FAs, one for each training subject.
During the testing phase, each one of the 10 training images of the test subject is matched with
the FA which gives it the largest likelihood. A new FA is created, centered at the training image.
The rest of the parameters are transfered from the matched FA. In essence, the transfered loadings
models the lighting variations of the training subjects (1 of 28) which is most similar to the test phase
training image. After the creation of these 10 new FAs, classification is same as in the TA method.
Human error is the average of testing several human subjects on the same one-shot recognition task.
Recognition errors are listed in Fig. 5(e). TA outperforms the rest of the field by a significant margin
and approaches human performance.

FA do not work as well as TA because the transferred factor loadings are not accurate. Fig. 5(d)
shows random samples from a transfered FA of a test subject. This is due to the fact that lighting
variations of faces must be a function of identity, and can not be simply transfered additively.

4.5 Learning with incomplete equality constraints

Figure 6: UMIST Recognition errors.

We demonstrate the advantage of the TA in a semi-
supervised setting on the UMIST face database [5]. It
contains 20 subjects with 20 to 40 training images per
subject. The variation consists of in-depth head rota-
tions. We compared the TA to S&C model and NN
on one-shot face recognition. Out of the 20 subjects,
15 were used for training and 5 for testing. The split
was randomized over 10 different trials. The images are
downsampled to the resolution of 24 × 24. We exper-
imented with using equality constraints and 3, 4, or 5
images per training subject. During the training phase,
a TA{576,3,5} model was trained using 30 EM itera-
tions. The algorithms for classification are exactly the same as in Sec. 4.4. Fig. 6 plots recognition
errors as a function of the number of images per subject used during the training phase. For the case
where 5 images per training subjects are available, TA achieves significantly lower errors at 12.4%
compared to 24.9% for S&C. If we add an equal number of images without equality constraints
during training, the error is further reduced to 10.9%.

5 Conclusions
We have introduced a new density model which extends Factor Analysis to modeling multilinear in-
teractions. Using efficient alternating sampling and the EM algorithm, we have shown that (M)TAs
can learn more complex densities, better model natural image patches, and separate factors of vari-
ation, leading to the learning of simple concepts. Moreover, at the important task of one-shot face
recognition, TAs outperform a variety of other models.
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