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Abstract

Distributed representations of words have proven extremely useful in numerous
natural language processing tasks. Their appeal is that they can help alleviate data
sparsity problems common to supervised learning. Methods for inducing these
representations require only unlabeled language data, which are plentiful for many
natural languages. In this work, we induce distributed representations for a pair
of languages jointly. We treat it as a multitask learning problem where each task
corresponds to a single word, and task relatedness is derived from co-occurrence
statistics in bilingual parallel data. These representations can be used for a num-
ber of crosslingual learning tasks, where a learner can be trained on annotations
present in one language and applied to test data in another. We show that our
representations are informative by using them for crosslingual document classifi-
cation, where classifiers trained on these representations substantially outperform
strong baselines when applied to a new language.

1 Introduction

Word representations induced to capture syntactic and semantic properties of words have been ex-
tremely useful for numerous natural language processing applications [1, 2]. Their primary appeal
is that they can be induced using abundant unsupervised data and then used directly or as additional
features to alleviate the data sparsity problem common in the supervised learning scenario.

Most of the prior work on inducing these representations has focused on a single language, English,
which enjoys the largest repository of available annotated resources. In this work, we focus on a
single representation for a pair of languages such that semantically similar words are closer to one
another in the induced representation irrespective of the language. Learning with these representa-
tions for a task where annotation is available for one language would induce a classifier which could
be used in another language lacking resources for this task. We pick one example of such a task,
document classification, to show that a classifier trained using these representations in one language
achieves high accuracy in another language where no annotation is available.

Our main contribution is a general technique for inducing crosslingual distributed representations.
We use an existing model for learning distributed representations in individual languages; however,
motivated by the multitask learning (MTL) setting of [3], we propose a method to jointly induce and
align these representations. We use word co-occurrence statistics from parallel data to define a signal
for aligning the latent representations in both languages as we induce them. In MTL terminology,
we treat words as individual tasks; words that are likely to be translations of one another (based
on bitext statistics) are treated as related tasks and effectively help to align representations in both
languages during learning.

We use a variant of a neural network language model of [4] to induce the latent representations
in individual languages. These models learn a lower-dimensional embedding of words arguably
capturing their syntactic and semantic properties [5].
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The crosslingual representation induction set-up we propose is motivated by the multitask learning
(MTL) setting of [3], so we begin with a brief overview in Section 2, in part to introduce terminology
and notation. In our set-up, we do not commit to a particular technique for learning representations
in individual languages, but rather propose a general technique for jointly inducing and aligning
representations in multiple languages. In Section 3, we define the crosslingual distributed represen-
tation induction as the joint task of learning distributed representations in two languages. Finally,
Section 4 gives experimental evaluation of the induced crosslingual representations on the crosslin-
gual document classification task.

2 Multitask Learning

The goal of multitask learning (MTL) is to improve generalization performance across a set of
related tasks by learning them jointly. MTL is particularly relevant when sufficient annotation is not
available for (some of) these tasks.

In the multitask set-up of [3], at time t a multitask learner receives an example relevant to one of K
tasks it is learning. Along with the example xt ∈ Rm, and the correct binary label yt ∈ {−1,+1},
the learner receives the task index it ∈ [1,K]. The learner considers a compound multitask instance
φxt
∈ RmK :

φxt = (0, . . . , 0︸ ︷︷ ︸
(it−1)m

, x>t , 0, . . . , 0︸ ︷︷ ︸
(K−it)m

)>

A multitask version of the perceptron algorithm they propose keeps a weight vector for each task.
Assuming that at time t the algorithm has made s mistakes, the compound weight vector at t is
vs = (v>1,s, . . . , v

>
K,s)

>, where vj,s ∈ Rm is the weight vector for task j. When a mistake is made
at time t, the updates are performed not only for the weight vector for the task it, but also for the
remainingK−1 tasks. The rate of the update for each task is defined by aK×K interaction matrix
A, which, intuitively, encodes relatedness between the tasks. When a learner makes a mistake, the
compound weight vector update rule applied is vs ← vs−1 + (A ⊗ Im)−1φxt

, where ⊗ is the
Kronecker product and Im is the identity matrix of size m. This update can be rewritten as separate
updates for each task: vj,s ← vj,s−1 + ytA

−1
j,it
xt,∀j ∈ [1,K]. This learning algorithm directly

corresponds to the minimization of the following objective:

L(v) =
∑
t

L(t)(v) +
1

2
v>(A⊗ Im)v (1)

where L(t)(v) =
[
1− ytv>φxt

]
+

is the hinge loss on the example at time t. Consequently, this
setup can be naturally extended to other loss function and to non-linear models. We will use it to
formalize the crosslingual representation induction task in Section 3.

Let us consider the following simple interaction matrix with the corresponding inverse:

A =


K −1 · · · −1
−1 K · · · −1

...
...

. . .
...

−1 −1 · · · K

 A−1 =
1

K + 1


2 1 · · · 1
1 2 · · · 1
...

...
. . .

...
1 1 · · · 2


That is, the update rate is 2/(K + 1) for the task it and half as large for the other K − 1 tasks. In
other words, A defines all tasks as “equally related” to any other task.

[3] propose an elegant way of encoding richer prior knowledge in the interaction matrix A. Related-
ness between tasks can be naturally represented by an undirected graph G = (R,E). The vertices
R of the graph are tasks, and a pair of vertices are connected by an edge in E only if we believe that
the corresponding tasks are related. The interaction matrix can then be defined as A = I+L, where
I is the identity matrix and L is the Laplacian of graph G, in turn defined as K ×K matrix:

Li,j(G) =

{
deg(i) if i = j
−1 if (i, j) ∈ E
0 otherwise
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where deg(i) is the number of edges involving the vertex i.

This definition of the task interaction matrix A naturally generalizes to weighted graphs H =
(R,E, S), where S are weights associated with edges E. The graph Laplacian becomes:

Li,j(H) =


∑

(i,k)∈E s(i, k) if i = j
−s(i, j) if (i, j) ∈ E
0 otherwise

where s(i, j) is the weight of the edge (i, j) ∈ E. We will use these extended definitions in this
work to include the prior knowledge about the degree of relatedness between the tasks.

3 Crosslingual Representation Induction

The key component of the neural language model of [4] is an embedding c ∈ R|V |d, a concatenation
of d-dimensional representations c = (c>1 ; . . . ; c

>
|V |)
> of all words of vocabulary V . The model

induces the embedding so that words which are semantically similar are close to one another in c.
In this work, our goal is to have the same property hold across two languages.1 We train neural
language models jointly for both languages and induce a common embedding.

We cast crosslingual distributed representation induction as a multitask learning problem by treating
each word w in our languages’ vocabularies as a separate task. The set of related tasks for each
w are then the possible translations of the word in the other language. When encoding relatedness
and defining an interaction matrix A, we make use of parallel data (a set of sentences and their
translations). These resources are available for many language pairs and include large volumes of
multilingual parliamentary proceedings, book translations, etc. Standard Machine Translation tools
(e.g. GIZA++ [6]) can be used to induce alignments between words on both sides of the bitext.

Assuming that word alignments are available, we first define an undirected bipartite weighted graph
H with two disjoint sets of vertices corresponding to the vocabularies of the two languages, and
edges labeled with the number of alignments between each pair of words in the two sets. The edge
weights indicate the fit of a pair of words as translations, and thus encode the degree of relatedness
between the two corresponding tasks. We can now directly apply the definition of the interaction
matrix from Section 2, defining s(w, w̃) as the number of alignments between words w and w̃.

We use a separate neural language model for each language l, parameterized by θ(l) = (W (l), c).
Although the notation might suggest that embedding c is shared across languages, this is not the
case, as we distinguish between word types of the two languages: for example, the word handy in
English and the word Handy in German (meaning a mobile phone) would be treated as two different
word types. Given an interaction matrix A, we can extend the MTL formalization (1) and formulate
the crosslingual learning objective as:

L(θ) =

2∑
l=1

T (l)∑
t=1

log P̂θ(l)(w
(l)
t |w

(l)
t−n+1:t−1) +

1

2
c>(A⊗ Id)c (2)

where T (l) and w(l)
t are the number of words in the dataset for language l and the word at position t

in this corpus, respectively.

Intuitively, the former (language modeling) part of the learning objective (2) captures the syntactic
and semantic similarities between words in each of the two languages, while the latter (MTL regu-
larization term) ensures that the learned representations are aligned across the languages. Note that,
additional information such as WordNet synsets could in principle be used to encode relatedness
between words in an individual language into the interaction matrix. However, these resources are
unavailable for most languages. Also, similar type of information is already induced by the neural
language model for each language.

1Our methods can be trivially extended to more than two languages.
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The stochastic gradient descent procedure would now iteratively update parameters using a gradient
at each training subsequence w(l)

t−n+1:t in both languages. The word representation updates are:

cw ← cw + η
∑
w′

A−1w′,w

∂L(l,t)(θ)

∂cw′
, (3)

where η is the learning rate and L(l,t)(θ) = log P̂θ(l)(w
(l)
t |w

(l)
t−n+1:t−1) is the contribution of the

training example. In this formulation, both representations of the words in the contextual window
and words w′ “related” to them (i.e. those w′ for which A−1w,w′ 6= 0 for any contextual word w) are
modified on each training step.

Computing these updates requires the inverse of the interaction matrix A. However, the dimension-
ality of the matrix is equal to the total number of word types in both languages, so the standard
cubic-time Gaussian elimination is infeasible even for moderately sized datasets. Thus, in our ex-
periments, we use a coarse approximation of A−1 (citation anonymized).

4 Experiments

The technique we propose induces crosslingual representations capturing relatedness of words in a
pair of languages. We use a particular supervised learning task, crosslingual document classification,
and show that a classifier trained using these representations in one language achieves high accuracy
in another language where no annotation is available. Note that our goal is not to induce a state-of-
the-art classifier, but rather to examine the informativeness of the induced representations. Thus, we
keep the classification experiments simple: we chose a learning algorithm requiring no parameter
tuning and used simple features.

In our experiments, we induce crosslingual embeddings and use them for multilinigual document
classification for the English-German language pair. We use the following resources:

• English (en) and German (de) sections of the Europarl v7 parallel corpus [7] to induce our
baseline systems and to compute the interaction matrix A (see Section 3).

• A subset of the English and German sections of the Reuters RCV1/RCV2 corpora [8] to
induce crosslingual embeddings and for the crosslingual document classification experi-
ments.2 We sampled 34,000 en and 42,753 de documents each assigned to a single topic
(with the goal of keeping roughly 8 million tokens for each language). For our classifica-
tion experiments, we randomly selected 15,000 documents from our sampled dataset and
used a third of them as a test set, with the remainder used to construct training sets of sizes
between 100 and 10,000 documents. We repeated this procedure for both en and de; for
both languages, the majority class was roughly 46.8% of the documents.

Our neural language model architecture was the same for both languages with 25 hidden units,
context size of 4, and word representations of size d = 40. The representations were induced from
our subset of RCV1/RCV2 dataset using word alignments from Europarl v7. We ran the learning
procedure for 40 iterations, which took about 10 CPU days and is linearly parallelizable. Learning
rate was set to 0.005 and was reduced when the training data likelihood went up, as is common when
training neural networks. We used the averaged version of the perceptron algorithm [9] to train a
multiclass document classifier, so that we do not need to tune any parameters, with the exception of
the number of epochs, which we set to 10 in all experiments (the results were not sensitive to this
parameter).

We trained a classifier on supervised training data in one language and tested it directly on documents
in the other using features based on the crosslingual representations we induced (DistribReps). We
represent each document as an average of d-dimensional representations of all of its tokens weighted
by their idf score [10]. Our baseline is a classifier with word count features which was trained and
tested on the second language documents translated into the original language. Translations are done
by replacing each word in a test document by the word most frequently aligned to it in the parallel
data (Glossed). Unaligned words were left as is.

2Note that these documents are not parallel.
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january president said
en de en de en de

january januar president präsident said sagte
february februar king präsidenten reported erklärte

november november hun minister stated sagten
april april areas staatspräsident told meldete

august august saddam hun declared berichtete
march märz minister vorsitzenden stressed sagt
june juni advisers us-präsident informed ergänzte

december dezember prince könig announced erklärten
july juli representative berichteten explained teilt

september september institutional außenminister warned berichteten

Table 1: Example English words along with 10 closest words both in English (en) and German (de),
using the Euclidean distance in the induced joint distributed representation.
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Figure 1: Classification accuracy with two types of features: crosslingual distributed representations
(DistribReps), and glossed (Glossed) words, as well as the majority class baseline (Majority Class).
The results are for training on English and testing on German documents (left) and vice versa (right).

4.1 Classification Results

Before looking at the classification results, let us examine the distributed representations we induce
with a small experiment. Table 1 shows three English words, each along with ten words in English
and German ranked by the Euclidean distance in the induced embedding. With few exceptions, all
three end up being near semantically similar words in both languages. Identical ranking of months
in both languages in the first example suggest that aligned data brought translations very close to
one another in the induced embedding.

We ran crosslingual classification experiments training on English and testing on German docu-
ments, varying the training data size from 100 to 10,000 documents, then repeated the same experi-
ments going from German to English. Classifiers based on distributed representations substantially
outperform the baseline. They are especially beneficial when the amount of training data is small, ef-
fectively taking advantage of plentiful unsupervised data used for inducing crosslingual word repre-
sentations. While their performance is high relative to the baselines, it does not change significantly
with the training data size. We believe that is likely due to relatively low embedding dimensional-
ity (d = 40), and 100 examples were sufficient to learn a good classifier for this representations.
Increasing the size of the hidden representation is likely to improve the results.
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