
Online Representation Search and
Its Interactions with Unsupervised Learning

Ashique Rupam Mahmood, Richard S. Sutton
Department of Computing Science

Reinforcement Learning and Artificial Intelligence Laboratory
University of Alberta

Edmonton, Alberta, Canada
{ashique,rsutton}@ualberta.ca

Abstract
We consider the problem of finding good hidden units, or features, for use in
multilayer neural networks. Solution methods that generate candidate features,
evaluate them, and retain the most useful ones (such as cascade correlation and
NEAT), we call representation search methods. In this paper, we explore novel
representation search methods in an online setting, compare them with two sim-
ple unsupervised learning algorithms that also scale online. We demonstrate that
the unsupervised learning methods are effective only at the initial learning period.
However, when combined with search strategies, they are able to improve repre-
sentation with more data and perform better than either of search and unsupervised
learning alone. We conclude that search has enabling effects on unsupervised
learning in continual learning tasks.

1 Introduction

In this paper, we consider an online supervised learning setting, where data arrives continually as
a stream of inputs with associated desired outputs. On arrival, each input is mapped into a large
number of features in some nonlinear way, and then the features are linearly combined to produce
an output that approximates the desired output. Learning the weights of the linear combination in
the second stage of this process is straightforward and can be done online using simple gradient
descent methods. The nonlinear mapping in the first stage is often fixed and designed by experts
using domain knowledge, but can also be learned, as we explore here. This two-stage architecture is
popular and, given enough or the right features, powerful. It is used, for example, in support vector
machines, in radial basis functions, and in tile coding or CMACs. The features produced by the first
stage can be considered a representation used by the second stage, and thus, learning their nonlinear
mapping can be considered a form of representation learning. We refer to the two-stage architecture
as one of expanded representations (Sutton & Whitehead 1993).

Online learning of expanded representations is important yet less explored area of research. Repre-
sentation learning is commonly studied in the opposite setting, where features are learned prior to
their actual use on a fixed held-out data set. Overfitting is a prominent problem for learning from
limited data. Hence a compressed representation is often desired. However, in online learning where
data is never exhausted, overfitting is less critical, and an expanded representation can also be useful.

Online learning of expanded representations is associated with some natural desiderata. As a con-
tinual stream of data has to be processed here, storing any past data is impractical, and the overall
computation and memory should be constant for each example. Moreover, an expanded representa-
tion also requires the computation and memory to scale linearly with the number of features. The
backpropagation algorithm fulfills this desiderata. There are many representation learning methods
that take different approaches than backpropagation and are commonly studied in a batch setting,

1

for example, unsupervised feature learning and evolutionary approaches. For online learning of
expanded representations, these approaches can be adopted and modified so that they fulfill the
desiderata.

We consider a search-based approach to representation learning and adopt it for online learning of
expanded representations. In this approach, useful features are searched by generating features ran-
domly and testing to selectively retain them. Few existing methods apply a search-based approach
to representation learning. One of the first applications is by Uhr and Vossler (1961) who used a
generate and test approach for a pattern recognition task. Evolutionary approaches to representa-
tion, such as NEAT (Stanley & Miikkulainen 2002) or EPNet (Yao & Liu 1997) generate features
using evolutionary techniques and then use supervised criteria to test and select useful features. The
cascade correlation method by Fahlman and Lebiere (1990) generates a pool of candidate features
for evaluation and adds them sequentially. The work by Klopf and Gose (1969) explicitly explores a
generate and test approach in an evolutionary framework. Evolutionary approaches typically main-
tain a pool of learners, where evaluation of a learner at each generation is done in a batch of data,
which is not suitable to online learning.

We propose a search-based approach to representation learning that is well suited for online learning
and scales linearly with the number of features. Using idealized problems, we demonstrate that our
proposed methods can continually improve representation as more examples are seen. Although,
representation search is not a mainstream approach and used commonly in batch settings, we show
that it is at its most powerful in online settings and can be an integral part of general representa-
tion learning methods. Using idealized problems, we demonstrate that our proposed methods can
continually improve representation as more examples are seen.

We study two online unsupervised learning algorithms by Sutton and Whitehead (1993) to inves-
tigate how they interact with representation search. Our experiments reveal that the unsupervised
learning algorithms are effective only at the initial stage of learning, and after that, they are not able
to adapt the representation with more data. However, when the unsupervised learning algorithms are
combined with our online representation search strategies, they retain their initial effectiveness and
also become able to continually adapt the representation. Their combination performed better than
either of search and unsupervised learning alone. We suggest that, in an online learning setting with
continual stream of data, the effect of unsupervised learning alone can be limited, but they may be
reenabled by utilizing search.

2 Expanded Random Representation

All methods in our study have expanded representations with fixed number of features and initialize
them randomly. The first method that we study has fixed representations, that is, the features are
not learned. We refer to it as an Expanded Random Representation (ERR). It has long been argued
that an ERR can be an effective form of representations (Rosenblatt 1962, Gallant & Smith 1987,
Kanerva 1988, Prager & Fallside 1988). Sutton and Whitehead (1993) conducted a detailed study of
ERRs in an online supervised learning setting and showed that ERRs can perform as well as nearest-
neighbor methods. Jarrett et al. (2009) and Pinto et al. (2010) demonstrated their effectiveness on
object recognition tasks. Saxe et al. (2010) argued that random representations reflect intrinsic
properties of the architecture and should be used for baseline comparisons. We use ERRs as the
baseline representations for comparison as well as the starting representations for our representation
search methods. The basic structure of it is shown in Figure 1.

We consider an online supervised learning setting, where data consists of a series of examples. The
kth example is presented as a vector of m binary inputs x1,k, . . . , xm,k and as a single target output
yk ∈ R. The inputs are mapped into n binary features, where n is fixed and much larger than m.
We consider each feature to be a Linear Threshold Unit (LTU). Each of the LTU-based features fi,k,
i = 1, . . . , n, is connected to all the inputs xj,k, j = 1, . . . ,m, by input weights vji,k. Initially,
input weights vji are either +1 or −1 and they remain fixed for ERRs. Each feature has an input
prototype, for which the feature responds maximally. For the ith feature fi,k, if the weighted sum
of the inputs,

∑m
j=1 vji,kxj,k, is greater than a threshold θi, then the value of the feature is one;

otherwise it is zero. The thresholds θi is set as θi = mσ − Smini , where Smini is the number of
negative input weights for the ith unit, and the tunable parameter σ signifies the proportion of input

2

01001100100110110010

fixed, random weights vji∈±1

learned weights wi ∈�

binary inputs x∈{0,1}20

linear output y ∈ �

∑

massively expanded, nonlinear map

LTUs f∈{0,1}n

linear map

Figure 1: The basic structure of expanded ran-
dom representation used in this paper. Each
example is a vector of binary inputs and it is
nonlinearly mapped into a massively expanded
feature representation of LTUs. The features
are then linearly mapped to approximate a tar-
get output.

F:100

F:300

F:1K F:10K

F:100K
F:1M

Examples

Figure 2: Fixed, expanded random represen-
tations perform better in online learning with
more features. Best performance is achieved
by a fixed representation with one million fea-
tures (F:1M), but the performance increase
compared to the ten times smaller representa-
tion (F:100K) is neglible over this time span.

bits that have to match the prototype in order to activate the unit. Representation learning in this
setting corresponds to learning the input weights and thresholds.

The target output yk is approximated as a weighted sum of the features, ŷk =
∑n
j=0 wi,kfi,k, where

wi,k is the output weight for ith feature. Here, f0,k is not a LTU but a bias feature, that is, it
always has the value of 1. The online supervised learning task is to learn the output weights on each
example. The output weights are learned incrementally and online using a simple gradient descent
rule, which is the standard Least Mean Squares (LMS) algorithm in our setting. For the kth example,
the output weights are updated as

wi,k+1 = wi,k + αδkfi,k, (1)

for i = 0, . . . , n. Here, δk is the estimation error yk − ŷk and α is a positive scalar, known as the
step-size parameter. Output weights are always initialized at zero. We set the step-size parameter
to γ

λk
for the kth example, where 0 < γ < 1 is a small constant, that we refer to as the effective

step-size parameter. Here, λk is an incremental estimate of the expected squared norm of the feature
vector Ê

[∑n
i=0 f

2
i,k

]
. The effective step-size parameter γ is set to 0.1 for all the experiments.

We study how well ERRs perform in an online supervised learning problem. Figure 2 shows the
performance of fixed ERRs of different sizes (from 100 up to one million features) over one hundred
thousand examples. Performance is measured as a running estimate of Mean Squared Error (MSE).
Performance is averaged over 50 runs. Results show that ERRs with more features perform better.
However, as number of features is increased, the increase in performance becomes smaller and
smaller. Similar results were also found by Sutton and Whitehead (1993) in their work on online
learning with random representations. Here we used much larger number of examples and features.
Description of data (i.e., how inputs and outputs are generated) in our experiment is also different.

Data in the experiment consisted of a series of 20-dimensional i.i.d. input vectors (i.e., m = 20).
Inputs are binary, chosen randomly between zero and one with equal probability. The target output
value was computed by linearly combining 20 target features, which were generated from the inputs
using 20 fixed random LTUs. The threshold parameter σ of these LTUs was set to 0.6. The target
output yk was then generated as a linear map from the target features f∗i,k as yk =

∑n
i=1 w

∗
i f

∗
i,k+εk,

where εk ∼ N(0, 1) is a random noise. The target output weights w∗
i were randomly chosen from a

normal distribution with zero mean and unit variance. Their values were chosen once and kept fixed
for all examples. The learner only observed the inputs and the outputs. If the features and output

3

F:100

F:300

F:1K

F:10K
F:100K

F:1M
S:1K

S:100

S:10K

Examples

Figure 3: Our simple representation search
method outperforms much larger, fixed repre-
sentations. This method outperforms a fixed
representation with one million features, F:1M,
and continues to improve. Search with larger
representations perform even better, approach-
ing the minimum possible value of 1.0.

fixed representation

tester using
weight mag

tester using
weight mag
 & step size

tester using
weight mag

trace

Number of features

Figure 4: The choice of a tester has a sig-
nificant effect on the performance of search.
Search with the basic tester performed substan-
tially better than fixed representation for differ-
ent number of features. Here, the best perfor-
mance is achieved when a more complex tester
is used on 10,000 features.

weights are equal to the target features f∗i,k and target output weights w∗
i , respectively, then the MSE

performance E
[
(yk − ŷk)2

]
of the learner would be at minimum, which is 1 in this setting.

Random representations perform better with larger number of features, because larger random rep-
resentations are more probable to contain the useful features. Although more features bring better
performance, computational resource is always limited, and, typically, many features are far less
useful. Therefore, many of them can be expended, and more useful features can be searched.

3 Effectiveness of Search

We investigate how an effective representation search can be performed incrementally and online,
starting from an expanded random representation. Our first representation search approach uses
a simple feature generator and tester. The generator simply generates features randomly, and the
tester uses the magnitude of current output weights to evaluate features. The features are ranked
with respect to the magnitude of their output weights, which signifies the relevance of the corre-
sponding features to the given supervised learning task. For each example observed, a small fraction
of features with the smallest magnitude of weights are then replaced with new randomly generated
features, and the output weights of them are set to zero. As these new features would be ranked
among the lowest for the next example, a maturity threshold is used and these features are not eligi-
ble for replacement as long as their ages are less than the maturity threshold. The maturity threshold
is tuned to 2. We refer to the fraction of features replaced as the replacement rate ρ, and it is tuned
to be one in every 200 features per example.

Figure 3 shows performance of our simple representation search method in comparison to fixed
ERRs over one million examples on the same problem as in Figure 2. Performance is measured as
an estimation of MSE. Each point of the curves is the squared estimation error δ2k averaged over last
10,000 examples and 50 runs. Performance is shown for every 10,000-examples interval. Standard
errors of the estimated MSE were in the order of 10−3. Our simple representation search method
performed substantially better than fixed representations and continued to improve as more examples
are seen. Performance of the fixed representation with 100 features (F:100) settled at a certain level,
but representation search with the same number of features (S:100) outperformed it at an early stage
and continued to improve. Representation search with 1,000 features (S:1K) outperformed fixed
representation with 1,000 times more features (F:1M).

4

We developed two more representation search methods by combining two new testers with the ran-
dom generator. A drawback of our first tester is that the weight magnitude is a noisy measure and
can fluctuate greatly from one example to other. Our new testers address these issues. Our second
tester uses the trace of the weight magnitudes for ranking the features. Before the first example is
seen the trace is initialized to zero. Hence all features are equally eligible for replacement at the
beginning. After the first example is seen, the trace for a newly generated feature is initialized with
the median of all the traces, so that a newly generated feature do not get replaced immediately.

Our third tester is an extension of our first tester but uses learned step sizes as a measure of the
confidence about the estimated weights. The features are ranked using the weight magnitudes as
in our first tester, but a feature is not replaced if the confidence about the estimate of the weight is
low. One step-size parameter for each feature is learned and the value of the learned step size is
used as the confidence about the estimate of a weight. Higher the value of the step size, lower is the
confidence about the weight estimate. We used Autostep by Mahmood et al. (2012) that adapts one
step size for each feature without requiring any tuning of its parameters. Before the first example
is seen, all the step sizes are initialized to the same value, which is roughly equal to one tenth of
the inverse of estimated expectation of the squared feature norm. After the first example is seen,
the initial step size of a newly generated feature is set to the median of all step sizes. A feature is
eligible for replacement only if its step size is smaller than the median.

Figure 4 shows the comparison among the represent search methods with different testers. Perfor-
mance after observing one million examples is plotted against different number of features. In this
experiment, the tester that uses learned step sizes as a confidence measure performed the best. The
tester using the trace of weight magnitudes also performed better than the simple tester. For all
search methods, performance was better for larger representation.

The random generator and the testers are computationally inexpensive. The testers only need to de-
termine an order statistic of a given order and find the features that have smaller orders, the overall
computational complexity of which is linear on the number of features. The random generator gen-
erates a small number of features for each example, and computational complexity of each feature
generation is linear on the number of inputs, which is much smaller than the number of features in
our setting. So the total computational complexity of the random generator, and the testers for each
example is precisely O(ρnm + n). Note that, ρ is a small number and can be chosen smaller than
1/m.

4 Search with Unsupervised Learning

In this section we investigate how representation search interacts with unsupervised feature learning.
We adopt two algorithms from Sutton and Whitehead (1993) that perform unsupervised learning to
achieve sparsity in the representation. These algorithms operate online and scale linearly with the
total number of weights. Sutton and Whitehead showed that they outperform fixed ERRs.

The first algorithm modifies the frequency of the activation of each feature. For this, it computes
the running estimate of the activation frequency of each feature. The threshold θi is incrementally
changed so that the estimated frequency is within a small bound around a target frequency. This
unsupervised learning algorithm has one main parameter: the target frequency. We experimented
with different target frequencies between 0.0 and 1.0. Following Sutton and Whitehead (1993),
The tolerance limit around the target frequency is always set to 0.05. The threshold parameter σ
determines the initial value of θi, which eventually gets modified by frequency adaptation. For
initialization, we used different σ for each different features, chosen randomly between 0.0 and 1.0.

The second algorithm modifies the total activation of the feature set so that it achieves a target
density. If the density of the feature set at any moment goes below a certain limit of the target
density, one of the inactivate features is chosen with a small probability (0.0001), and then one of its
input weights that do not match with their corresponding input bits is selected randomly. The sign of
that input weight is then flipped. The corresponding threshold θi is then decreased by 1 to reduce the
effect of this change on the frequency of the feature. If the density of the feature set at any moment
goes above a certain limit of the target density, one of the activate features is chosen with a small
probability (again, 0.0001), and then one of the input weights that match with their corresponding
input bits is selected randomly. The sign of that input weight is then flipped. The threshold is also

5

fixed representation

unsup learning on
least useful features

random
gen & test unsup learning on

least useful features
+ random gen & test

unsup learning
on all features +

random gen & test unsupervised learning

Examples

Figure 5: Representation search improves the performance of unsupervised learning. When some of
the useful features are preserved, and the unsupervised learning algorithms are applied only on the
rest of the features, it worked better than applying them on all features. When the random generation
of features was included to it, it performed the best among all variations.

increased by 1 in this case. Here, the main tunable parameter is the target density. We experimented
with different the target densities between 0.0 and 1.0. The tolerance limit around the target density
is again set to 0.05.

Figure 5 shows the results of unsupervised learning and its different combinations with representa-
tion search strategies. When an unsupervised learning method was used, both algorithms were used
together. Data was generated using a similar problem as in the previous experiments (described in
section 2) except the activation probability of each input was 0.2, instead of 0.5. There were also
100 target LTU features, instead of 20, and the thresholds for the target LTUs were chosen randomly
between 0.0 and 1.0, instead of 0.6 in previous experiments. Here, all the representations had 200
features, and the initial thresholds of all the LTUs were set randomly between 0.0 and 1.0 in all
cases. Results are shown for best target frequency and density values. The best values for these
parameters were between 0.2 and 0.3.

The unsupervised learning method performed substantially better than the fixed representation. This
reconfirms the results by Sutton and Whitehead (1993). However, the method was effective only
at the initial stage of learning. After that, they settled at a certain level of performance and did not
improve with more data. It also performed substantially worse than one of our search methods that
used random generation and testing with traces of absolute output weights.

Different combinations of unsupervised learning with search strategies performed better than unsu-
pervised learning alone. We combined them in three ways. For the first combination, we used search
only for testing the features and preserving the most useful ones. Random generation of features was
left out. The tester with the trace of the absolute output weights was used to rank the features. For
each example observed, the tester was used to preserve the top 40% of the features for that example,
and the unsupervised methods were used to modify the rest of the 60% features. This combination
performed better than the unsupervised learning method alone and continued to improve with more
examples. This combination performed as well as the representation search method with random
generation and test in the long run, but the combination performed better than that at the initial
stage. This combination also outperformed the standalone unsupervised learning method during
the initial period of learning. This suggests that the combination retained the initial advantage pro-
vided by the unsupervised learning method and also made use of the selective retention of search to
improve continually.

6

For the second and third combinations, we added the random generation of features in the unsuper-
vised learning method for replacing some of the least useful features. For each example observed,
the output weights were learned using the LMS algorithm, the features were ranked using the tester,
and the least useful features were replaced with randomly generated features. Then the features were
updated using the unsupervised learning algorithms. For the second combination, all the features
were updated using the unsupervised learning algorithms, which is typically the case when unsuper-
vised learning is used. For the third combination, the unsupervised learning algorithms were applied
only on the bottom 60% of the features for that example.

Both the second and the third combinations performed better than the unsupervised learning alone.
As the random generation of features provides a constant source of new features, unsupervised learn-
ing found its use beyond the initial period of learning. However, the second combination performed
worse than the search method alone. It hints that selective retention should also be considered. The
third combination performed better than the search method alone and continued to improve with
more data. This method performed the best among all the methods. These results reveal that dif-
ferent components of search can be combined with unsupervised learning in different ways, and
unsupervised learning can benefit from each of them separately.

5 Discussion and Conclusions

In this paper, we explored a search-based approach to representation learning. Its core strategies are
based on random variation and selective retention. Our study showed that such simple ideas can be
realized inexpensively and can provide an effective method for continual representation learning.

We studied two unsupervised learning algorithms and showed that they can greatly benefit from
representation search in online learning settings. When the unsupervised learning algorithms were
used without search, they were effective only at the initial period of learning. However, when the
best features were preserved, unsupervised learning became able to generalize with more data. When
the random generation of features were included, it provided a constant source of new features, and
hence unsupervised learning found its use beyond the initial period of learning.

Both unsupervised learning and representation search have their unique strengths, but they alone
might be of limiting use. In online learning tasks, it is not desirable to disregard the usefulness
of features for too long. As unsupervised learning methods produce features disregarding their
usefulness, they may produce many features that are irrelevant, and at the same time, they may also
destroy some useful features in the process. Representation search can alleviate these problems by
eliminating irrelevant features as well as protecting the useful ones. Our study suggests that these
two representation learning approaches should be considered together in online learning problems.

All of our representation search methods are well suited for online learning, and they do not need
to store any past data. The complexity of executing them for each example scales linearly with the
number of features. Computationally, our online representation search methods are almost free.

References

Fahlman, S. E., Lebiere, C. (1990). The cascade-correlation learning architecture. Advances in Neural Infor-
mation Processing Systems, pp. 524–532.

Gallant, S., Smith, D. (1987). Random cells: an idea whose time has come and gone ... and come again?
Proceeding of the IEEE International Conference on Neural Networks.

Jarrett, K., Kavukcuoglu, K., Ranzato, M. A., LeCun, Y. (2009). What is the best multi-stage architecture for
object recognition? Proceeding of the 12th IEEE International Conference onComputer Vision, pp. 2146–2153.

Kanerva, P. (1988). Sparse Distributed Memory. Cambridge, MA: MIT Press.

Klopf, A. H., Gose, E. (1969). An evolutionary pattern recognition network. IEEE Transactions on Systems,
Man, and Cybernetics 15: 247–250.

Mahmood, A. R., Sutton, R. S., Degris, T., Pilarski, P. M. (2012). Tuning-free step-size adaptation. Proceed-
ings of the 2012 IEEE International Conference on Acoustics, Speech, and Signal Processing, Kyoto, Japan,
pp. 2121–2124.

7

Pinto, N., Doukhan, D., DiCarlo, J. J., Cox, D. D. (2009). A high-throughput screening approach to discovering
good forms of biologically inspired visual representation. PLoS computational biology, 5(11).

Prager, R.W., Fallside, F. (1988). The modified Kanerva model for automatic speech recognition. Computer
Speech and Language 5: 257–274.

Rosenblatt, F. (1962). Principles of Neurodynamics. New York: Spartan Books.

Saxe, A., Koh, P. W., Chen, Z., Bhand, M., Suresh, B., Ng, A. (2010). On random weights and unsupervised
feature learning. Workshop: Deep Learning and Unsupervised Feature Learning (NIPS).

Stanley, K. O., Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolution-
ary Computation 10(2):99–127. MIT Press.

Sutton, R. S., Whitehead, S. D., (1993). Online learning with random representations. Proceedings of the Tenth
International Conference on Machine Learning, pp. 314–321.

Uhr, L., Vossler, C. (1961). A pattern recognition program that generates, evaluates and adjusts its own opera-
tors. Proceedings of the Western Joint Computer Conference, pp. 555–569.

Yao, X., Liu, Y. (1997). A new evolutionary system for evolving artificial neural networks. IEEE Transactions
on Neural Networks 8(3):694–713. IEEE Press.

8

