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Abstract

There are many algorithms for training shallow architectures, such as peceptrons,
SVMs, and shallow neural networks. Backpropagation (gradient descent) works
well for a few layers but breaks down beyond a certain depth due to the well-
known problem of vanishing or exploding gradients, and similar observations can
be made for other shallow training algorithms. Here we introduce a novel class
of algorithms for training deep architectures. This class reduces the difficult prob-
lem of training a deep architecture to the easier problem of training many shallow
architectures by providing suitable targets for each hidden layer without backprop-
agating gradients, hence the name of deep target algorithms. This approach is very
general, in that it works with both differentiable and non-differentiable functions,
and can be shown to be convergent under reasonable assumptions. It is demon-
strated here by training a four-layer autoencoder of non-differentiable threshold
gates and a a 21-layer neural network on the MNIST handwritten digit dataset.

1 Introduction

Learning in deep architectures is a fundamental problem in machine learning, engineering, and
neuroscience, with a long history.

1.1 Brief Historical Perspective

In necessarily very schematic terms, the problem goes back at least as far as the work of Hebb who
proposed correlation-based learning rules as a possible solution in the late 1940s. Ten years later
or so, Rosenblatt introduced the perceptron learning algorithm [17, 18] for shallow classification
networks consisting of one layer of threshold gates with linearly separable data. This algorithm was
extended by Widrow and Hoff who introduced the Delta rule, essentially gradient descent, for shal-
low one-layer differentiable networks [21]. Minsky and Papert in their influential 1969 book [15]
proved a number of interesting results about perceptrons, including the perceptron cycling theorem
[5, 10] to partially address the non-linearly separable case. They also raised major concerns regard-
ing the possibility of finding good learning algorithms for multi-layer perceptrons. Their challenge
was taken up in the mid 1980s by the Parallel Distributed Processing group which introduced and
developed the backpropagation learning algorithm [19], basically an application of the chain rule to
compute the gradient at each level of a multi-layer feedforward neural network, as well as the first
autoencoder circuits. While backpropagation enables training networks with more than one layer,
it is also well known to fail beyond a certain depth, depending on implementation details, due to
the problem of vanishing or exploding gradients [13]. In theearly 1990s and early 2000s additional
shallow one-layer learning algorithms were developed in connection with SVMs, kernel methods,
and maximum margin optimization [20]. Beginning in the mid 2000s, the problem of how to train
deep architectures has regained a central role in AI and machine learning [4] with the development
of new applications and approaches, including semi-supervised approaches to initialize the majority
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of the weights based on stacks of autoencoder networks that can be trained in unsupervised ways
using the input data only [11, 12, 8].

1.2 Proposed Approach

If we consider this brief perspective and examine the methods that have been somewhat successful
(i.e. the perceptron algorithm, the backpropagation algorithm, the SVM algorithm, and the stacked-
autoencoders approach), they all have one thing in common inthat they provide targets for each
layer that needs to be trained. Furthermore, when a target isprovided for a layer, we know how to
train this layer by using one of these algorithms. Thus we propose a new approach where the goal
is to identify suitable targets for each hidden layer in a deep architecture. This approach is very
general and can be used for both differentiable and non-differentiable (e.g. threshold gate) transfer
functions. We begin by presenting the general framework andnotation.

2 General Framework and Notation

A deep feed-forward architectureA(n0, . . . , nl,F1, . . . ,Fl) with l layers (Figure 1) is described by
providing

• The sizen0, . . . nl of the l layers. The size of the input layer isn0 and the size the output
layer isnl.

• The classes of functions associated with each layer.Fj represent the class of functions
allowed in layerj. If F is inFj, thenF is a function fromFnj−1

j−1 toFj
nj . Thus we assume

that the activity vector in layerj is a vector overFj
nj , whereFj = R or Fj = {0, 1}

correspond to the most standard cases. Note that restrictedconnectivity between layers can
be incorporated into the definition ofFj .

An instantiationA(n0, . . . , nl, F1, . . . , Fl) of the architecture is defined by thel functions
F1, . . . , Fl of the proper size connecting the various layers. For instance,F1 is a function from
F
n0

0 toF
n1

1 andFl is a function fromFnl−1

l−1 toF
nl

l . We letW = Fl ◦ . . . ◦F2 ◦F1 denote the overall
transformation. It will be useful to isolate a particular layer j and write

W = Fl ◦ . . . ◦ Fj+1 ◦ Fj ◦ Fj−1 ◦ . . . ◦ F1 = Aj+1 ◦ Fj ◦Bj−1 = Aj+1FjBj−1 (1)

whereAj+1 = Fl ◦ . . . ◦ Fj+1 andBj−1 = Fj−1 ◦ . . . ◦ F1.

A training set is a set of input-output pairs(x1, y1), . . . , (xm, ym) where for everyi, xi ∈ X ⊂ F0
n0

andyi ∈ Y ⊂ Fl
nl . Given a distance or distortion or dissimilarity function∆l defined overFnl

l , the
learning problem is the problem of minimizing the overall distortionE

minE = min
W

m∑

i=1

∆l(W (xi), yi) (2)

where the minimization is carried over all possible functionsW allowed by the classesF1, . . . ,Fl.
It will be useful to have a distortion function available foreach layer, in which case we let∆j denote
the distortion function defined on layerj. For an instantiationA(n0, . . . , nl, F1, . . . , Fl), the activity
h
j
i of layerj for inputxi is defined byhj

i = Fj ◦ . . . ◦F1(xi). Obviouslyhl
i = W (xi) is the overall

output vector produced by the instantiation applied to input vectorxi.

To be concrete, in the typical casesFj is R or {0, 1}, and the distortion function∆j is the squared
Euclidean distances, the Hamming distance, or the relativeentropy. Connectivity issues aside, the
functionsF1, . . . , Fl between the layers can come from any of the following classes: (1) unrestricted
Boolean functions; (2) restricted Boolean functions, suchas threshold gates; (3) artificial neural
networks; (4) any other class of differentiable functions.We specifically allow mixed architectures
where different layers use different classes of functions,or non-differentiable architectures (e.g.
threshold gates).
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Figure 1:Deep architecture and deep target algorithms. The algorithm visits the various layers according to
some schedule and optimizes each one of them. This is achieved by the deep target algorithms which is capable
of providing suitable targets(hj

i )
∗ for any layerj and any inputxi, assuming that the rest of the architecture is

fixed. The targets are used to modifyFj .

3 Deep Target Algorithms

3.1 Overview of the Learning Algorithm (Outer Loop)

The key assumption is the availability of an algorithmΘ for optimizing any layer or unit, while
holding the rest of the architecture fixed, provided that we can specify a suitable target for that
layer or unit. The optimization byΘ may be complete or partial, and takes place with respect to an
error measure∆j specific to layerj in the architecture (or even specific to a subset of units in the
case of an architecture where different units are found in the same layer). An exact optimization
algorithmΘ is obvious in the unconstrained Boolean case. For a layer of threshold gates,Θ can be
the perceptron algorithm, which is exact in the linearly separable case, or an SVM maximum margin
algorithm. For a layer of artificial neurons or other continuous differentiable functions,Θ can be the
delta rule or gradient descent, which in general performs only partial optimization.

Under these assumptions the training algorithm proceeds according to the following outer loop:

1. Cycle through the layers and possibly the individual units in each layer according to some
schedule. Examples of relevant schedules include successively sweeping through the ar-
chitecture layer by layer from the first layer to the top layer. Other schedules are discussed
below.

2. During the cycling process, for a given layer or unit, identify suitable targets, while holding
the rest of the architecture fixed.

3. Use the algorithmΘ to optimize the corresponding functionFj .

The most important point left to address of course is how the targets are identified. While targets
are obvious for the output layerl, it is less obvious how to provide suitable targets for deeper layers.
This is achieved by the deep target family of algorithms described below in on-line fashion, i.e. for
an individual inputxi with a corresponding overall output targetyi.
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3.2 Deep Target Algorithm (Inner Loop)

Consider any layerj, with 1 ≤ j ≤ l. Recall thatW = Aj+1FjBj−1. We assume that bothAj+1

andBj−1 are fixed. The inputxi produces an activation vectorBj−1(xi) = hi
j−1 and our goal

is to find a suitable vector target in layerj. For this we take a sampleSj
i of vectorsvj in layer

j. This sampling can be carried in different ways, for instance: (1) using only the valueshj
i over

the training set; (2) using random values generated around the vectorshj
i , i.e. around the hidden

activities produced in the hidden layerj (e.g. using gaussian perturbations or sampling from the
binomial or multinomial distributions associated with standard neural network transfer functions);
(3) sampling more or less uniformly overFnj

j ; and (4) exhaustively, for instance in the case of a short
binary layer. Given such a set of samplesvj , we compute the corresponding outputsAj+1(v

j). We
then select as the target the vectorvj that produces an output closest to the ideal targetyi. Thus

(hj
i )

∗ = arg min
vj∈Sj

i

∆l(yi, Aj+1(v
j)) (3)

If there are several optimal vectors inSj
i , then one can select one of them at random, or use∆j to

control the size of the learning step. For instance, by selecting a vectorvj that not only minimizes
the output distortion but also minimizes the distortion∆j(vj , hj

i ), one can ensure that the target is
as close as possible to the current layer activity, and henceminimize the corresponding perturbation.
As with other learning and optimization algorithms, these algorithmic details can be varied during
training, for instance by progressively reducing the size of the learning steps as learning progresses.
Obviously for the output layerl one can use the targetyi directly instead of using this sampling
approach. [Note: that the algorithm described above is the natural generalization of the algorithm
introduced in [2] for the unrestricted Boolean autoencoder, specifically for the optimization of the
lower layer.]

3.3 Possible Refinement

In many situations, there will be only onexi in the training set such thatBj−1(xi) = h
j−1
i . Even

when multiple training vectors produce the same hidden activity the algorithm above can be used
on-line. However, in the non-injective case, a slightly modified procedure may be preferable. To see
this, define the cluster

C0(hj−1
i ) = {xk ∈ X : Bj−1(xk) = h

j−1
i } (4)

Since all the training vectors inC0(hj−1
i ) map to the same hidden activityhj1

i , any individual in-
formation about each of these training vectors is lost in thearchitecture past the layerj − 1. Now
consider the corresponding set of output targets

T l(hj−1
i ) = {yk ∈ Y : xk ∈ C0(hj−1

i )} (5)

The entire setT l(hj−1
i ) ought to be taken into consideration when deriving the corresponding target

(hj
i )

∗. The same sampling procedure as above can be used to produce asampleSj
i and derive the

target:

(hj
i )

∗ = arg min
vj∈Sj

i

∑

yk∈T l(hj−1

i
)

∆l(yk, Aj+1(v
j)) (6)

Again if the optimum is achieved by more than one vectorvj , the same remarks as above apply.
[Note: that the algorithm described above is the natural generalization of the algorithm introduced
in [2] for the unrestricted Boolean autoencoder, specifically for the optimization of the upper layer.]

In short, in all cases one is able to provide a target(hj
i )

∗ for hj−1
i for any training inputxi and any

layerj in the architecture, while holding the rest of the architecture fixed. This target can be used
by the algorithmΘ to optimize the corresponding functionFj .
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3.4 Additional Remarks

• Depending on the schedule in the outerloop, the sampling approach and optimization algo-
rithm used in the inner loop, as well as other implementationdetails, the description above
provides a family of algorithms, rather than a single algorithm.

• Adjustable learning rates can be used with different adjustment rules for different learning
phases [6, 7].

• The proposed approach can easily be combined with backpropagation. For instance, targets
can be provided for every other layer, rather than for every layer, and backpropagation used
to train pairs of adjacent layers. It is also possible to interleave the layers over which
backpropagations is applied to better stitch the shallow components together (e.g. use
backpropagations for layers 3,2,1 then 4,3,2, etc).

• Examples of interesting schedules for the outerloop include a single pass from layer 1 to
layer l, alternating up-and down passes along the architecture, cycling through the layers
in the order 1,2,1,2,3,1,2,3,4, etc, and their variations.

• Similarly to backpropagation, the proposed approach can becombined with all the other
“tricks” used in machine learning such as weight sharing, momentum, second order meth-
ods, and so forth.

• The exact complexity of the approach depends on its implementation details, in particu-
lar on the cycling method implemented in the outer loop and the sampling method im-
plemented in the inner loop. The complexity however can be kept low, for instance using
batches of training example that share the same sampling, and involves only forward passes
to determine the targets. In particular, targets can be identified for multiple inputs at once
to save on computations. If the set of possible targetsSj is the same for a batch of training
examples, then we can updateFj using the entire batch but only a single computation of
Aj+1(v

j) for all vj ∈ Sj .

• In practice the algorithms converge, at least to a local minima of the error function. In
general the convergence is not monotonic (Figure 2), with occasional uphill jumps that can
be beneficial in avoiding poor local minima. Convergence canbe proved mathematically
in several cases.For instance, if the optimization procedure can map each hidden activity
to each corresponding target over the entire training set, then the overall training error is
guaranteed to decrease or stay constant at each optimization step and hence it will converge
to a stable value. In the unrestricted Boolean case (or in theBoolean case with perfect
optimization), with exhaustive sampling of each hidden layer the algorithm can also be
shown to be convergent. Finally, it can also be shown to be convergent in the framework of
stochastic learning and stochastic component optimization.

• The DT algorithms lend themselves to parallel implementations.

• The DT algorithms can be applied to recurrent or recursive architectures [1, 9, 3] by con-
verting them into deep architectures, by unfolding them in time or in space.

4 Data and Experimental Results

4.1 Training Networks with Threshold Gate Units

Here we demonstrate that a deep target approach is capable ofdirectly training a multi-layer percep-
tron with threshold gate units and Hamming distance error.

E =

m∑

i=1

∆l(yi,W (xi)) (7)

∆j(a, b) =

nj∑

k=1

1ak 6=bk (8)

The task is to train a four layer autoencoder of binary data. The input and output layers have
n0 = n4 = 100 units each and there are three hidden layers of 30, 10, and 30 units. All units in
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layerj are fully connected to thenj−1 units in the layer below, plus a bias term. The weights forFj

are initialized randomly from the uniform distributionU(− 1√
nj−1

, 1√
nj−1

) except for the bias terms

which are all zero.

The training data consists of 10 clusters of 100 examples each for a total ofm = 1000. The
centroid of each cluster is a random 100-bit binary vector with each bit drawn independently from
the binomial distribution withp = 0.5. An example from a particular cluster is generated by starting
from the centroid and introducing noise – each bit has an independent probability0.05 of being
flipped. The test data consists of an additional 100 examplesdrawn from each of the 10 clusters.

The distortion function∆j for all layers is the Hamming distance, and the optimizationalgorithm
Θ is 10 iterations of the perceptron algorithm with a learningrate of1. The gradient is calculated in
batch mode using all1000 training examples at once.

For the second layer withn2 = 10, the set of potential targetsS2
i for inputxi is simply the set of

all possible activations of the hidden layerS2
i = {0, 1}10 because210 = 1024 samples leads to a

manageable amount of computation. For other layers wherenj > 10, Sj
i comprises all activation

vectorshj
i , plus a set of1000 random binary vectors where each bit is independent and1 with

probability0.5.

Updates to the layers are made on a schedule that cycles through the layers in sequential order:
1, 2, 3, 4. One update of all four layers constitutes an epoch. The trajectory of the training error is
shown in Figure 2.
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Figure 2:A deep target (DT) algorithm is used to train a simple autoencoder network of threshold gates thus
purely comprised of non-differentiable transfer functions. They axis correspond to the average Hamming error
per component and per example.
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4.2 Training Networks with Sigmoidal Units

Here we use the deep target approach to train a standard neural network classifier with the sigmoid
transfer function in the lower layers, soft-max transfer function in the last layer, and cross-entropy
error for multi-class output.
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Figure 3:A deep target (DT) algorithm is used to train a neural networkwith 14 hidden layers on the MNIST
dataset. Gradient descent (GD) with backpropagation is unable to update the weights after the first couple
epochs due to machine precision limitations.

E =

m∑

i=1

∆l(yi,W (xi)) (9)

∆l(a, b) = −
nl∑

k=1

ak log bk (10)

∆j 6=l(a, b) = −
nj∑

k=1

ak log bk + (1− ak) log (1− bk) (11)

We use the cross-entropy error as the distortion function∆j and gradient descent as the partial
optimization algorithmΘ. Specifically, updates to the weights inFj are made with a simple step
down the gradient of the cross-entropy error. The learning rate is0.1( 1

nj−1

).

The outer loop of the algorithm makes updates in batches of100. Updates are made to all layers
sequentially1, 2, ..., l before moving on to the next batch, and one cycle through the training data
constitutes an epoch. The primary advantage of batch operations is that we can compute targets for
the entire batch at once. The set of possible targetsSj is the same for all examplesxi in the batch –
Sj comprises all batch activation vectorshj

i , plus a set of1000 random binary vectors where each
bit is independent and1 with probability0.5. The weights inFj are updated once per batch by using
the gradient of the average error.
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We apply our algorithm to a benchmark classification task. The MNIST handwritten digit dataset
contains 28-by-28 pixel greyscale images [14]. There are60000 training examples and10000 test
examples.

The architecture is a feed-forward network with14 layers and the following numbers of units in
each layer: 784 (input), 1000, 800, 500, 300, 300, 300, 300, 300, 100, 100, 100, 100, 100, 10. Each
unit is fully connected to thenj−1 units in the layer below it, plus a bias term. The weights forFj

are initialized randomly from the uniform distributionU(− 4
√
3√

nj−1

, 4
√
3√

nj−1

) except for the bias terms

which are all initially zero. The parameter4
√
3 helps ensure that perturbations to the input produce

perturbations in the output. The trajectory of the classification error is plotted in Figure 3.

For comparison, we also attempted to train the same architecture using gradient descent with back-
propagation. We initialized the weights in the same way, andused MATLAB code by Carl Ras-
mussen for minimization with conjugate gradients [16]. This was done in batch mode so that 3
linesearches were done for each batch of1000 training examples, and one cycle through the entire
training set constitutes an epoch.

Computations were done in MATLAB on a server with 8 processors (MATLAB can automatically
take advantage of multiple cores for some operations). The two algorithms were trained for300
epochs. In real time, the deep target algorithm ran for96 hours and the gradient descent algorithm
ran for54.

In a similar experiment, we used the same deep target algorithm to train an architecture of 21 layers.
Each of the20 hidden layers has300 units. Again we plot the trajectory of the classification errors
(Figure 4).
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Figure 4:A deep target (DT) algorithm is used to train a neural networkwith 21 layers on the MNIST dataset.
Each of the 20 hidden layers has300 units. Gradient descent (GD) with backpropagation again fails.
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5 Discussion

We have described a general class of algorithms, the deep target algorithms, that can be used to train
essentially any feedforward architecture. We have demonstrated this capability in two cases where
gradient descent with backpropagation fails: (1) when the transfer function is non-differentiable;
and (2) when the number of layer is too large to allow the backpropagation of gradients.

The accuracy of the MNIST classifiers trained with deep target algorithms in Figure 3 and Figure 4 is
not impressive in itself, as similar networks with only three layers are known to achieve2% test error.
However these experiments do show that the DT approach is capable of training large networks,
where backpropagation is useless, by providing targets to all, or a sufficient subset, of the hidden
layers. Impressive accuracy results ought to be sought in situations where shallow architectures
cannot achieve such results, and this requires very difficult learning problems and/or very strong
architectural constraints (e.g. local connectivity). Work along these lines is currently in progress
[Anonymous].

In the MNIST experiments each layer is updated individuallyusing deep targets, but as mentioned
earlier, the DT framework also allows updating multiple layers at a time. We can train any subset
of adjacent layers simply by providing a set of inputs and targets, then training this section of the
network with a multi-layer optimisation algorithmΘ such as backpropagation. In fact, we have
observed this strategy to be useful for additional trainingof the upper layers of the14 layer MNIST
classifier in figure 3. The network has a test error of13% after 300 iterations of updating each
layer individually; if we continue training all layers together with backpropagation for another200
iterations (in effect training the top layers), this test error drops to3.7%.

In short, we believe that DT algorithms have the potential for addressing some of the most important
problems in deep learning and, as described in Section 3, many interesting directions remain to be
explored.
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