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Abstract

There are many algorithms for training shallow architegsysuch as peceptrons,
SVMs, and shallow neural networks. Backpropagation (gmatdilescent) works
well for a few layers but breaks down beyond a certain depth tduthe well-
known problem of vanishing or exploding gradients, and lsimdbservations can
be made for other shallow training algorithms. Here we ithice a novel class
of algorithms for training deep architectures. This clashices the difficult prob-
lem of training a deep architecture to the easier problemadriihng many shallow
architectures by providing suitable targets for each hiddger without backprop-
agating gradients, hence the name of deep target algorithimsapproach is very
general, in that it works with both differentiable and ndffestentiable functions,
and can be shown to be convergent under reasonable assosmptias demon-
strated here by training a four-layer autoencoder of ndferintiable threshold
gates and a a 21-layer neural network on the MNIST handwritigit dataset.

1 Introduction

Learning in deep architectures is a fundamental problem achime learning, engineering, and
neuroscience, with a long history.

1.1 Brief Historical Perspective

In necessarily very schematic terms, the problem goes lidekst as far as the work of Hebb who
proposed correlation-based learning rules as a possihléasoin the late 1940s. Ten years later
or so, Rosenblatt introduced the perceptron learning élgor[17, 18] for shallow classification
networks consisting of one layer of threshold gates witbdity separable data. This algorithm was
extended by Widrow and Hoff who introduced the Delta rulseesially gradient descent, for shal-
low one-layer differentiable networks [21]. Minsky and Begn their influential 1969 book [15]
proved a number of interesting results about perceptraokiding the perceptron cycling theorem
[5, 10] to partially address the non-linearly separablecd$ey also raised major concerns regard-
ing the possibility of finding good learning algorithms fouhi-layer perceptrons. Their challenge
was taken up in the mid 1980s by the Parallel Distributed &sicig group which introduced and
developed the backpropagation learning algorithm [19§idadly an application of the chain rule to
compute the gradient at each level of a multi-layer feedéwdmneural network, as well as the first
autoencoder circuits. While backpropagation enablesitrginetworks with more than one layer,
it is also well known to fail beyond a certain depth, depegdin implementation details, due to
the problem of vanishing or exploding gradients [13]. In&aely 1990s and early 2000s additional
shallow one-layer learning algorithms were developed imneation with SVMs, kernel methods,
and maximum margin optimization [20]. Beginning in the mi@gdPs, the problem of how to train
deep architectures has regained a central role in Al and imadtdarning [4] with the development
of new applications and approaches, including semi-sugeshapproaches to initialize the majority



of the weights based on stacks of autoencoder networks @mabe trained in unsupervised ways
using the input data only [11, 12, 8].

1.2 Proposed Approach

If we consider this brief perspective and examine the mesliloat have been somewhat successful
(i.e. the perceptron algorithm, the backpropagation &gar, the SVM algorithm, and the stacked-
autoencoders approach), they all have one thing in commdmainthey provide targets for each
layer that needs to be trained. Furthermore, when a targetisded for a layer, we know how to
train this layer by using one of these algorithms. Thus wepse a new approach where the goal
is to identify suitable targets for each hidden layer in apdarchitecture. This approach is very
general and can be used for both differentiable and noeyéifitiable (e.g. threshold gate) transfer
functions. We begin by presenting the general frameworkrentation.

2 General Framework and Notation

A deep feed-forward architectus(no, . . ., n;, Fi, - .., F;) with [ layers (Figure 1) is described by
providing

e The sizeny,...n; of thel layers. The size of the input layer#ig and the size the output
layer isn;.

e The classes of functions associated with each laygrrepresent the class of functions
allowed in layerj. If Fis in F;, thenF" is a function fromiF”|* to F;"7. Thus we assume
that the activity vector in layey is a vector oveif;"7, whereF; = R or F; = {0,1}
correspond to the most standard cases. Note that restrimteectivity between layers can
be incorporated into the definition &F;.

An instantiation A(ny,...,n;, F1,..., F;) of the architecture is defined by thee functions

Iy, ..., F; of the proper size connecting the various layers. For ingtah; is a function from

Fy° toF7* andF; is a function fromlF;"" " to F}"'. We letW = F,o...o F; o F; denote the overall
transformation. It will be useful to isolate a particulayéa; and write

W:EO...OFJ’+1OFjOFj_lo...OFl ZAj+1 OFjOBj_l ZAj+1Fij_1 (1)

Whel’eAJ‘+1 =Fjo...0 Fj+1 andBj,l = Fj,1 o...oF].

Atraining set is a set of input-output paits;, y1), - - - , (¥m, ym ) Where for every, z; € X C Fy"°
andy; € Y C F;™. Given a distance or distortion or dissimilarity functids defined ovef;", the
learning problem is the problem of minimizing the overaitdrtion E

min F = mmi/nZAl(W(xi),yi) (2)

i=1

where the minimization is carried over all possible funetidl” allowed by the classes, . . ., F;.
It will be useful to have a distortion function available fmch layer, in which case we lAY denote
the distortion function defined on laygrFor an instantiatiotd (no, . . ., ny, Fi, . . ., F}), the activity
h! of layer for inputz; is defined byh! = Fjo...o0 Fy(z;). Obviouslyh! = W (z;) is the overall
output vector produced by the instantiation applied to try@etorz;.

To be concrete, in the typical casBsis R or {0, 1}, and the distortion functiod\’ is the squared
Euclidean distances, the Hamming distance, or the relatit@py. Connectivity issues aside, the
functionsrF, . . ., F; between the layers can come from any of the following clag4@sinrestricted
Boolean functions; (2) restricted Boolean functions, sastthreshold gates; (3) artificial neural
networks; (4) any other class of differentiable functiove specifically allow mixed architectures
where different layers use different classes of functimrspon-differentiable architectures (e.g.
threshold gates).
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Figure 1:Deep architecture and deep target algorithms. The algontkits the various layers according to
some schedule and optimizes each one of them. This is achigvie deep target algorithms which is capable

of providing suitable target(sh{)* for any layerj and any inputz;, assuming that the rest of the architecture is
fixed. The targets are used to mod#y.

3 Deep Target Algorithms

3.1 Overview of the Learning Algorithm (Outer Loop)

The key assumption is the availability of an algoriti@nfor optimizing any layer or unit, while
holding the rest of the architecture fixed, provided that \&a specify a suitable target for that
layer or unit. The optimization b$ may be complete or partial, and takes place with respect to an
error measuré\? specific to layer; in the architecture (or even specific to a subset of unitsén th
case of an architecture where different units are found énsme layer). An exact optimization
algorithm® is obvious in the unconstrained Boolean case. For a laydrre$hold gates) can be

the perceptron algorithm, which is exact in the linearlyssaple case, or an SVM maximum margin
algorithm. For a layer of artificial neurons or other contina differentiable function€) can be the
delta rule or gradient descent, which in general perfornig jpartial optimization.

Under these assumptions the training algorithm proceextsditg to the following outer loop:

1. Cycle through the layers and possibly the individualaimiteach layer according to some
schedule. Examples of relevant schedules include sugegssiweeping through the ar-
chitecture layer by layer from the first layer to the top lay@ther schedules are discussed
below.

2. During the cycling process, for a given layer or unit, itlgrsuitable targets, while holding
the rest of the architecture fixed.

3. Use the algorithn® to optimize the corresponding functidt).

The most important point left to address of course is how déingetts are identified. While targets
are obvious for the output layérit is less obvious how to provide suitable targets for deépeers.
This is achieved by the deep target family of algorithms dbed below in on-line fashion, i.e. for
an individual inpute; with a corresponding overall output targgt



3.2 Deep Target Algorithm (Inner Loop)

Consider any layey, with 1 < j <[. Recall thatV = A;;,FjB;_:. We assume that both;

and B;_, are fixed. The input; produces an activation vectd; _;(z;) = hj-_l and our goal

is to find a suitable vector target in laygr For this we take a sampléj of vectorsy? in layer

j. This sampling can be carried in different ways, for ins&and) using only the valuelsf over

the training set; (2) using random values generated ardnmdectors’z{, i.e. around the hidden
activities produced in the hidden laygre.g. using gaussian perturbations or sampling from the
binomial or multinomial distributions associated withrefard neural network transfer functions);
(3) sampling more or less uniformly ovEfj ; and (4) exhaustively, for instance in the case of a short

binary layer. Given such a set of sampléswe compute the corresponding outpdts 1 (v7). We
then select as the target the veatpthat produces an output closest to the ideal taggethus

(h])* = arg min A'(y;, Aj41(v7)) 3)

vieS]

If there are several optimal vectorsdi, then one can select one of them at random, orAs&o
control the size of the learning step. For instance, by selga vectors’ that not only minimizes
the output distortion but also minimizes the distortidf(v7, k), one can ensure that the target is
as close as possible to the current layer activity, and hevirgienize the corresponding perturbation.
As with other learning and optimization algorithms, thelggethmic details can be varied during
training, for instance by progressively reducing the siizthe learning steps as learning progresses.
Obviously for the output layer one can use the targgt directly instead of using this sampling
approach. [Note: that the algorithm described above is #teral generalization of the algorithm
introduced in [2] for the unrestricted Boolean autoencpsigecifically for the optimization of the
lower layer.]

3.3 Possible Refinement

In many situations, there will be only ong in the training set such thdg; _; (x;) = hg’l. Even
when multiple training vectors produce the same hiddewicthe algorithm above can be used
on-line. However, in the non-injective case, a slightly rified procedure may be preferable. To see
this, define the cluster

CORI™") ={xp € X : Bj_1(xx) = h)7'} (4)

Since all the training vectors iﬁo(hg_l) map to the same hidden activibjl, any individual in-
formation about each of these training vectors is lost inaitehitecture past the laygr— 1. Now
consider the corresponding set of output targets

TR ={y €Y 1o €CO(h] 1)} ®)

The entire sef (h{’l) ought to be taken into consideration when deriving the apwading target

(h{)*. The same sampling procedure as above can be used to prodantpban and derive the
target:

(W) =arg min Y Ay, Aja(2))) (6)
vi €S] yk,ETl(hf»:il)
Again if the optimum is achieved by more than one veetgrthe same remarks as above apply.

[Note: that the algorithm described above is the naturakgaization of the algorithm introduced
in [2] for the unrestricted Boolean autoencoder, speclfidal the optimization of the upper layer.]

In short, in all cases one is able to provide a ta(@éy* for h{’l for any training inputc; and any
layer j in the architecture, while holding the rest of the architeetfixed. This target can be used
by the algorithmO to optimize the corresponding functidy).
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3.4 Additional Remarks

Depending on the schedule in the outerloop, the samplingpaph and optimization algo-
rithm used in the inner loop, as well as other implementadietails, the description above
provides a family of algorithms, rather than a single altjoni.

Adjustable learning rates can be used with different adjast rules for different learning
phases [6, 7].

The proposed approach can easily be combined with backgatipa. For instance, targets
can be provided for every other layer, rather than for evaygil, and backpropagation used
to train pairs of adjacent layers. It is also possible torleteve the layers over which
backpropagations is applied to better stitch the shallompmnents together (e.g. use
backpropagations for layers 3,2,1 then 4,3,2, etc).

Examples of interesting schedules for the outerloop ireladingle pass from layer 1 to
layer, alternating up-and down passes along the architectuctingythrough the layers
in the order 1,2,1,2,3,1,2,3,4, etc, and their variations.

Similarly to backpropagation, the proposed approach cacob&ined with all the other
“tricks” used in machine learning such as weight sharingmaotum, second order meth-
ods, and so forth.

The exact complexity of the approach depends on its implémtien details, in particu-
lar on the cycling method implemented in the outer loop areddhmpling method im-
plemented in the inner loop. The complexity however can lyg ksv, for instance using
batches of training example that share the same samplidgnanives only forward passes
to determine the targets. In particular, targets can betiftshfor multiple inputs at once
to save on computations. If the set of possible tar§éts the same for a batch of training
examples, then we can upddte using the entire batch but only a single computation of
Aji(v7) forallvi € 87.

In practice the algorithms converge, at least to a local ménof the error function. In
general the convergence is not monotonic (Figure 2), wittasional uphill jumps that can
be beneficial in avoiding poor local minima. Convergence lzamproved mathematically
in several cases.For instance, if the optimization proedan map each hidden activity
to each corresponding target over the entire training bety the overall training error is
guaranteed to decrease or stay constant at each optimistgipand hence it will converge
to a stable value. In the unrestricted Boolean case (or irBtiwdean case with perfect
optimization), with exhaustive sampling of each hidderelathe algorithm can also be
shown to be convergent. Finally, it can also be shown to beergent in the framework of
stochastic learning and stochastic component optimizatio

The DT algorithms lend themselves to parallel implemeaotesti

The DT algorithms can be applied to recurrent or recursiehitectures [1, 9, 3] by con-
verting them into deep architectures, by unfolding theninretor in space.

4 Data and Experimental Results

4.1 Training Networks with Threshold Gate Units

Here we demonstrate that a deep target approach is capabtedfy training a multi-layer percep-
tron with threshold gate units and Hamming distance error.

E = > Ay, W(zi) ()
=1

Aj(a,b) = Z]lak#k (8)
k=1

The task is to train a four layer autoencoder of binary datae ihput and output layers have
ng = ng = 100 units each and there are three hidden layers of 30, 10, andi&) Il units in



layerj are fully connected to the;_; units in the layer below, plus a bias term. The weightsfpr

L . L 1 1 .
arg initialized randomly from the uniform distributién(— N m) except for the bias terms
which are all zero.

The training data consists of 10 clusters of 100 exampleb &aca total ofm = 1000. The
centroid of each cluster is a random 100-bit binary vectahwach bit drawn independently from
the binomial distribution witlp = 0.5. An example from a particular cluster is generated by stgrti
from the centroid and introducing noise — each bit has anpeddent probability).05 of being
flipped. The test data consists of an additional 100 exanupbagn from each of the 10 clusters.

The distortion functiom\? for all layers is the Hamming distance, and the optimizasityorithm
O is 10 iterations of the perceptron algorithm with a learmiaig of1. The gradient is calculated in
batch mode using all000 training examples at once.

For the second layer with, = 10, the set of potential targes® for input z; is simply the set of
all possible activations of the hidden laygf = {0, 1}'° becaus&@!® = 1024 samples leads to a
manageable amount of computation. For other layers whgere 10, Sf comprises all activation
vectorsh{, plus a set ofl000 random binary vectors where each bit is independentlandth
probability0.5.

Updates to the layers are made on a schedule that cyclegthtbe layers in sequential order:
1,2, 3,4. One update of all four layers constitutes an epoch. Thedtajy of the training error is
shown in Figure 2.
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Figure 2:A deep target (DT) algorithm is used to train a simple autodec network of threshold gates thus
purely comprised of non-differentiable transfer functiomhey axis correspond to the average Hamming error
per component and per example.



4.2 Training Networks with Sigmoidal Units

Here we use the deep target approach to train a standard netwark classifier with the sigmoid
transfer function in the lower layers, soft-max transferdiion in the last layer, and cross-entropy
error for multi-class output.
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Figure 3:A deep target (DT) algorithm is used to train a neural netwuitk 14 hidden layers on the MNIST
dataset. Gradient descent (GD) with backpropagation iblarta update the weights after the first couple
epochs due to machine precision limitations.

E = ) Ay, W) 9)
i=1
Al(a,b) = —i:ak log by, (10)
k=1
A7 (a,b) = —zj:ak log b, + (1 — ax) log (1 — bg) (11)
k=1

We use the cross-entropy error as the distortion funcfidnand gradient descent as the partial
optimization algorithm®. Specifically, updates to the weights i) are made with a simple step
down the gradient of the cross-entropy error. The learndngis0.1(——).

nj—1

The outer loop of the algorithm makes updates in batchd®@f Updates are made to all layers
sequentiallyl, 2, ..., I before moving on to the next batch, and one cycle throughrtieihg data
constitutes an epoch. The primary advantage of batch opesdas that we can compute targets for
the entire batch at once. The set of possible tar§éis the same for all examples in the batch —
S7 comprises all batch activation vectdrs, plus a set o000 random binary vectors where each
bit is independent antlwith probability0.5. The weights in¥; are updated once per batch by using
the gradient of the average error.




We apply our algorithm to a benchmark classification taske WINIST handwritten digit dataset
contains 28-by-28 pixel greyscale images [14]. There6af®0 training examples antl0000 test
examples.

The architecture is a feed-forward network with layers and the following numbers of units in
each layer: 784 (input), 1000, 800, 500, 300, 300, 300, 300, 800, 100, 100, 100, 100, 10. Each
unit is fully connected to the;_; units in the layer below it, plus a bias term. The weightsHpr

are initialized randomly from the uniform distributitﬁf(—fn—ﬁl, fn—ﬁl) except for the bias terms
Y Y]

which are all initially zero. The parametét/3 helps ensure that perturbations to the input produce
perturbations in the output. The trajectory of the classiftn error is plotted in Figure 3.

For comparison, we also attempted to train the same artihiteasing gradient descent with back-
propagation. We initialized the weights in the same way, aseld MATLAB code by Carl Ras-
mussen for minimization with conjugate gradients [16]. sTtas done in batch mode so that 3
linesearches were done for each batch@f0 training examples, and one cycle through the entire
training set constitutes an epoch.

Computations were done in MATLAB on a server with 8 proces¢MATLAB can automatically
take advantage of multiple cores for some operations). Woeealgorithms were trained fa300
epochs. In real time, the deep target algorithm rardfohours and the gradient descent algorithm
ran for54.

In a similar experiment, we used the same deep target digotd train an architecture of 21 layers.
Each of the20 hidden layers ha300 units. Again we plot the trajectory of the classificationoesr
(Figure 4).
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Figure 4:A deep target (DT) algorithm is used to train a neural netwaitk 21 layers on the MNIST dataset.
Each of the 20 hidden layers h3@0 units. Gradient descent (GD) with backpropagation agais. fa



5 Discussion

We have described a general class of algorithms, the deggt &lgorithms, that can be used to train
essentially any feedforward architecture. We have dematest this capability in two cases where
gradient descent with backpropagation fails: (1) when thedfer function is non-differentiable;
and (2) when the number of layer is too large to allow the bem@gation of gradients.

The accuracy of the MNIST classifiers trained with deep taatgmrithms in Figure 3 and Figure 4 is
not impressive in itself, as similar networks with only tefayers are known to achie2&; test error.
However these experiments do show that the DT approach ebtapf training large networks,
where backpropagation is useless, by providing targetdl,toraa sufficient subset, of the hidden
layers. Impressive accuracy results ought to be soughtuatgins where shallow architectures
cannot achieve such results, and this requires very diffieatning problems and/or very strong
architectural constraints (e.g. local connectivity). Watong these lines is currently in progress
[Anonymous].

In the MNIST experiments each layer is updated individua#iing deep targets, but as mentioned
earlier, the DT framework also allows updating multipledey at a time. We can train any subset
of adjacent layers simply by providing a set of inputs andets, then training this section of the
network with a multi-layer optimisation algorith® such as backpropagation. In fact, we have
observed this strategy to be useful for additional traidhthe upper layers of thed layer MNIST
classifier in figure 3. The network has a test errorl8% after 300 iterations of updating each
layer individually; if we continue training all layers totper with backpropagation for anoth#s0
iterations (in effect training the top layers), this tesbedrops ta3.7%.

In short, we believe that DT algorithms have the potentiaéfitdressing some of the most important
problems in deep learning and, as described in Section 3y m#sresting directions remain to be
explored.
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