
Knowledge Matters: Importance of Prior
Information for Optimization

Çağlar Gülçehre
gulcehrc@iro.umontreal.ca

Département d’informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC, Canada

Yoshua Bengio
yoshua.bengio@umontreal.ca

Département d’informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC, Canada

Abstract

We explore the effect of introducing prior information into the intermediate level
of neural networks for a learning task on which all the state-of-the-art machine
learning algorithms tested failed to learn. We motivate our work from the hy-
pothesis that humans learn such intermediate concepts from other individuals via
a form of supervision or guidance using a curriculum. The experiments we have
conducted provide positive evidence in favor of this hypothesis. In our experi-
ments, a two-tiered MLP architecture is trained on a dataset with 64x64 binary
inputs images, each image with three sprites. The final task is to decide whether
all the sprites are the same or one of them is different. Sprites are pentomino tetris
shapes and they are placed in an image with different locations using scaling and
rotation transformations. The first level of the two-tiered MLP is pre-trained with
intermediate level targets being the presence of sprites at each location, while the
second level takes the output of the first level as input and predicts the final task
target binary event. The two-tiered MLP architecture, with a few tens of thou-
sand examples, was able to learn the task perfectly, whereas all other algorithms
(include unsupervised pre-training, but also traditional algorithms like SVMs, de-
cision trees and boosting) all perform no better than chance. We hypothesize that
the optimization difficulty involved when the intermediate pre-training is not per-
formed is due to the composition of two highly non-linear tasks. Our findings are
also consistent with hypotheses on cultural learning inspired by the observations
of optimization problems with deep learning, presumably because of effective lo-
cal minima.

1 Introduction

There is a recent emerging interest in different fields of science for cultural learning (Henrich and
McElreath, 2003) and how groups of individuals exchanging information can learn in ways superior
to individual learning. This is also witnessed by the emergence of new research fields such as ”Social
Neuroscience”. Learning from other agents in an environment by the means of cultural transmission
of knowledge with a peer-to-peer communication is an efficient and natural way of acquiring or
propagating common knowledge. The most popular belief on how the information is transmitted
between individuals is that bits of information are transmitted by small units, called memes, which

1



share some characteristics of genes, such as self-replication, mutation and response to selective
pressures (Dawkins, 1976).

This paper is based on the hypothesis (which is further elaborated in Bengio (2012)) that human
culture and the evolution of ideas have been crucial to counter an optimization difficulty: this op-
timization difficulty would otherwise make it intractable for human brains to capture high level
knowledge of the world. Here we use machine learning experiments to investigate some elements
of this hypothesis by seeking answers for the following questions: are there machine learning tasks
which are intrinsically hard for a lone learning agent but that may become very easy when interme-
diate concepts are provided by another agent as additional intermediate learning cues, in the spirit
of Curriculum Learning (Bengio et al., 2009a)? What makes such learning tasks more difficult?
Can we verify that we are dealing with an optimization and local minima issue of deep networks,
i.e., that using the same architecture but only changing initial conditions can change the outcome
from complete success to complete failure? These are the questions discussed (if not completely
addressed) here, which relate to the following broader question: how can humans (and potentially
one day, machine) learn complex concepts?

In this paper, we present results on an artificial learning task involving binary 64×64 images. Each
image in the dataset contains 3 pentomino tetris sprites (simple shapes). The task is to figure out
if all the sprites in the image are same or if there is a different sprite in the image. We have tested
several state of art machine learning algorithms and none of them could perform better than a ran-
dom predictor on the test set. Nevertheless by providing hints about the intermediate concepts (the
presence of particular sprite classes), the problem can easily be solved where the same-architecture
neural network without the intermediate concepts guidance fails. We also find current unsupervised
pre-training algorithms to fail solve this problem. We demonstrate this issue with a two-tiered neu-
ral network, pre-training the first level to recognize the category of sprites independently of their
orientation and scale at different locations, while the second level learns from the output of the first
level and predicts the binary task of interest.

Of course, the objective is not to propose a novel learning algorithm or architecture, but rather to
refine our understanding of the learning difficulties involved with composed tasks (here a logical
formula composed with the detection of object classes), in particular the optimization difficulties
involved for deep neural networks. The results also bring empirical evidence in favor of some of
the hypotheses from Bengio (2012), discussed below, as well as introducing a particular form of
curriculum learning (Bengio et al., 2009a).

1.1 Curriculum Learning and Cultural Evolution Against Local Minima

The idea that learning can be enhanced by guiding the learner through intermediate easier tasks is
old, starting with animal training (shaping) (Skinner, 1958; Peterson, 2004; Krueger and Dayan,
2009). Bengio et al. (2009a) introduce a computational hypothesis related to a presumed optimiza-
tion difficulty of directly learning the target task: the good solutions correspond to hard-to-find-by-
chance local minima, and intermediate tasks prepare the learner’s internal configuration (parameters)
in a way similar to continuation methods in global optimization (which go through a sequence of
intermediate optimization problems, starting with a convex one where local minima are no issue,
and gradually morphing into the target task of interest).

In a related vein, Bengio (2012) makes the following inferences based on experimental observations
of deep learning and neural network learning:

Point 1: Training deep architectures is easier when some hints are given about the function that the
intermediate levels should compute (Hinton et al., 2006; Weston et al., 2008; Salakhutdinov
and Hinton, 2009; Bengio, 2009). The experiments performed here expand in particular on
this point.

Point 2: It is much easier to train a neural network with supervision (where we provide it examples
of when a concept is present and when it is not present in a variety of examples) than to
expect unsupervised learning to discover the concept (which may also happen but usually
leads to poorer renditions of the concept).

Point 3: Directly training all the layers of a deep network together not only makes it difficult to
exploit all the extra modeling power of a deeper architecture but in many cases it actually

2



yields worse results as the number of required layers is increased (Larochelle et al., 2009;
Erhan et al., 2010). The experiments performed here also reinforce that observation.

Point 4: Erhan et al. (2010) observed that no two training trajectories end up in the same local min-
imum, out of hundreds of runs. This suggests that the number of functional local minima
(i.e. corresponding to different functions, each of which possibly corresponding to many
instantiations in parameter space) must be very large.

Point 5: Unsupervised pre-training, which changes the initial conditions of the descent procedure,
sometimes allows to reach substantially better local minima (in terms of generalization
error!), and these better local minima do not appear to be reachable by chance alone (Erhan
et al., 2010). The experiments performed here provide another piece of evidence in favor
of explanatory hypotheses based on an optimization difficulty due to local minima.1

Based on the above points, Bengio (2012) then proposed the following hypotheses regarding learn-
ing of high-level abstractions.

• Optimization Hypothesis: A biological agent performs an approximate optimization with
respect to some implicit objective function when it learns.

• Deep Abstractions Hypothesis: Higher level abstractions represented in brains require
deeper computations (involving the composition of more non-linearities).

• Local Descent Hypothesis: The brain of a biological agent relies on approximate local
descent and gradually improves itself while learning.

• Local Minima Hypothesis: The learning process of a single human learner (not helped by
others) is limited by effective local minima.

• Deeper Harder Hypothesis: The effect of local minima becomes more critical as the
required depth of the architecture increases.

• Abstractions Harder Hypothesis: High-level abstractions are unlikely to be discovered
by a single human learner by chance, because these abstractions are represented by a deep
subnetwork of the brain.

• Guided Learning Hypothesis: A human brain can learn high level abstractions if guided
by the signals produced by other agents that acts as hints or indirect supervision for these
high-level abstractions.

• Memes Divide-and-Conquer Hypothesis: Linguistic exchange, individual learning and
the recombination of memes constitute an efficient evolutionary recombination operator in
the meme-space. This helps human learners to collectively build better internal representa-
tions of their environment, including fairly high-level abstractions.

This paper is focused on “Point 1” and testing the “Guided Learning Hypothesis”, using machine
learning algorithms to provide experimental evidence. The experiments performed also provide
evidence in favor of the “Deeper Harder Hypothesis” and associated “Abstractions Harder Hypoth-
esis”. Machine Learning is still far beyond the current capabilities of humans, and it is important to
tackle those obstacles to approach AI. For this purpose, we are particularly interested in tasks that
humans learn effortlessly from very few examples, while machine learning algorithms fail miserably.

2 Culture and Optimization Difficulty

As hypothesized in the “Local Descent Hypothesis”, human brains would rely on a local approxi-
mate descent, just like a multi-layer Perceptron. The main argument in favor of this hypothesis relies
on the biologically-grounded assumption that although firing patterns in the brain change rapidly,
synaptic strengths underlying these neural activities change only gradually, making sure that behav-
iors are generally consistent across time. If a learning algorithm is based on a form of local (e.g.
gradient-based) descent, it can be sensitive to local minima (Bengio, 2012). Note that throughout

1Recent work showed that rather deep feedforward networks can be very successfully trained when large
quantities of labeled data are available (Ciresan et al., 2010; Glorot et al., 2011; Krizhevsky et al., 2012).
Nonetheless, the experiments reported here suggest that it all depends on the task being considered, since even
with very large quantities of labeled examples, the deep networks trained here were unsuccessful.

3



this paper, when talking about “local minima”, we refer to the local minima of the generalization
error. We are mostly interested in the online setting where the online gradient (associated with the
next example) is an unbiased estimator of the gradient of generalization error.

When one trains a neural network, at some point in the training phase the evaluation of error seems
to saturate, even if new examples are introduced. In particular Erhan et al. (2010) find that early
examples have a much larger weight in the final solution. It looks like the learner is stuck in or near
a local minimum. But since it is difficult to verify if this is near a true local minimum or simply an
effect of strong ill-conditioning, we call such a “stuck” configuration an apparent local minimum,
whose definition depends not just on the optimization objective but also on the limitations of the
optimization algorithm.

Erhan et al. (2010) highlighted both the issue of apparent local minima and a regularization effect
when initializing a deep network with unsupervised pre-training. Interestingly, as the network gets
deeper the effect of local minima seems to be get more pronounced. That might be because of the
number of local minima increases, or maybe the good ones are harder to reach.

As a result of Point 4 we hypothesize that it is very difficult for an individual’s brain to discover some
higher level abstractions by chance only. As mentioned in the “Guided Learning Hypothesis” hu-
mans get hints from other humans and learn high-level concepts by the guidance of other humans2.
Curriculum learning (Bengio et al., 2009b) and incremental learning (Solomonoff, 1989), are ex-
amples of this. This is done by properly choosing the sequence of examples seen by the learner,
where simpler examples are introduced first and more complex examples shown when the learner is
ready for them. The hypothesis about why curriculum works states that curriculum learning acts as a
continuation method that allows one to discover a good minimum, by first finding a good minimum
of a smoother error function. Recent experiments on human subjects also shows that humans teach
using a curriculum strategy Khan et al. (2011).

Some parts of the human brain are known to have a hierarchical organization (i.e. visual cortex)
consistent with the deep architecture studied in machine learning papers. As we go from the sensory
level to higher levels of the visual cortex, we find higher level areas corresponding to more abstract
concepts.

Training neural networks and machine learning algorithms by guidance and giving prior informa-
tion about the task is well-established and in fact constitutes the main approach to solving industrial
problems with machine learning. The contribution of this paper is rather on rendering the optimiza-
tion issue explicit and providing evidence on the type of problems for which this optimization issues
arise. This prior information/hint can be viewed as an inductive bias for a particular task which is a
necessary apparatus to obtain a good generalization error (Mitchell, 1980). One of the most interest-
ing and earlier findings in that line of research was done with Explanation Based Neural Networks
(EBNN) in which a neural network transfers knowledge across multiple learning tasks. An EBNN
uses previously learned domain knowledge as a initialization or search bias (i.e. to constrain the
learner in the parameter space) (O’Sullivan, 1996; Mitchell and Thrun, 1993).

Another related work in machine learning is mostly focused on reinforcement learning algorithms,
based on incorporating prior knowledge in terms of logical rules to the learning algorithm as a prior
knowledge to speed up and bias learning (Kunapuli et al., 2010; Towell and Shavlik, 1994).

3 Experimental Setup

Some tasks, which seem reasonably easy for humans to learn, are nonetheless appearing almost
impossible to learn for current state-of-art machine learning algorithms. Here we study more closely
a task which becomes learnable if one provides to the learner hints about appropriate intermediate
concepts. Interestingly, the task we used in our experiments is not only hard for deep neural networks
but also for non-parametric machine learning algorithms such as SVMs, boosting and decision trees.

2But some high-level concepts may also be hardwired in the brain, as assumed in the universal grammar
hypothesis (Montague, 1970), or in nature vs nurture discussions in cognitive science.

4



3.1 Pentomino Dataset

In order to test our hypothesis, we designed an artificial dataset for object recognition using 64×64
binary images3. If the task is two tiered (i.e., with guidance provided), the task in the first level is
to recognize each pentomino object class4 in the image. The second level and final task is to figure
out if all the pentominos in the image are of the same class or not. Hence after a neural network
learned the categories of each object in the dataset, the task becomes a form of noisy XOR operation
between the object categories detected in the image. The types of pentomino objects that we have
used for generating the dataset are as follows:

1. Pentomino L sprite

2. Pentomino N sprite

3. Pentomino P sprite

4. Pentomino F sprite

5. Pentomino Y sprite

6. Pentomino J sprite

7. Pentomino N2 sprite: Mirror of “Pentomino
N” sprite.

8. Pentomino Q sprite

9. Pentomino F2 sprite: Mirror of “Pentomino
F” sprite.

10. Pentomino Y2 sprite: Mirror of “Pentomino
Y” sprite.

As shown in Figures 1 and 2, the synthesized images are fairly simple and do not have any texture.
Foreground pixels are “1” and background pixels are “0”. Images are generated iid. For notational
convenience, assume that the domain of raw input images is X , the set of sprites is S, the set
of intermediate object categories is Y for each possible location in the image and the set of final
task outcomes is Z. We perform two different types of rigid body transformation: sprite rotation
rot(X, γ) where Γ = {γ : (γ = 90× φ) ∧ [(φ ∈ N), (0 ≤ φ ≤ 3)]} and scaling scale(X,α) where
α ∈ {1, 2} is the scaling factor. The data generative procedure is summarized below.

Sprite transformations: Before placing the sprites in an empty image, for each image x ∈ X , we
randomly decide on the z ∈ Z to have (or not) a different sprite in the image. Conditioned
on the constraint given by z, we randomly select three sprites sij from S without replace-
ment. Using a uniform probability distribution over all possible scales, we choose a scale
and accordingly scale each sprite image. Then we randomly rotate each sprite by a multiple
of 90 degrees.

Sprite placement: Upon completion of sprite transformations, we generate a 64×64 uniform grid
divided into 8×8 blocks, each block being of size 8×8 pixels, and randomly select three
different blocks from the 64=8×8 on the grid and place the transformed objects into differ-
ent blocks.

Each sprite is centered in the block in which it is located. Thus there is no object translation inside
the blocks. The only translation invariance is due to the location of the block inside the image.

A pentomino sprite is guaranteed to not to overflow the block in which it is located, and there are
no collisions or overlaps between sprites, making the task simpler. The largest possible pentomino
sprite can be fit into an 8×4 mask.

3.2 Learning Algorithms Evaluated

Cross-validation

We have first cross-validated our models by using 5-fold cross-validation on thirty two thousand
examples for training and eight thousand examples for testing.

In all neural network algorithms, we have used SGD and backpropagation for training.

3The source code for the script that generates the artificial pentomino datasets (Arcade-Universe) is avail-
able at: https://github.com/caglar/Arcade-Universe. This implementation is based on Olivier
Breuleux’s bugland dataset generator.

4 For a human learner, knowing the category of each pentomino sprite in the image seems unnecessary.

5



Figure 1: An example image from the dataset which has different object types in it.

Figure 2: An example image from the dataset that has only one type of pentomino object in it, but
with different orientations and scales.

6



3.2.1 Decision Trees

We used the decision tree implementation in the scikit-learn (Pedregosa et al., 2011) python package
which is an implementation of the CART (Regression Trees) algorithm. The CART algorithm con-
structs the decision tree recursively and partitions the input space such that the samples belonging
to the same category are grouped together (Olshen and Stone, 1984). We used The Gini index as the
impurity criteria. We evaluated the hyper-parameter configurations with a grid-search. We cross-
validated the maximum depth (max depth) of the tree (for preventing the algorithm to severely
overfit the training set) and minimum number of samples required to create a split (min split). 20
different configurations of hyper-parameter values were evaluated. We obtained the best validation
error with max depth = 300 and min split = 8.

3.2.2 Support Vector Machines

We used the “Support Vector Classifier (SVC)” implementation from the scikit-learn package which
in turn uses the libsvm’s Support Vector Machine (SVM) implementation. SVM is a non-parametric
technique that maps the data into a high dimensional space (if a kernel is used) and separates different
classes with hyperplane(s) such that the support vectors for each category will be separated by a
large margin. We cross-validated three hyper-parameters of the model using grid-search: C, γ and
the type of kernel(kernel type). C is the penalty term (weight decay) for the SVM and γ is a hyper-
parameter that controls the width of the Gaussian for the RBF kernel. For the polynomial kernel,
γ controls the flexibility of the classifier (degree of the polynomial) as the number of parameters
increases (Hsu et al., 2003; Ben-Hur and Weston, 2010). We evaluated forty-two hyper-parameter
configurations. That includes, two kernel types: {RBF, Polynomial}; three gammas: {1e −
2, 1e − 3, 1e − 4} for the RBF kernel, {1, 2, 5} for the polynomial kernel, and seven C values:
{0.1, 1, 2, 4, 8, 10, 16} values. As a result of the grid search and cross-validation, we have obtained
the best test error by using the RBF kernel, with C = 2 and γ = 1.

3.2.3 Multi Layer Perceptron

We have our own implementation of Multi Layer Perceptron based on Theano. We have used 2
hidden layers and RELU (Rectified Linear Units) activation function. We used 2048 hidden units
per layer. We cross-validated three hyper-parameters of the model using random-search in sam-
pled the learning rates from the log-space: ε (learning rate), L1 penalty, L2 penalty and eval-
uated 64 hyperparameter values. The range of the hyperparameter values for ε = [0.0001, 1],
L1 = 0., 1e− 6, 1e− 5, 1e− 4 and L2 = 0, 1e− 6, 1e− 5. As a result of the random search
we have used L1 = 1e− 6, L2 = 1e− 5 and ε = 0.05.

3.2.4 Random Forests

We used scikit-learn’s implementation of “Random Forests” decision tree learning. Random
Forests algorithm creates an ensemble of decision trees by randomly selecting for each tree
a subset of features and apply bagging to combine the individual decision trees (Breiman,
2001). We have used grid-search and cross-validated the max depth, min split, and number
of trees (n estimators). We have done the grid-search on the following hyperparameter val-
ues, n estimators = {5, 10, 15, 25, 50}, max depth = {100, 300, 600, 900}, and min splits =
{1, 4, 16}. We obtained the best validation error with max depth = 300, min split = 4 and
n estimators = 10.

3.2.5 k-Nearest Neighbors

We used scikit-learn’s implementation of k-Nearest Neighbors (k-NN). k-NN is an instance-based,
lazy learning algorithm that selects the training examples closest in Euclidean distance to th etest
example. It assigns a class label to the test example based on the category of the k closest neighbors.
The hyper-parameters, we have evaluated in the cross-validation are, number of neighbors (k) and
weights. The weights hyper-parameter can be either “uniform” or “distance”. With “uniform”, the
value assigned to the query point is computed by the majority vote of the nearest neighbours. With
“distance”, each value assigned to the query point is computed by weighted majority votes where the
weights are computed with the inverse distance between the query point and the neighbors. We have

7



used n neighbours = {1, 2, 4, 6, 8, 12} and weights = {”uniform”, ”distance”} for hyper-
parameter search. As a result of cross-validation and grid search, we obtained the best validation
error with k = 2 and weights=“uniform”.

3.2.6 Convolutional Neural Nets

We used a Theano implementation of Convolutional Neural Networks (CNN) from the deep learning
tutorial on deeplearning.net which is based on a vanilla version of a CNN LeCun et al. (1998).
Our CNN has two convolutional layers. Following each convolutional layer, we have a max-pooling
layer. In the crossvalidation we have sampled 36 learning rates from logspace in the range [0.0001, 1]
and number of kernels from the range [10, 20, 30, 40, 50, 60] uniformly. For the first convolutional
layer we used 9×9 receptive fields in order to guarantee that each object fits inside the receptive
field. The number of features for the first layer is 30. For the second convolutional layer, we used
7×7 receptive fields with 60 features. The stride for both convolutional layers is 1. We downsample
convolved images by a factor of 2 after each pooling operation. The selected learning rate for the
CNN is 0.01 and we have used 8 training epochs.

3.2.7 Stacked Denoising Autoencoders

Denoising Autoencoders (DA) are a form of stochastic autoencoder. DA forces the hidden layer
to discover more robust features and prevent it from simply learning the identity by reconstructing
the input from a corrupted version of it (Vincent et al., 2010). We used Stacked DA’s, stacking two
DAs, resulting in an unsupervised transformation with two hidden layers. Parameters of all layers
are then fine-tuned with supervised fine-tuning using logistic regression as the classifier and SGD
as gradient based optimization algorithm. We used 1024 hidden units and 0.2 as the corruption
level with binomial corruption. We’ve manually tried different learning rates for the DA and the
supervised fine-tuning. The selected learning rate is ε0 = 0.01 for DA and ε1 = 0.1 for supervised
fine-tuning. Both L1 and L2 penalty for DA’s and logistic regression are set to 1e-6.

3.2.8 Intermediate Knowledge Guided Neural Network (IKGNN)

The IKGNN is a two-level deep neural network, in which the first level’s training objective is the
detection and classification of the pentomino sprite classes in an 8×8 patch. The Level 1 Neural
Net (L1NN) is applied to each of the 8×8=64 non-overlapping patches of the 64×64 input image, in
order to produce the input for the Level 2 Neural Net (L2NN). L1NN is trained with the intermediate
target Y . Y specifies the type of (if any) pentomino sprite present for each patch of the image.
Because a possible answer at a given location can be “none of the object type/empty patch”, yp (for
patch p) can take 11 values, 1 for rejection and the rest is for the 10 different pentomino classes.

yp =
{

0 if patch p is empty
s ∈ S if the patch p contains a pentomino sprite

The IKGNN architecture is a two tiered network that takes advantage during training of prior infor-
mation about intermediate-level relevant factors. Because the sum of the training losses decomposes
into the loss on each patch, the L1NN can be pre-trained patch-wise. Each patch-specific component
of the L1NN is a fully connected MLP with 8×8 inputs and 11 outputs with a softmax output layer.
As seen on Figure 3 we trained the L1NN with respect to the intermediate target values (Y ) and
concatenate these outputs (for all the patches) into a one large vector (64×11). Then we standardize
this output vector by subtracting its mean (over training examples) and dividing by its standard devi-
ation (over training examples) for each element of the output vector. This normalized output vector
of L1NN (of length 704) is then fed to the L2NN MLP, which has a single binomial output unit for
the final task probability prediction (with a sigmoid unit) for the binary event Z, as seen on Figure
4.

IKGNN uses rectifier hidden units as activation function, max(0, X). We found a significant boost
by using rectification compared to hyperbolic tangent and sigmoid activation functions. The L1NN
has a highly overcomplete architecture with 2048 hidden units per patch, and L1 and L2 weight
decay regularization terms are respectively, 1e-6 and 1e-5. The learning rate for the L1NN is 0.75.
2 training epochs were enough for the IKGNN to learn the features of the first layer. The L2NN has

8



Figure 3: Information flow diagram for the IKGNN. L1NN is trained on the patches with respect
to intermediate target labels and L2NN is trained on the concatenated and standardized output of
L1NN with respect to the final task’s target labels.

1024 hidden units. L1 and L2 penalty terms for the L2NN is 1e-6 with a learning rate of 0.1. Both
L1NN (patch-wise) and L2NN are fully connected neural networks.

Figure 4: A basic architectural overview of the IKGNN. L1NN is trained on each 8x8 patch extracted
from the image and the softmax output probabilities of all 64 patches are concatenated into a 64x11
vector.

3.2.9 Deep and Structured MLP without Hints

We have used the same connectivity pattern (and rather deep architecture) that we used for the
IKGNN but without using the intermediate targets (Y ) and we directly predict the final outcome
of the task (Z) by using the same number of hidden units, same connectivity and same activation
function for the hidden units. We have evaluated 120 hyperparameter values by randomly selecting
number of hidden units from [64, 128, 256, 512, 1024, 2048], L1 penalty values from [1e − 6, 1e −
5, 1e−4], L2 penalty values from [1e−5, 1e−4, 1e−3, 1e−2] and randomly sampled 20 learning
rates from the logspace in the [0.008, 0.8]. We used two fully connected hidden layers with the
hidden units of size 1024 (same as L1NN) per patch and 2048 (same as L2NN) with twenty training
epochs. For this network we have obtained the best results with learning rate 0.05.

4 Experimental Results and Analysis

This section provides results of experiments that we did on the pentomino dataset with different
number of training examples in order to see the effect of introducing intermediate knowledge with
respect to the size of training set. For the experimental results shown on 4 we have used 3 training set
sizes (20k, 40k and 80k examples), generated with different random seeds (so they don’t overlap).
Figure 1 shows the error bars for an ordinary MLP with two hidden layers. For that MLP, the number
of training epochs is 8, and there are two hidden layers with 4096 feature detectors. The learning
rate we used in our experiments is 0.01. The activation function of the MLP is tanh nonlinearity and
L1, L2 penalty are both 1e-6.

9



Algorithm 20k dataset 40k dataset 80k dataset
Training Test Training Test Training Test

Error Error Error Error Error Error
SVM RBF 26.23 50.24 28.175 50.25 30.2225 49.62
KNN 24.7 50.02 25.3025 49.51 25.613 49
Decision Tree 5.84 48.6 6.285 49.41 6.89625 49.87
Randomized Trees 3.23 49.81 3.44 50.49 3.532 49.06
MLP 26.515 49.26 33.16 49.91 27.22875 50.13
CNN 50.557 49.759 49.447 49.759 50.23 49.759
2 layer sDA 49.42 50.32 50.225 50.32 49.75 50.32
Deep structured MLP without Hints 50.54 49.86 49.81 49.68 49.71 50.27
IKGNN 0.215 30.68 0 3.09 0 0.01

Table 1: The error percentages with different learning algorithms on pentomino dataset with differ-
ent number of training examples.

The L1NN learns to classify patches with respect to the intermediate concepts very quickly. Ac-
cording to our experiments five thousands training examples are enough for the L1NN to learn the
intermediate targets perfectly.

Table 4 shows that, without guiding hints, none of the state of art learning algorithms could perform
noticeably better than a random predictor on the test set. This shows the importance of intermediate
hints introduced in the IKGNN. The decision trees and SVMs can overfit the training set but they
could not generalize on the test set.

In the experiment results in the 5 we have used a MLP with three hidden layers and used tanh(.) as
the activation function where each layer has 2048 hidden units with 0.05 learning rate.

Figure 5: Training and test error bar charts for a regular MLP with 3 hidden layers. There is no
significant improvement on the generalization error of the MLP as the new training examples are
introduced.

10



5 Conclusion and Discussion

In this paper we have shown an example of task which seems almost impossible to solve by standard
black-box machine learning algorithms, but can be almost perfectly solved when introducing an
intermediate pre-trained representation guided by prior knowledge. The task has the particularity
that it is defined by the composition of two non-linear sub-tasks (object detection on one hand, and
a non-linear logical operation similar to XOR on the other hand).

What is interesting is that in the case of the neural network, we can compare two networks with
exactly the same architecture but a different pre-training, one of which uses the known intermediate
concepts to teach an intermediate representation to the network. Without using these intermediate
targets the neural network has failed to learn the task, both on the training set and in terms of
generalization, showing a clear optimization issue. The situation remains the same even as we
increase the training set size 8-fold.

These findings also bring supporting evidence to the “Guided Learning Hypothesis” and “Deeper
Harder Hypothesis” from Bengio (2012): higher level abstractions, which are expressed by compos-
ing simpler concepts, are more difficult to learn (with the learner often getting in an effective local
minimum), but that difficulty can be overcome if another agent provides hints of the importance of
learning other, intermediate-level abstractions which are relevant to the task.

Many interesting questions remain open. Would a network without any guiding hint eventually find
the solution with a enough training time, i.e., is the optimization difficulty due to ill-conditioning or
due to a local minimum? Clearly, one can reach good solutions from an appropriate initialization,
pointing in the direction of a local minima issue, but it may be that good solutions are also reachable
from other initializations, albeit going through a tortuous ill-conditioned path in parameter space.
Why did our attempts at learning the intermediate concepts in an unsupervised way fail? Are these
results specific to the task we are testing or a limitation of the unsupervised feature learning algo-
rithm tested? Trying with many more unsupervised variants and exploring explanatory hypotheses
for the observed failures could help us answer that. Finally, and most ambitious, can we solve these
kinds of problems if we allow a community of learners to collaborate and collectively discover and
combine partial solutions in order to obtain solutions to more abstract tasks like the one presented
here? Indeed, we would like to discover learning algorithms that can solve such tasks without the
use of prior knowledge as specific and strong as the one used in the IKGNN here. These experi-
ments could be inspired by and inform us about potential mechanisms for collective learning through
cultural evolutions in human societies.

References
Ben-Hur, A. and Weston, J. (2010). A user’s guide to support vector machines. Methods in Molec-

ular Biology, 609, 223–239.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learn-
ing, 2(1), 1–127. Also published as a book. Now Publishers, 2009.

Bengio, Y. (2012). Evolving culture vs local minima. Technical Report ArXiv 1203.2990v1, Uni-
versité de Montréal.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009a). Curriculum learning. In ICML’09.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009b). Curriculum learning. In L. Bottou
and M. Littman, editors, Proceedings of the Twenty-sixth International Conference on Machine
Learning (ICML’09). ACM.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

Ciresan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2010). Deep big simple neural
nets for handwritten digit recognition. Neural Computation, 22, 1–14.

Dawkins, R. (1976). The Selfish Gene. Oxford University Press.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S. (2010). Why
does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 11,
625–660.

11



Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks. In AIS-
TATS’2011.

Henrich, J. and McElreath, R. (2003). The evolution of cultural evolution. Evolutionary Anthropol-
ogy: Issues, News, and Reviews, 12(3), 123–135.

Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep belief nets.
Neural Computation, 18, 1527–1554.

Hsu, C., Chang, C., Lin, C., et al. (2003). A practical guide to support vector classification.
Khan, F., Zhu, X., and Mutlu, B. (2011). How do humans teach: On curriculum learning and

teaching dimension. In Advances in Neural Information Processing Systems 24 (NIPS’11), pages
1449–1457.

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). ImageNet classification with deep convolu-
tional neural networks. In Advances in Neural Information Processing Systems 25 (NIPS’2012).

Krueger, K. A. and Dayan, P. (2009). Flexible shaping: how learning in small steps helps. Cognition,
110, 380–394.

Kunapuli, G., Bennett, K., Maclin, R., and Shavlik, J. (2010). The adviceptron: Giving advice to the
perceptron. Proceedings of the Conference on Artificial Neural Networks In Engineering (ANNIE
2010).

Larochelle, H., Bengio, Y., Louradour, J., and Lamblin, P. (2009). Exploring strategies for training
deep neural networks. Journal of Machine Learning Research, 10, 1–40.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Mitchell, T. (1980). The need for biases in learning generalizations. Department of Computer
Science, Laboratory for Computer Science Research, Rutgers Univ.

Mitchell, T. and Thrun, S. (1993). Explanation-based neural network learning for robot control.
Advances in Neural information processing systems, pages 287–287.

Montague, R. (1970). Universal grammar. Theoria, 36(3), 373–398.
Olshen, L. and Stone, C. (1984). Classification and regression trees. Belmont, Calif.: Wadsworth.
O’Sullivan, J. (1996). Integrating initialization bias and search bias in neural network learning.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pret-

tenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. The
Journal of Machine Learning Research, 12, 2825–2830.

Peterson, G. B. (2004). A day of great illumination: B. F. Skinner’s discovery of shaping. Journal
of the Experimental Analysis of Behavior, 82(3), 317–328.

Salakhutdinov, R. and Hinton, G. (2009). Deep Boltzmann machines. In Proceedings of the Twelfth
International Conference on Artificial Intelligence and Statistics (AISTATS 2009), volume 8.

Skinner, B. F. (1958). Reinforcement today. American Psychologist, 13, 94–99.
Solomonoff, R. (1989). A system for incremental learning based on algorithmic probability. In Pro-

ceedings of the Sixth Israeli Conference on Artificial Intelligence, Computer Vision and Pattern
Recognition, pages 515–527. Citeseer.

Towell, G. and Shavlik, J. (1994). Knowledge-based artificial neural networks. Artificial intelli-
gence, 70(1), 119–165.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising criterion.
Journal of Machine Learning Research, 11, 3371–3408.

Weston, J., Ratle, F., and Collobert, R. (2008). Deep learning via semi-supervised embedding. In
W. W. Cohen, A. McCallum, and S. T. Roweis, editors, Proceedings of the Twenty-fifth Inter-
national Conference on Machine Learning (ICML’08), pages 1168–1175, New York, NY, USA.
ACM.

12


