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Abstract

Training Recurrent Neural Networks is more troublesome than feedforward ones
because of the vanishing and exploding gradient problems detailed in Bengio et al.
(1994). In this paper we attempt to understand the fundamental issues underlying
the exploding gradient problem by exploring it from an analytical, a geometric
and a dynamical system perspective. Our analysis is used to justify the simple yet
effective solution of norm clipping the exploded gradient. In the experimental sec-
tion, the comparison between this heuristic solution and standard SGD provides
empirical evidence towards our hypothesis as well as it shows that such a heuris-
tic is required to reach state of the art results on a character prediction task and a
polyphonic music prediction one.

1 Introduction
A recurrent neural network (RNN), see Figure 1, is a neural network model proposed in the
80’s (Rumelhart et al., 1986; Elman, 1990; Werbos, 1988) for modeling time series. The struc-
ture of the network is similar to that of a standard multilayer perceptron, with the distinction that
we allow connections among hidden units associated with a time delay. Through these connections
the model can retain information about the past inputs, enabling it to discover temporal correlations
between events that are possibly far away from each other in the data (a crucial property for proper
learning of time series).

ut xt
Et

Figure 1: Schematic of a recurrent neural network. The recurrent connections in the hidden layer
allow information to persist from one input to another.

While in principle the recurrent network is a simple and powerful model, in practice, it is unfor-
tunately hard to train properly. A plethora of training algorithms have been proposed in the liter-
ature, like Backpropagation Through Time (BPTT) (Rumelhart et al., 1986; Werbos, 1988), Real
Time Recurrent Learning (Williams and Zipser, 1989), Atiya-Parlos learning rule (Atiya and Par-
los, 2000), etc. Most of these are gradient based, though alternative approaches are also available
(for example see Lukoševičius and Jaeger (2009)), and as shown in Atiya and Parlos (2000) most
gradient-based methods behave qualitatively the same, providing little success in properly address-
ing complex tasks. Among the main reasons why this model is so unwieldy are the vanishing
gradient and exploding gradient problems described in Bengio et al. (1994).
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In this paper we will only address the exploding gradient problem and provide an understanding of
the issues stochastic gradient descent (SGD) faces when training a recurrent network. We should
note that there are a few solutions proposed for this problem in the literature, amongst which the
Hessian-Free learning (Sutskever et al., 2011), a second order method that seems promising, though
more needs to be done to analyze its success, especially compared to other second order methods that
seem to do less well in general. Long Short Term Memory networks (Hochreiter and Schmidhuber,
1997) is another approach, relying on a change in the structure of the model, and designed to help
with the vanishing gradient problem. The extend to which this alteration limits the modeling power
of the model is not clear, nor does the approach address the exploding gradient problem. We do not
intend to directly compete with these solutions, but rather improve the limited understanding of why
such approaches are required. To validate some of our hypotheses we devise a simple alteration of
SGD which, given its simplicity, can be seen as a reliable alternative to SGD learning.

The structure of the paper is as follows. In subsection 1.1 we briefly formalise the concept of training
recurrent networks. In section 2 we introduce and analyze the exploding gradient problem, while
in section 3 we describe our proposed solution. Section 4 provides empirical experimentation on
different datasets and finally in section 5 we have some final remarks.

1.1 Training recurrent networks
A generic recurrent neural network is given by equation (1). In the theoretical section of this paper
we will sometimes make use of the specific parametrization given by equation (2) 1 in order to
provide more precise conditions and intuitions about the everyday use-case.

xt = F (xt−1,ut, θ) (1)

xt = Wrecσ(xt−1) + Winut + b (2)
The parameters of the model are given by the recurrent weight matrix Wrec, the biases b and input
weight matrix Win, collected in θ for the general case. xt and ut represent the state and the input at
time t, where x0 is provided by the user or set to zero (or learned), and σ is an element-wise function
(usually the sigmoid or tanh). A cost E measures the performance of the network on some given task
and it can be broken apart into individual costs for each step E =

∑
1≤t≤T Et, where Et = L(xt).

One approach that can be used to compute the necessary gradients for learning is to represent the
recurrent model as a deep multi-layer one (with an unbounded number of layers) and apply back-
propagation on the unrolled model (see Figure 2).

∂Et+1
∂xt+1

Et+1EtEt−1

xt+1xtxt−1

ut−1 ut ut+1

∂Et
∂xt

∂Et−1
∂xt−1

∂xt+2
∂xt+1

∂xt+1
∂xt

∂xt
∂xt−1

∂xt−1
∂xt−2

Figure 2: Unrolling recurrent neural networks in time by creating a copy of the model for each time
step. We denote by xt the hidden state of the network at time t, by ut the input of the network at
time t and by Et the error obtained from the output at time t.

We will diverge from the classical BPTT equations at this point and re-write the gradients (see
equations (3), (4) and (5)) in order to better highlight the exploding gradient problem.

∂E
∂θ

=
∑

1≤t≤T

∂Et
∂θ

(3)

∂Et
∂θ

=
∑

1≤k≤t

(
∂Et
∂xt

∂xt
∂xk

∂+xk
∂θ

)
(4)

1This formulation is equivalent to the more widely known equation xt = σ(Wrecxt−1 + Winut + b),
and it was chosen for convenience.
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∂xt
∂xk

=
∏
t≥i>k

∂xi
∂xi−1

=
∏
t≥i>k

WT
recdiag(σ′(xi−1)) (5)

where ∂+ represents the partial derivative of the state at some point in time with respect to some
parameter as a direct argument, i.e., without considering the recurrent path (i.e. when computing
the derivative of xk with respect to θ we ignore the fact that xk is a function of xk−1 which in turn
is a function of θ). Equation (5) also provides the form of ∂xt

∂xk
for the specific parametrization given

in equation (2), where diag converts a vector into a diagonal matrix, and σ′ computes the derivative
of σ in an element-wise fashion.

Note that each term ∂Et

∂θ from equation (3) has the same form and the behaviour of these individual
terms determine the behaviour of the sum. Henceforth we will focus on one such generic term,
calling it simply the gradient when there is no confusion.

Any gradient component ∂Et

∂θ is also a sum (see equation (4)), whose terms we refer to as tem-
poral contributions or temporal components. One can see that each such temporal contribution
∂Et

∂xt

∂xt

∂xk

∂+xk

∂θ measures how θ at step k affects the cost at step t. The factors ∂xt

∂xk
(equation (5))

transport the error “in time“ from step k to step t. We would further loosely distinguish between
long term and short term contributions, where long term refers to components for which k � t and
short term to everything else.

2 Exploding Gradients
As introduced in Bengio et al. (1994), the exploding gradient problems refers to the large increase
in the norm of the gradient during training. Such events are caused by the explosion of the long term
components, which can grow exponentially more then short term ones.

2.1 The mechanics
To understand this phenomenon we need to look at the form of each temporal component, and in
particular at the factors ∂xt

∂xk
(see equation (5)) that take the form of a product of l Jacobian matrices,

with l = t− k. Intuitively, these products can grow exponentially fast with l (in some direction v),
leading to the explosion of long term components when l is large. Because the gradient is just a sum
of these components, it follows that it should also grow exponentially fast following the long term
component with k = 0 (for which l = t). In what follows we will try to formalize these intuitions
(extending a similar derivation done in Bengio et al. (1994) where only a single hidden unit case
was considered).

2.2 Linear model
Let us consider the term gTk = ∂Et

∂xt

∂xt

∂xk

∂+xk

∂θ for the linear version of the parametrization in equation
(2) (i.e. set σ to the identity function) and assume t goes to infinity. We have that:

∂xt
∂xk

=
(
WT

rec

)l
(6)

By employing the same approach as the power iteration method we can show that, given certain
conditions, ∂Et

∂xt

(
WT

rec

)l
grows exponentially.

Proof Let Wrec have the eigenvalues λ1, .., λn with |λ1| > |λ2| > .. > |λn| and the corresponding
eigenvectors q1,q2, ..,qn which form a vector basis. We can now write the row vector ∂Et

∂xt
into this

basis:
∂Et

∂xt
=
∑N
i=1 ciq

T
i

If j is such that cj 6= 0 and any j′ < j, cj′ = 0, using the fact that qTi
(
WT

rec

)l = λliq
T
i we have

that
∂Et
∂xt

∂xt
∂xk

= cjλ
l
jq
T
j + λlj

n∑
i=j+1

ci
λli
λlj

qTi ≈ cjλljqTj (7)

We used the fact that
∣∣λi/λj

∣∣ < 1 for i > j, which means that liml→∞
∣∣λi/λj

∣∣l = 0. If |λj | > 1, it
follows that ∂xt

∂xk
grows exponentially fast with l, and it does so along the direction qj . �
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The proof assumes Wrec is diagonalizable for simplicity, though using the Jordan normal form of
Wrec one can extend this proof by considering not just the eigenvector of largest eigenvalue but the
whole subspace spanned by the the eigenvectors sharing the same (largest) eigenvalue.

This result provides a necessary condition for gradients to grow, namely that the spectral radius (the
absolute value of the largest eigenvalue) of Wrec must be larger than 1.

If qj is not in the null space of ∂
+xk

∂θ the entire temporal component grows exponentially with l.

This approach extends easily to the entire gradient. If we re-write it in terms of the eigen-
decomposition of W, we get:

∂Et
∂θ

=
n∑
j=1

(
t∑
i=k

cjλ
t−k
j qTj

∂+xk
∂θ

)
(8)

We can now pick j and k such that cjqTj
∂+xk

∂θ does not have 0 norm, while maximizing |λj |. If for

the chosen j it holds that |λj | > 1 then λt−kj cjqTj
∂+xk

∂θ will dominate the sum and because this term
grows exponentially fast to infinity with t, the same will happen to the sum.

2.3 Nonlinear model
To generalize this proof to the nonlinear case, we define the concept of expanding and non-expanding
matrices for some direction v. We say that the Jacobian matrix ∂xi

∂xi−1
expands along a vector v by

α > 1 if equation (9) holds.

∀u,
∣∣∣∣uT ∂xi

∂xi−1
v
∣∣∣∣ > α|uTv| (9)

Intuitively, to achieve exponential growth, it is sufficient that most of the Jacobians ∂xi

∂xi−1
are ex-

panding, such that their product expands exponentially with their number and also that there is no
Jacobian matrix that kills off these exponentially large increases.

We formalize this by constructing the set P of matrices that are non-expanding, and considering a
lower bound β > 0 on how much these matrices shrink a vector in the direction v (see equation
(10)).

∀u,
∣∣∣∣uT ∂xi

∂xi−1
v
∣∣∣∣ > β|uTv|, if

∂xi
∂xi−1

∈ P (10)

This means that if α is the least amount by which any matrix ∂xi

∂xi−1
6∈ P expands, ∂xt

∂xk
should

expand roughly by β|P |αt−|P |. If the cardinality of P is bounded as t grows, it means this product
grows exponentially fast with t− |P |.
It is worth mentioning that α is bounded by the spectral radius of each matrix ∂xi

∂xi−1
(which is

easy to see as
∥∥∥ ∂xi

∂xi−1
v
∥∥∥ ≤ ∥∥∥ ∂xi

∂xi−1

∥∥∥ ‖v‖). If we consider the parametrization in equation (2), this
spectral radius is in its turn bounded by the product of the spectral radii ρWrec

of Wrec and ρσ′ of
diag(σ′(xi−1)). We know that ρσ′ < 1 for tanh and ρσ′ < 1/4 for sigmoid, and hence we recover
the necessary condition for the gradients to explode, namely that ρWrec

> 1 (with the tighter version
for the sigmoid, ρWrec

> 4).

We also need for equations (11) and (12) to hold, where the first equation implies that our chosen
direction v is not in the null space of ∂+xk

∂θ , while the second equation writes the vector ∂Et

∂xt
in a

orthonormal vector basis v1, ..,vN , where v1 = v and c(loss)i ∈ R.

∀u ∈ RN , |uT ∂
+xk
∂θ

v| ≥ γk|uTv|, γk > 0 (11)

∂Et
∂xt

=
N∑
j=1

c
(loss)
j vTj , c

(loss)
1 6= 0 (12)
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Using these relations we can find a lower bound for |gTk v|, where gk is the temporal component
corresponding to time step k. Equation (13) shows a few steps of this derivation, where without loss
of generality we assigned the first element to P , but not the second one.

|gTk v1| ≥
∣∣∣( ∂Et

∂xt

∂xt

∂xk

)
∂+xk

∂θ v1

∣∣∣
≥ γk

∣∣∣∣∣∣∣∣
(
∂Et

∂xt

∂xt

∂xk+1

) ∈P︷ ︸︸ ︷
∂xk+1

∂xk
v1

∣∣∣∣∣∣∣∣
≥ γkβ

∣∣∣∣∣∣∣∣∣
(
∂Et

∂xt

∂xt

∂xk+2

) 6∈P︷ ︸︸ ︷
∂xk+2

∂xk+1
v1

∣∣∣∣∣∣∣∣∣
≥ γkβα

∣∣∣( ∂Et

∂xt

∂xt

∂xk+3

)
∂xk+3
∂xk+2

v1

∣∣∣
..

≥ γkβ
|P |αl−|P |

∣∣∣ ∂Et

∂xt
v1

∣∣∣
≥ γkβ

|P |αl−|P ||c(loss)1 | ≥ Ckαl−|P |

(13)

Equation (13) ensures that long term components explode along v as long as the coefficient Ck
(where Ck = γkβ

|P ||c(loss)1 |) does not go exponentially fast to 0. This is mostly a constraint on γk
(since |P | is bounded from our initial assumption), which is determined by ∂+xk

∂θ . For a classical
parametrization of the model the norm of the partial derivative ∂+xk

∂θ is determined by the norm of
the state and input at time k, where the constraint on the state roughly translates into not having
the state going towards its saturated state faster than αl−|P | (which can be satisfied for tanh and
sigmoid).

We summarize this derivation by saying that what we achieve is to provide a lower bound of the
gradient when it explodes, bound that grows exponentially with t. Further more, if we consider v
such that we maximize α, given that |P | is fixed, in the limit of t→∞ the bound becomes tight and
we can approximate the gradient by Ckαt−|P |v.

2.4 The geometrical interpretation
Let us consider a simple one hidden unit model (equation (14)) where we provide an initial state x0

and train the model to have a specific target value after 50 steps. Note that for simplicity we assume
no input.

xt = wσ(xt−1) + b (14)

Figure 3 shows the error surface E50 = (σ(x50)− 0.7)2, where we use the initial state x0 = .5.

Section 2.1 shows that when the gradient explodes, it is bounded by Cαkv (see equation (13)). If
we assume that this bound is tight, we can derive that when gradients explode so does the curvature
along v, leading to a wall in the error surface as the one seen in 3.

This provides us with a hypothesis, which if it holds, gives us a simple solution to the exploding
gradient problem depicted in 3.

If both the gradient and the leading eigenvector of the curvature are aligned with the exploding
direction v, it follows that the error surface has a steep wall perpendicular to v (and consequently
to the gradient). This means that when SGD reaches the wall and does a gradient descent step, it
will be forced to jump across the valley moving perpendicular to the steep walls, possibly leaving
the valley and disrupting the learning process.

The dashed arrows in Figure 3 correspond to ignoring the norm of this large step, ensuring that the
model stays close to the wall. The key insight is that all the steps taken when the gradient explodes
are aligned with v and ignore other descent direction (i.e. the model moves perpendicular to the

5
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Figure 3: We plot the error surface of a one hidden unit recurrent network, highlighting the existence
of high curvature walls. The solid lines depicts standard trajectories that gradient descent might
follow. Using dashed arrow the diagram shows what would happen if the gradients is rescaled to a
fixed size when its norm is above a threshold.

wall). At the wall, small-norm step in the direction of the gradient therefore only pushes us back
inside the smoother low-curvature region besides the wall. In that region, SGD is free to explore
other descent directions.

The important addition in this scenario to the classical high curvature valley, is that we assume that
the valley is wide, as we have a large region around the wall where if we land we can rely on first
order methods to move towards the local minima. This justifies why just clipping the gradient might
be sufficient and we are not necessarily constraint to use a second order method.

Our hypothesis could also help to understand the recent success of the Hessian-Free approach com-
pared to other second order methods. There are two key differences between Hessian-Free and most
other second-order algorithms. First, it uses the full Hessian matrix and hence can deal with ex-
ploding directions that are not necessarily axis aligned. Second, it computes a new estimate of the
Hessian matrix before each update step, which can take into account abrupt changes in curvature
(such as the ones suggested by our hypothesis) while most other approaches rely on a smoothness
assumption, averaging 2nd order signals over many steps.

2.5 Drawing similarities with Dynamical Systems

One can consider yet another perspective, namely that of dynamical systems. Recurrent networks
are universal approximators of dynamical systems (see for e.g. Siegelmann and Sontag (1995)) and
as such it is sometimes useful to analyze them using dynamical systems tools which allow for better
abstractions that we can use for reasoning about the behaviour of the model. Looking at dynamical
systems theory for explaining the exploding gradient problem has been done before in Doya (1993);
Bengio et al. (1993). In this paper we will extend and improve these previous observations.

For any parameter assignment θ, depending on the initial state x0, the xt of an autonomous dy-
namical system converges, under the repeated application of the map F , to one of several possible
different attractor states (e.g. point attractors). They describe the asymptotic behaviour of the model.
The state space is divided into basins of attraction, one for each attractor. If the model is started in
one basin of attraction it will converge to the corresponding attractor.

The next step is to consider how θ affects the asymptotic behaviour. Dynamical systems theory tells
us that as θ changes slowly, the asymptotic behaviour changes smoothly almost everywhere except
for certain crucial points where drastic changes occur (the new asymptotic behaviour is no more
topologically equivalent with the old one). These points are called bifurcation boundaries and are
caused by attractors that appear, disappear or change shape.
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Specifically, if we re-consider the simple model defined by equation (14) from section 2.4, where
we fix w to 5.0 and allow b to change we get its bifurcation diagram (with respect to b) of Figure 4.
Such diagrams convey an abstract but complete picture of how the system can behave.

The x-axis covers the parameter b and the y-axis the asymptotic state x∞. The bold line follows
the movement of the final point attractor, x∞, as b changes. At b1 we have a bifurcation boundary
where a new attractor emerges (when b decreases from∞), while at b2 we have another that results
in the disappearance of one of the two attractors. In the interval (b1, b2) we are in a rich regime,
where there are two attractors and the change in position of boundary between them, as we change
b, is traced out by a dashed line. The vector field (gray dashed arrows) describe the evolution of the
state x if the network is initialized in that region.

Figure 4: Bifurcation diagram of a single hidden unit RNN (with fixed recurrent weight of 5.0 and
adjustable bias). See text.

We show that there are two types of events that could lead to a large change in xt, with t→∞. One
is crossing a boundary between basin of attraction (depicted with a unfilled circles), while the other
is crossing a bifurcation boundary (filled circles). For large t, the ∆xt resulting from a change in b
will be large even for very small changes in b (as the system is attracted towards different attractors)
which leads to a large gradient. In practice it is sufficient to be close to such a boundary for the
gradient to be quite large (as F is smooth and hence it needs to gradually change direction, with the
norm ||F ′|| of the Jacobian of F being 0 on the boundary).

Using these notions we can define a necessary and sufficient condition for the gradients to explode.
The condition is for a boundary between basins of attraction to be crossed either by a change in x0

or a change in θ. Not that we take the non-conventional approach of considering a change in θ to
cause switching between basins of attraction by changing the position of the border. When crossing
a bifurcation boundary that leads to large change in xt, by an abuse of language, we say a boundary
between basins of attractions was also crossed implicitly (as for e.g. the boundary between the old
attractor and the emerging one), allowing us to unify the two different scenarios.

In Doya (1993) only crossing bifurcation boundaries are considered ignoring changes in the state
or the position of the state relative a borders between basin of attraction. We argue that this is an
incomplete view. Crossing a bifurcation implies a global change, but locally things could stay the
same (i.e., after the bifurcation we can find ourselves in the same basin of attraction). Also a change
in θ means a change in the position of the boundary between basins of attractions which could lead to
crossing such a boundary, a scenario that is not considered by analyzing only bifurcations. Therefore
we consider our proposed view more lucrative.

Another limitation of previous analysis is that they only consider autonomous systems. We propose
to extend our analysis to input driven model by folding the input into the map. We consider the
family of mapsFt, where we apply a differentFt at each step. Intuitively, for the gradients to explode
we require the same behaviour as before, where (at least in some direction) the maps F1, .., Ft agree
and change direction, for a small change in θ or x0 (even for the same input sequence). Figure 5
describes this behaviour.

7
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F1

F2

F3

F1

F2

F3

∆x0

∆xt

xt xt

Figure 5: This diagram illustrates how the change in xt, ∆xt, under the successive maps Ft can be
large for a small ∆x0. The blue vs red (left vs right) trajectories are generated by the same maps
F1, F2, .. for two different initial states.

For the specific parametrization provided by equation (2) we can take the analogy on step further by
decomposing the maps Ft into a fixed map F̃ and a time-varying one Ut. F (x) = Wrecσ(x) + b
corresponds to an input-less recurrent network, while Ut(x) = x + Winut describes the effect of
the input. This is depicted in in Figure 6. Since Ut changes with time, it can not be analyzed using
standard dynamical systems tools, but F̃ can. This means that when a boundary between basins of
attractions is crossed for F̃ , the state will move towards a different attractor, which for large t can
lead to a large discrepancy in xt. If Ut is bounded, that it can interfere with this behaviour only when
the state is close to the boundary, but not far away. Therefore studying the asymptotic behaviour of
F̃ can provide some information about where such events are likely to happen.

F1

F2

F̃

F̃

U1

U2

F̃

F̃
F1

F2

U1

U2

∆x0

∆xt

xt xt

Figure 6: Illustrates how one can break apart the maps F1, ..Ft into a constant map F̃ and the maps
U1, .., Ut. The dotted vertical line represents the boundary between basins of attraction, and the
straight dashed arrow the direction of the map F̃ on each side of the boundary. This diagram is an
extension of Figure 5.

These derivations (specifically figure 6) provide an intuitive way of understanding equation 13, and
the surrounding constraints (the set P for e.g. regards the behaviour of the maps Ui which could
move against the exploding direction ensuring that gradients do not explodes). Another interesting
connection is with our geometrical interpretation. If there is indeed such a boundary, that means
not only that when crossed the norm of the gradient grows considerably, but it can do so quickly,
i.e. the curvature has to be high as well. This speaks towards our hypothesis that both gradients and
curvature tend to explode together.

3 Dealing with the exploding gradient
3.1 Previous solutions
One approach to avoid exploding gradients is to use L1 or L2 penalty on the recurrent weights. Given
that the model is initialized with small numbers, the spectral radius of Wrec is probably smaller than
1, from which it follows that the gradient can not explode (see necessary condition found in section
2.1). The regularization term can ensure that during training the spectral radius never exceeds 1.

This approach limits the model to a simple regime (with a single point attractor at the origin), where
any information inserted in the model has to die out exponentially fast in time. In such a regime we
can not train a generator network, nor can we exhibit long term memory traces.
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This suggest that solutions that exploit changes in the architecture to avoid vanishing gradients, such
as LSTMs (Hochreiter and Schmidhuber, 1997) can deal with the exploding gradient by operating
the recurrent model in a damping regime and relying exclusively on the highly specialized LSTM
units to exhibit memory, thus justifying why the exploding gradient does not seem to be an issue in
practice.

Doya (1993) proposes to pre-program the model (to initialize the model in the right regime) or to
use teacher forcing. The first proposal assumes that if the model exhibits from the beginning the
same kind of asymptotic behaviour as the one required by the target, then there is no need to cross
a bifurcation boundary. The downside is that one can not always know the required asymptotic
behaviour, and, even if such information is known, it is not trivial to initialize a model in this specific
regime. We should also note that such initialization does not prevent crossing the boundary between
basins of attraction, which, as showed, could happen even though no bifurcation boundary is crossed.

Teacher forcing is a more interesting and not very well understood solution. It can be seen as a
way of initializing the model in the right regime and the right region of space. It has been showed
that in practice it can reduce the chance that gradients explode, and even allow training generator
models or models that work with unbounded amounts of memory(Pascanu and Jaeger, 2011; Doya
and Yoshizawa, 1991). One important downside is that it requires a target to be defined at every time
step. It also requires expertise, as models trained with it have a tendency to be unstable.

Another approach was proposed by Tomas Mikolov recently described in his PhD thesis (Mikolov,
2012) involves clipping the gradient element-wise if the value exceeds in absolute value a fix thresh-
old. This approach has been showed to do well in practice and it forms the backbone of our approach,
which tries to justify this implementation trick.

3.2 Scaling down the gradients
As suggested in section 2.4, one simple mechanism to deal with a sudden increase in the norm of
the gradients is to rescale them whenever they go over a threshold (see algorithm 1).

Algorithm 1 Pseudo-code for norm clipping the gradients whenever they explode
ĝ← ∂E

∂θ
if ‖ĝ‖ ≥ threshold then

ĝ← threshold
‖ĝ‖ ĝ

end if

This algorithm is very similar to the one proposed by Tomas Mikolov and the only reason we di-
verged from his original proposal in an attempt to provide a better theoretical foundation (for e.g.
we ensure that we always move in a descent direction), though in practice they behave similarly.

The proposed clipping is simple to implement and computationally efficient, but it does however
introduce an additional hyper-parameter, namely the threshold. One good heuristic for setting this
threshold is to look at statistics on the average norm over a sufficiently large number of updates. In
our experiments we have noticed that for a given task and model size training is not very sensitive
to this hyper-parameter and the algorithm behaves well even for rather small thresholds.

The algorithm can also be thought of as adapting the learning rate based on the norm of the gradient.
Compared to other learning rate adaptation strategies, which focus on improving convergence by
collecting statistics on the gradient (as for example in Duchi et al. (2011), or Moreira and Fiesler
(1995) for an overview), we rely on the instantaneous gradient. This means that we can handle very
abrupt changes in norm, while the other methods would not be able to do so. We do not ensure faster
convergence though.

4 Experiments and Results
4.1 Polyphonic music prediction
The first task we consider is polyphonic music prediction, using the datasets Piano-midi.de, Notting-
ham and MuseData described in Boulanger-Lewandowski et al. (2012). In this case the vocabulary
size is 88 different notes, with the distinction that multiple notes can be played at the same time.

We use a 100 tanh units model with biases in order to stay close to the original setup (Boulanger-
Lewandowski et al., 2012). Each song is divided into non-overlapping sequences of 100 steps, and
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Table 1: Results on polyphonic music prediction in negative log likelihood per time step. Lower is
better.

DATA SET
DATA
FOLD

BPTT RESCALING
GRADIENTS

PIANO- TRAIN 7.06±0.052 7.12±0.027
MIDI.DE TEST 7.79±0.013 7.77±0.019
NOTTINGHAM TRAIN 4.12±0.330 3.71±0.059

TEST 4.57±0.718 4.05±0.052
MUSEDATA TRAIN 7.99±0.768 7.02±0.031

TEST 8.00±0.426 7.24±0.037

Table 2: Results on the next character prediction task in entropy (bits/character)

DATA SET
DATA
FOLD

BPTT RESCALING
GRADIENTS

TEXT8 TRAIN 1.66±0.010 1.67±0.006
TEST 1.82±0.067 1.80±0.021

PENN TRAIN 2.25±0.960 1.41±0.120
TREEBANK TEST 2.24±0.942 1.44±0.006

the hidden state is carried over only along the same song (and set to 0 for the first sequence of each
song). We use a learning rate of .001 and a threshold of 120. The training and test scores reported in
table 1 are average negative log likelihood per time step. We use 5 different runs to estimate these
values.

These results are an improvement on the state of the art obtained using RNNs models(see Boulanger-
Lewandowski et al. (2012)).

4.2 Next character prediction

The second task is next character prediction on three different datasets: Penn Treebank Corpus,
Wikipedia ‘text8’. The same datasets had been considered in Mikolov et al. (2012).

The model used is a 500 sigmoid units RNN with no biases in order to have a similar setup as the
one used in Mikolov et al. (2012). Each gradient is computed over non-overlapping sequences of
180 characters, where the hidden state is carried over from one sequence to the next one. Table
2 provides the training and test error for best validation score. These values are computed over 5
different random initializations and we report entropy (bits per character) as a measure of error. We
used a threshold of 20 for ‘text8‘ and 45 for Penn Treebank dataset.

These results (together with the one on polyphonic music prediction) suggest that clipping the gradi-
ents solves an optimization issue and does not act as a regularizer, as both the training and test error
improve in general. Also results on Penn Treebank reach the state of the art (Mikolov et al., 2012),
where those results were obtained using a different clipping algorithm similar to ours providing ev-
idence that both behave similarly. For the ‘text8‘ experiment, our model is much smaller than the
one used for state of the art results (for computational reasons) and hence the numbers are higher.

4.3 Temporal order task

In our final experiments we consider the synthetic problem proposed as task 6a in Hochreiter and
Schmidhuber (1997) (see that paper for full details).

We use a 50 sigmoid units model with a learning rate of .001 and limit the number of training steps
to 100k. We use mini-batch gradient descent with 1000 examples per batch. The task is considered
solved if for 1000 consecutive inputs the model returns the correct answer. Figure 7 shows the
success rate of standard BPTT and gradient rescaling for 50 different runs. Note that for sequences
longer than 20 the vanishing gradient problem ensures that neither BPTT nor our algorithm can
solve the task.
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Figure 7: Rate of success for solving the temporal order problem versus sequence length. See text
for more details.

This task provides empirical evidence that the exploding gradient is linked with tasks that require
long memory traces. We know that initially the model operates in the one-attractor regime (i.e.
ρWrec

< 1), in which the amount of memory is controlled by ρWrec
. More memory means larger

spectral radius, and, when this value crosses a certain threshold the model enters rich regimes where
gradients are likely to explode. We see in Figure 7 that as long as the vanishing gradient problem
does not become an issue, addressing the exploding gradient ensures a much larger success rate.

5 Summary and Conclusions
The exploding gradient problem is just one facet of the difficulty of training recurrent networks.
We provided different perspectives through which one can gain more insight into this issue, though
these descriptions can easily be useful for also understanding the vanishing gradient problem. We
propose a solution that involves clipping the norm of the exploded gradients when it is too large.
The algorithm is motivated by the assumption that when gradients explode, the curvature explodes
as well, and we are faced with a specific pattern in the error surface, namely a valley with a single
steep wall. In practice we show that this approach improves performance on all of the 6 tested tasks.
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Lukoševičius, M. and Jaeger, H. (2009). Reservoir computing approaches to recurrent neural net-
work training. Computer Science Review, 3(3), 127–149.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Mikolov, T. (2012). Statistical Language Models based on Neural Networks. Ph.D. thesis, Brno
University of Technology.

Mikolov, T., Sutskever, I., Deoras, A., Le, H.-S., Kombrink, S., and Cer-
nocky, J. (2012). Subword language modeling with neural networks. preprint
(http://www.fit.vutbr.cz/ imikolov/rnnlm/char.pdf).

Moreira, M. and Fiesler, E. (1995). Neural networks with adaptive learning rate and momentum
terms. Idiap-RR Idiap-RR-04-1995, IDIAP, Martigny, Switzerland.

Pascanu, R. and Jaeger, H. (2011). A neurodynamical model for working memory. Neural Netw.,
24, 199–207.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533–536.

Siegelmann, H. T. and Sontag, E. D. (1995). On the computational power of neural nets. JOURNAL
OF COMPUTER AND SYSTEM SCIENCES, 50(1), 132–150.

Sutskever, I., Martens, J., and Hinton, G. (2011). Generating text with recurrent neural networks. In
L. Getoor and T. Scheffer, editors, Proceedings of the 28th International Conference on Machine
Learning (ICML-11), ICML ’11, pages 1017–1024, New York, NY, USA. ACM.

Werbos, P. J. (1988). Generalization of backpropagation with application to a recurrent gas market
model. Neural Networks, 1(4), 339–356.

Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running fully recurrent
neural networks. Neural Comput., 1, 270–280.

12


