
Joint Training of Partially-Directed Deep Boltzmann
Machines

Ian J. Goodfellow
goodfeli@iro.umontreal.ca

Aaron Courville
aaron.courville@umontreal.ca

Yoshua Bengio

Département d’Informatique et de Recherche Opérationelle
Université de Montréal

Montréal, QC

Abstract

We introduce a deep probabilistic model which we call the partially directed
deep Boltzmann machine (PD-DBM). The PD-DBM is a model of real-valued
data based on the deep Boltzmann machine (DBM) and the spike-and-slab sparse
coding (S3C) model. We offer a hypothesis for why DBMs may not be trained
succesfully without greedy layerwise training, and motivate the PD-DBM as a
modified DBM that can be trained jointly.

1 Introduction

We propose a new deep probabilistic model of real-valued data called the partially directed deep
Boltzmann machine (PD-DBM), based on the deep Boltzmann machine (DBM) (Salakhutdinov and
Hinton, 2009) and spike-and-slab sparse coding (S3C) (Goodfellow et al., 2012).

Most previous deep probabilistic models require an initial greedy, layer-by-layer training stage. We
consider the particular case of the deep Boltzmann machine and offer a hypothesis for why it must
be trained greedily. Based on this hypothesis, we motivate the PD-DBM as a modified version of
the DBM that admits joint training of a two-layer version.

We demonstrate that our deep model can succesfully be jointly trained to generate samples from the
correct distribution, and that it improves significantly over the single layer version. We also analyize
the parameters of the model to verify that the second layer is being used as we intend.

These results motivate further exploration of the PD-DBM model, and suggest further work to in-
vestigate whether our hypothesis can lead to further successful modifications of the DBM training
algorithm.

2 Related work

Our model draws inspiration primarily from two pre-existing models: the deep Boltzmann machine
and spike-and-slab sparse coding. We describe these models, then review past attempts at jointly
training deep models.

2.1 Deep Boltzmann machines

The deep Boltzmann machine (Salakhutdinov and Hinton, 2009) is defined broadly but in prac-
tice researchers use a variant of it that is organized into layers, with units inside of a layer con-

1

ditionally independent from each other given the neighboring layers. This most commonly used
variant of the DBM consists of an observed input vector v ∈ {0, 1}D, and a set of binary vectors
h = {h(1), . . . , h(L)} where h(l) ∈ {0, 1}Nl and L is the number of hidden layers. The DBM
defines the following probability distribution:

PDBM(v,h) ∝ exp

(
−b(0)T v − vTW (1)h−

L∑
l=1

b(l)Th(l) −
L∑

l=2

h(l−1)TW (l)h(l)

)
.

where each W is a matrix of weights and each b is a vector of biases.

Training a deep Boltzmann machine requires both a variational approximation due to the intractable
model posterior and a sampling approximation to the gradient of the log partition function.

Deep Boltzmann machines have primarily been used for modeling images and extracting features for
object recognition (Salakhutdinov and Hinton, 2009; Salakhutdinov and Larochelle, 2010; Salakhut-
dinov et al., 2010) . The deep Boltzmann machine is successful as both a generative model and a
feature extractor.

2.2 Spike-and-slab sparse coding

The spike-and-slab sparse coding (S3C) model is a well-studied model of natural images. It consists
of latent binary spike variables h ∈ {0, 1}N , latent real-valued slab variables s ∈ RN , and real-
valued visible vector v ∈ RD generated according to this process:

∀i ∈ {1, . . . , N}, d ∈ {1, . . . , D},

p(hi = 1) = σ(bi)

p(si | hi) = N (si | hiµi, α
−1
ii) (1)

p(vd | s, h) = N (vd |Wd:(h ◦ s), β−1
dd)

where σ is the logistic sigmoid function, b is a set of biases on the spike variables, µ and W govern
the linear dependence of s on h and v on s respectively, α and β are diagonal precision matrices of
their respective conditionals, and h ◦ s denotes the element-wise product of h and s.

We refer to the variables hi and si as jointly defining the ith hidden unit, so that there are a total of
N rather than 2N hidden units. The state of a hidden unit is best understood as hisi, that is, the
spike variables gate the slab variables1.

The model has previously been used as a model of V1 cortex (Garrigues and Olshausen, 2008), for
source separation (Lücke and Sheikh, 2011), for prediction of missing features (Zhou et al., 2009;
Mohamed et al., 2012), denoising and compressed sensing (Zhou et al., 2009), as a component of
Gaussian process regression models (Titsias and Lázaro-Gredilla, 2011), and as a feature extractor
for object recognition (Goodfellow et al., 2012).

The S3C model has an intractable posterior but a tractable partition function. It can thus be fit by
maximizing a variational bound on the log likelihood, without need to approximate the gradient of
the log partition function.

While the S3C model has been established as a good feature extractor and even as a good enough
density model to be used for inpainting and denoising, its factorial prior makes it a poor generative
model.

2.3 Greedy pretraining versus joint training

Deep models are commonly pretrained in a greedy layerwise fashion. For example, a DBM is
usually initialized by modifying a stack of RBMs, with one RBM trained on the data and each of
the other RBMs trained on samples of the previous RBM’s hidden layer.

1We can essentially recover hi and si from hisi since si = 0 has zero measure.

2

Any greedy training procedure can obviously get stuck in a local minimum. Avoiding the need for
greedy training could thus result in better models. For example, when pretraining with an RBM, the
lack of explaining away in the posterior prevents the first layer from learning nearly parallel weight
vectors, since these would result in similar activations (up to the bias term, which could simply
make one unit always less active than the other). Even though the deeper layers of the DBM could
implement the explaining away needed for these weight vectors to function correctly (i.e., to have
the one that resembles the input the most activate, and inhibit the other unit), the greedy learning
procedure does not have the opportunity to learn such weight vectors.

Previous efforts at jointly training even two layer DBMs on MNIST have failed (Salakhutdinov and
Hinton, 2009; Desjardins et al., 2012) Typically, the jointly trained DBM does not make good use
of the second layer, either because the second layer weights are very small or because they contain
several duplicate weights focused on a small subset of first layer units that became active early
during training. (Montavon and Müller, 2012) has proposed a modified model that may be jointly
trained, by centering the state of the units. Here we explore an alternate modified model where some
of the units remain {0, 1}-valued.

3 Partially directed deep Boltzmann machines

h
1

(1) h
2

(1) h
3

(1)

h
1

(0) h
2

(0) h
3

(0)

s
1

s
2

s
3

v
1

v
2

h
1

(2) h
2

(2) h
3

(2)

h
4

(1)

Figure 1: A graphical model
depicting an example PD-
DBM.

We now introduce a model that resolves both the poor generative
abilities of S3C and, in the two layer case, the difficulties that the
DBM faces with joint training.

We hypothesize that DBM joint training fails because the second
layer hidden units in a DBM must both learn to model correlations
in the first layer induced by the data and to counteract correlations
in the first layer induced by the model family.

Early in training, the second layer weights are near 0. Assuming that
the second layer weights remain near 0 for a brief period while the
first layer weights start to grow, the model should behave similarly
to an RBM defined by the first layer. We can thus gain insight into
the second layer’s modeling task by considering how the first layer
RBM behaves.

The RBM prior acts to correlate first layer hidden units that have similar weight vectors. This is
because the posterior, rather than the prior, distribution over the hidden units is factorial. When
the prior over the hidden units is factorial, two units with similar weight vectors will compete to
explain the data, so they have will have very dissimilar activation patterns. When the posterior over
the hidden units is factorial, two units with similar weight vectors will respond similarly to similar
inputs. This is easiest to see in a Gaussian-Bernoulli RBM (Welling et al., 2005). The energy
function

E(v, h) =
1
2
vT v − vTWh− bTh

induces a prior

p(h) ∝ exp(bTh+
1
2
hTWTWh).

This prior is not motivated by the structure of any kind of data. It occurs as a consequence of
designing the RBM to have a factorial posterior. The role of the deeper layers of the RBM is to
provide a better prior on the first layer hidden units. The distribution over the first layer hidden units
changes over time during learning, both because they become more adapted to the data and because
the byproduct prior introduced by the RBM structure changes.

We propose to avoid this problem, at least at the second layer, by building on top of a model with
a factorial prior. The second layer thus needs accomplish only one task–modeling correlations that
are present in the data–and does not need to additionally work to drive out correlations that were
induced by the first layer model.

We propose to use the S3C model for the first layer. Many first layer models are possible. For
the reasons articulated above, we want a layer with an independent prior on its hidden units. A

3

directed model with binary v and h does not admit tractable mean field inference. Fortunately, a
class of models with real-valued v allow tractable variational inference. Among this class of models,
we choose S3C because we expect it is useful for modeling natural images. The related ssRBM
(Courville et al., 2011) is already known to be a successful generative model, so it is reasonable to
expect that S3C would be a good generative model if equipped with a better prior.

If we assume that µ becomes large relative to α, then the primary structure we need to model is in
h. We therefore propose placing a DBM prior rather than a factorial prior on h. The resulting model
can be viewed as a deep Boltzmann machine with directed connections at the bottom layer. We call
this model a partially directed deep Boltzmann machine (PD-DBM).

3.1 Model definition

Formally, the PD-DBM model consists of an observed input vector v ∈ RD, a vector of slab vari-
ables s ∈ RN0 , and a set of binary vectors h = {h(0), . . . , h(L)} where h(l) ∈ {0, 1}Nl and L is the
number of layers added on top of the S3C model.

The model is parameterized by β, α, and µ, which play the same roles as in S3C. The parameters
W (l) and b(l), l ∈ {0, . . . , L} provide the weights and biases of both the S3C model and the DBM
prior attached to it. Following (Goodfellow et al., 2012), we avoid overparameterizing the S3C
distribution by restricting W to have unit norm, and restrict α to be a diagonal matrix and β to be a
diagonal matrix or a scalar for computational and statistical efficiency.

Together, the complete model implements the following probability distribution:

PPD−DBM(v, s,h) = PS3C(v, s|h(0))PDBM(h).

A version of the model with three hidden layers (L = 2) is depicted graphically in Fig. 1.

Besides admitting a straightforward learning algorithm, the PD-DBM has several useful properties:

• The partition function exists for all parameter settings. This is not true of the ssRBM.
• The model family is a universal approximator. The DBM portion, which is a universal

approximator of binary distributions (Le Roux and Bengio, 2008), can implement a one-
hot prior on h(0), thus turning the overall model into a mixture of Gaussians, which is a
universal approximator of real-valued distributions (Titterington et al., 1985).

• Inference of the posterior involves feedforward, feedback, and lateral connections. This
increases the biological plausibility of the model, and enables it to learn and exploit several
rich kinds of interactions between features. The lateral interactions make the lower level
features compete to explain the input, and the top-down influences help to obtain the correct
representations of ambiguous input.

4 Learning in the PD-DBM

As with the DBM, maximum likelihood learning is intractable for the PD-DBM. Like S3C, it suffers
from an intractable posterior distribution over the latent variables. Like the DBM, the PD-DBM
additionally suffers from an intractable partition function.

Fortunately, the same approach used by Salakhutdinov and Hinton (2009) to train DBMs may be
used to train the PD-DBM: rather than maximizing the log likelihood, we maximize a variational
lower bound on the log likelihood. We do so using gradient ascent, making a sampling-based ap-
proximation to the gradient.

The basic strategy of variational learning is to approximate the true posterior P (h, s | v) with a
simpler distribution Q(h, s). The choice of Q induces a lower bound on the log likelihood called
the negative variational free energy. The term of the negative variational free energy that depends
on the model parameters is

Es,h∼Q[logP (v, s, h)]

=− Es,h∼Q[logP (v | s, h(0)) + logP (s | h) + logP (h)]

4

For some models, changing to this objective function is sufficient to make learning tractable. In the
case of the DBM and PD-DBM, the objective function is still not tractable because of the intractable
DBM partition function. We can use contrastive divergence (Hinton, 2000) or stochastic maximum
likelihood (Younes, 1998; Tieleman, 2008) to make a sampling-based approximation to the DBM
partition function’s contribution to the gradient.

The PD-DBM model has a nice property in that only a subset of the variables must be sampled
during training. The factors of the partition function originating from the S3C portion of the model
are still tractable; only those arising from the DBM must be approximated. In particular, training
does not ever require sampling real-valued variables. This is a nice property because it means that the
gradient estimates are bounded for fixed parameters and data. When sampling real-valued variables,
it is possible for the sampling procedure to make gradient estimates arbitrarily large.

We found that using the “true gradient” (Douglas et al., 1999) method to be useful for learning with
the norm constraint on W (0). We also found that using momentum (Hinton, 2010) is very important
when training jointly.

5 Inference procedure

The goal of variational inference is to maximize the lower bound on the log likelihood with respect
to the approximate distribution Q over the unobserved variables. This is accomplished by selecting
the Q that minimizes the Kullback–Leibler divergence:

DKL(Q(h, s)‖P (h, s|v)) (2)

whereQ(h, s) is drawn from a restricted family of distributions. This family can be chosen to ensure
that learning and inference with Q is tractable. We use the variational family

Q(s, h) = ΠN0
i=1Q(si, h

(0)
i)ΠL

l=1ΠNl
i=1Q(h(l)

i).

Observing that eq. (2) is an instance of the Euler-Lagrange equation, we find that the solution must
take the form

Q(h(l)
i = 1) = ĥ

(l)
i ,

Q(si | h(0)
i) = N (si | h(0)

i ŝi, (αi + hiW
T
i βWi)−1). (3)

where ĥi and ŝi must be found by an iterative process. In principle, nearly any optimization al-
gorithm could be used to perform variational inference, but since inference is in the inner loop of
learning, we require this optimization procedure to be fast. Inference in the S3C model is difficult,
and the PD-DBM inherits this difficulty. We adopt the method of Goodfellow et al. (2012) for in-
ferring ŝ and modify it slightly to account top-down influence from h(1) when inferring ĥ(0). We
use this method because it is design to run quickly on parallel architectures such as GPUs. The
remaining DBM layers are comparatively easy to infer; their variational parameters can be updated
with standard mean field fixed point equations as in (Salakhutdinov and Hinton, 2009). We describe
the entire algorithm in detail in Algorithm 1).

Note that Algorithm 1 does not specify a convergence criterion. Many convergence criteria are
possible–the convergence criterion could be based on the norm of the gradient of the KL divergence
with respect to the variational parameters, the amount that the KL divergence has decreased in
the last iteration, or the amount that the variational parameters have changed in the final iteration.
Salakhutdinov and Hinton (2009) use the third approach when training deep Boltzmann machines
and we find that it works well for the PD-DBM.

6 Sampling results

In order to demonstrate the improvements in the generative modeling capability conferred by adding
a DBM prior on h, we trained an S3C model and a PD-DBM model on the MNIST dataset. We chose
to use MNIST for these experiments because it is easy for a human observer to qualitatively judge
whether samples come from the same distribution as this dataset.

5

Algorithm 1 Fast Parallel Variational Inference Algorithm

Let ρ be a user-defined hyperparemeter, with ρ ∈ [0, 1]. (We used ρ = 0.5)
∀l ∈ {0, . . . , L} initialize ĥ(l)(0) = σ(b(l)).
Initialize ŝ(0) = µ.
while not converged do

Choose a layer to update (we cycle through updating all odd then all even layers, but other
schedules are valid).
if updating ŝ then

Compute the individually optimal value ŝ∗i for each i simultaneously:

ŝ∗i =
µiαii + vTβWi −Wiβ

hP
j 6=iWj ĥj ŝj

i
αii +WT

i βWi

Clip reflections by computing

ci = ρsign(ŝ∗i)|ŝi|
for all i such that sign(ŝ∗i) 6= sign(ŝi) and |ŝ∗i | > ρ|ŝi|, and assigning ci = ŝ∗i for all other i.
Damp the updates by assigning

ŝi ← ηsc+ (1− ηs)ŝ
where ηs ∈ (0, 1], chosen by starting with a user-defined guess and backtracking if the KL divergence
increases.

else if updating ĥ(0) then
Compute the individually optimal values for ĥ(0):

zi =

0@v − X
j 6=i

Wj ŝj ĥj −
1

2
Wiŝi

1AT

βWiŝi + bi −
1

2
αii(ŝi − µi)

2 −
1

2
log(αii +W

T
i βWi) +

1

2
log(αii)

ĥ
(0)∗
i = σ(zi +W

(1)
ĥ
(1)

)

Damp the update to ĥ(0):

ĥ(0) ← ηhĥ
(0)∗ + (1− ηh)ĥ(0)

where ηh ∈ (0, 1], chosen by starting with a user-defined guess and backtracking if the KL
divergence increases.

else if updating ĥ(l) then
Assign

ĥ(l) ← σ
(
b(l) + ĥ(l−1)TW (l) +W (l+1)ĥ(l+1)

)
where the term for layer l + 1 is dropped if l + 1 > L.

end if
end while

6

Figure 2: Left: Samples drawn from an S3C model trained on MNIST. Right: The filters used by
this S3C model.

Figure 3: Left: Samples drawn from a PD-DBM model trained on MNIST using joint training only.
Center: Samples drawn from a DBM model of the same size, trained using greedy layerwise pre-
training followed by joint training. Right: Samples drawn from a DBM trained using joint training
only.

7

Figure 4: Each panel shows a visualization of the weights for a different model. Each row represents
a different second layer hidden unit. We show ten units for each model corresponding to those
with the largest weight vector norm. Within each row, we plot the weight vectors for the ten most
strongly connected first layer units. Black corresponds to inhibition, white to excitation, and gray to
zero weight. This figure is best viewed in color–units plotted with a yellow border have excitatory
second layer weights while units plotted with a magenta border have inhibitory second layer weights.
Left: PD-DBM model trained jointly. Note that each row contains many similar filters. This is how
the second layer weights achieve invariance to some transformations such as image translation. This
is one way that deep architectures are able to disentangle factors of variation. One can also see
how the second layer helps implement the correct prior for the generative task. For example, the
unit plotted in the first row excites filters used to draw 7s and inhibits filters used to draw 1s. Also,
observe that the first layer filters are much more localized and contained fewer templates than those
in Fig. 2 right. This suggests that joint training has a significant effect on the quality of the first layer
weights; greedy pretraining would have attempted to solve the generative task with more templates
due to S3C’s independent prior. Center: DBM model with greedy pretraining followed by joint
training. These weights show the same disentangling and invariance properties as those of the PD-
DBM. Note that the filters have more black areas. This is because the RBM must use inhibitory
weights to limit hidden unit activities, while S3C accomplishes the same purpose via the explaining-
away effect. Right: DBM with joint training only. Note that many of the second layer weight vectors
are duplicates of each other. This is because the second layer has a pathological tendency to focus
on modeling a handful of first-layer units that learn interesting responses earliest in learning.

8

For the PD-DBM, we used L = 1, for a total of two hidden layers. We did not use greedy, layerwise
pretraining– the entire model was learned jointly. Such joint learning without greedy pretraining has
never been accomplished with similar deep models such as DBMs or DBNs.

The S3C samples and basis vectors are shown in Fig. 2. The samples do not resemble digits,
suggesting that S3C has failed to model the data. However, inspection of the S3C filters shows that
S3C has learned a good basis set for representing MNIST digits using digit templates, pen strokes,
etc. It simply does not have the correct prior on these bases and as a result activates subsets of them
that do not correspond to MNIST digits. The PD-DBM samples clearly resemble digits, as shown
in Fig. 3. For comparison, Fig. 3 also shows samples from two DBMs. In all cases we display the
expected value of the visible units given the hidden units. To more directly compare the differences
between these models’ parameters, we display a visualization of the weights of the models that
shows how the layers interact in Fig. 4.

The first DBM was trained by running the demo code that accompanies (Salakhutdinov and Hinton,
2009). We used the same number of units in each layer in order to make these models comparable
(500 in the first layer and 1,000 in the second). This means that the PD-DBM has a slightly greater
number of parameters than the DBM, since the first layer units of the PD-DBM have both mean and
precision parameters while the first layer units of the DBM have only a bias parameter. Note that
the DBM operates on a binarized version of MNIST while S3C and the PD-DBM regard MNIST as
real-valued. Additionally, the DBM demo code uses the MNIST labels during generative training
while the PD-DBM and S3C were not trained with the benefit of the labels. The DBM demo code is
hardcoded to pretrain the first layer for 100 epochs, the second layer for 200 epochs, and then jointly
train the DBM for 300 epochs. We trained the PD-DBM starting from a random initialization for
350 epochs.

The second DBM was trained using two modifications from the demo code in order to train it in as
similar a fashion to our PD-DBM model as possible: first, it was trained without access to labels,
and second, it did not receive any pretraining. This model was trained for only 230 epochs because
it had already converged to a bad local optimum by this time. This DBM is included to provide an
example of how DBM training fails when greedy layerwise pretraining is not used. DBM training
can fail in a variety of ways and no example should be considered representative of all of them.

7 Conclusion

We have introduced a deep generative model of real-valued data and learning and inference proce-
dures for that model. We have demonstrated that the model can succesfully learn to generate samples
from the MNIST dataset. The success of the jointly trained two layer version of this model provides
some evidence for our hypothesis that DBMs may not be trained jointly because the difficulty of
responding to the changing prior induced by the lower layer RBMs is too great.

In future work, we hope to quantify the PD-DBM’s generative performance, evaluate its classifica-
tion performance, and compare the performance of a greedily trained PD-DBM to the performance
of a jointly trained PD-DBM.

References
Courville, A., Bergstra, J., and Bengio, Y. (2011). Unsupervised models of images by spike-and-slab RBMs.

In Proceedings of the Twenty-eight International Conference on Machine Learning (ICML’11).

Desjardins, G., Courville, A., and Bengio, Y. (2012). On training deep Boltzmann machines. Technical Report
arXiv:1203.4416v1, Université de Montréal.

Douglas, S., Amari, S.-I., and Kung, S.-Y. (1999). On gradient adaptation with unit-norm constraints.

Garrigues, P. and Olshausen, B. (2008). Learning horizontal connections in a sparse coding model of natural
images. In NIPS’07, pages 505–512. MIT Press, Cambridge, MA.

Goodfellow, I., Courville, A., and Bengio, Y. (2012). Large-scale feature learning with spike-and-slab sparse
coding. In Proc. ICML’2012.

Hinton, G. E. (2000). Training products of experts by minimizing contrastive divergence. Technical Report
GCNU TR 2000-004, Gatsby Unit, University College London.

9

Hinton, G. E. (2010). A practical guide to training restricted Boltzmann machines. Technical Report UTML
TR 2010-003, Department of Computer Science, University of Toronto.

Le Roux, N. and Bengio, Y. (2008). Representational power of restricted Boltzmann machines and deep belief
networks. Neural Computation, 20(6), 1631–1649.

Lücke, J. and Sheikh, A.-S. (2011). A closed-form EM algorithm for sparse coding. arXiv:1105.2493.

Mohamed, S., Heller, K., and Ghahramani, Z. (2012). Bayesian and l1 approaches to sparse unsupervised
learning. In ICML’2012.

Montavon, G. and Müller, K.-R. (2012). Learning feature hierarchies with cented deep Boltzmann machines.

Salakhutdinov, R. and Hinton, G. (2009). Deep Boltzmann machines. In Proc. AISTATS’2009, volume 8.

Salakhutdinov, R. and Larochelle, H. (2010). Efficient learning of deep Boltzmann machines. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2010), JMLR
W&CP, volume 9, pages 693–700.

Salakhutdinov, R., Tennenbaum, J., and Torralba, A. (2010). One-shot learning with a hierarchical nonpara-
metric bayesian model. Technical report, MIT. MIT Technical Report MIT-CSAIL-TR-2010-052.

Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient.
In W. W. Cohen, A. McCallum, and S. T. Roweis, editors, ICML 2008, pages 1064–1071. ACM.

Titsias, M. K. and Lázaro-Gredilla, M. (2011). Spike and slab variational inference for multi-task and multiple
kernel learning. In NIPS’2011.

Titterington, D., Smith, A., and Makov, U. (1985). Statistical Analysis of Finite Mixture Distributions. Wiley,
New York.

Welling, M., Rosen-Zvi, M., and Hinton, G. E. (2005). Exponential family harmoniums with an application to
information retrieval. In NIPS 17, Cambridge, MA. MIT Press.

Younes, L. (1998). On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity
rates. In Stochastics and Stochastics Models, pages 177–228.

Zhou, M., Chen, H., Paisley, J. W., Ren, L., Sapiro, G., and Carin, L. (2009). Non-parametric Bayesian
dictionary learning for sparse image representations. In NIPS’09, pages 2295–2303.

10

