
Attribute Based Object Identification

Yuyin Sun1 Liefeng Bo2 Dieter Fox1

1Department of Computer Science & Engineering
University of Washington, Seattle, WA 98195

2Intel Science and Technology Center on Pervasive Computing
Intel Labs, Seattle, WA 98195

{sunyuyin, fox}@cs.washington.edu liefeng.bo@intel.com

Abstract

Over the past years, the robotics community has made substantial progress in de-
tection and 3D pose estimation of known and unknown objects. However, the
question of how to identify objects based on language descriptions has not been
investigated in detail. While the computer vision community recently started to
investigate the use of attributes for object recognition, these approaches do not
consider the task settings typically observed in robotics, where a combination of
appearance attributes and object names might be used to identify specific objects
in a scene. In this paper, we introduce an approach for identifying objects based
on appearance and name attributes. To learn rich RGB-D features needed for at-
tribute classification, we extend recently introduced sparse coding techniques so
as to automatically learn attribute-specific color and depth features. We use Me-
chanical Turk to collect a large data set of attribute descriptions of objects in the
RGB-D object dataset. Our experiments show that learned attribute classifiers
outperform previous instance-based techniques for object identification. We also
demonstrate that attribute-specific features provide significantly better generaliza-
tion to previously unseen attribute values, thereby enabling more rapid learning of
new attribute values.

1 Introduction

Identifying objects in complex scenes is a crucial capability for an autonomous robot to understand
and interact with physical world and be of use in everyday-life scenarios. Over the last years, the
robotics community has made substantial progress in detection and 3D pose estimation of known
and unknown objects [9, 14]. The development of features and algorithms for combining color
and depth information provided by RGB-D cameras further increases the accuracy of object de-
tection [9]. So far, virtually all work on object recognition assume that each object has a unique
instance ID by which it is referenced. However, this is not how people identify objects using natural
language. Since not every object in an environment has a unique language identifier, people often
use additional attributes such as color (blue), shape (round), size (large), or material (metal) to refer
specific objects. For instance, a person might say “Bring me my coffee mug; it’s the blue one”, or
“Pick up the Oreos on the kitchen counter” (see Fig. 1). While the first situation requires the color
attribute to identify the correct object, the object name “Oreos” is sufficient in the second situation.

The computer vision community recently started to investigate the use of attributes for object recog-
nition [7]. Their work showed that it is possible to recognize new object types solely by their
appearance attributes [15], or that attributes improve recognition of fine-grained object classes such
as bird species [6]. However, these computer vision approaches do not consider the task settings
typically faced in robotics, where a combination of appearance attributes and object names might be
used to identify specific objects in a scene, rather than describing general object categories. Recent

1

“Blue”, “Coffee mug” “Oreos”

Figure 1: Object identification. Imagine objects being on a table or kitchen counter and the command is “Bring
me my coffee mug; it’s the blue one”, or “Pick up the Oreos on the kitchen counter” (red rectangles indicate
the objects being referred to).

work in semantic natural language processing introduced a joint model for language and visual at-
tributes for the purpose of object identification [18]. Since the focus of that work was on language
learning, however, only very simple objects such as uniformly colored plastic toys were considered.

In this paper, we introduce an approach for identifying objects based on appearance and name at-
tributes. Specifically, we consider the following setting: A robot perceives a set of objects, is given
attributes describing one of the objects, and has to identify the particular object being referred to.
Attributes are grouped into different types: shape, color, material, and name. The name attribute
contains all words people might use to name objects. For instance, a name could be an object
type, such as “bag”, or a specific name, such as “Mini Oreo”. To learn rich RGB-D features for
attribute classification, we build on recently introduced sparse coding techniques [4]. Our approach
first learns codebooks from color and depth images captured by an RGB-D camera, and then uses
group lasso regularization to select the most relevant codewords for each type of attributes. These
attribute-dependent codewords represent knowledge shared by the same type of attributes, so they
generalize much better than full codebook and achieve higher performance with limited samples.

To evaluate our approach, we collected an extensive RGB-D attribute dataset for a subset of objects
taken from the RGB-D object dataset developed by Lai and colleagues [13]. Attribute values are
gathered via Amazon Mechanical Turk, which provide a rich selection of attribute words people
use to describe objects. We also presented Turkers with sets of objects and asked them to specify
attributes that uniquely identify a target object from a group of objects, simulating a task in which
a person might command a robot to pick up an object from multiple objects placed on a table.
Experiments demonstrate that our learned appearance and name attributes are extremely well-suited
to identify objects, even outperforming instance-based classifiers which do not lend themselves to
a natural language interface. Furthermore, we show that our attribute-dependent feature learning
significantly outperforms task independent features.

2 Related Work

This research focuses on object identification using attribute dependent feature learning. To the best
of our knowledge, the paper presents the first study on combining attribute (including object name)
learning with feature learning for object identification.

Feature learning: Over the past few years, there has been increasing interest in deep learning and
unsupervised feature learning for object recognition. Deep belief nets [10] learn a hierarchy of fea-
tures, layer by layer, using the unsupervised restricted Boltzmann machine. The learned weights are
then further adjusted to the current task using supervised information. To make deep belief nets ap-
plicable to full-size images, convolutional deep belief nets[16] use a small receptive field and share
the weights between the hidden and visible layers among all locations in an image. Alternatively, hi-
erarchical sparse coding [21] and hierarchical matching pursuit [3] have been proposed for building
rich features from scratch, layer by layer, using sparse codes and spatial pooling. Very recently, such
unsupervised feature learning approaches have been adapted to depth maps and 3-D point clouds for
RGB-D object recognition [2, 4].

Attribute Learning: Learning visual attributes has been shown to be beneficial not only for improv-
ing performance of object recognition but also for transferring learned knowledge to new categories.
Ferrari and Zisserman [8] learn to localize color and texture attributes from annotations captured by

2

Table 1: Words used for color, shape, material, and example name attributes in the RGB-D Object Attribute
Dataset.

Attrubutes Words
Color black, blue, yellow, red, transparent, white, purple, brown, green, pink, orange
Shape rectangular, cylindrical, circular, ellipsoid
Material paper, ceramic, fiber, metal, plastic, food, foam

Name (Bag) bag, bag of chips, True Delights snack, Bear Crackers, bag of pretzels, mini Oreo,
Tortilla chips, barbecue potato chips, Archer Farms potato chips, bag of Sun chips

Name (Noodle) noodle, bag, Instant Noodle, Ichiban Instant Noodle, Ramen Noodle, Beef Noodle,
Thai Noodle

image search. Farhadi et al. [7] describe objects by their attributes and showed that attribute based
approaches generalize well across object categories. Kumar et al. [11] propose attribute and simi-
lar classifiers for face verification and showed that such classifiers offer complementary recognition
cues over low-level patch features. Lampert et al. [15] show that attributes are useful for detecting
unseen object categories. Parikh et al [20] propose to model relative attributes and showed their ad-
vantages over traditional binary attributes. Duan et al. [6] show that attributes improve recognition
of fine-grained object classes such as bird species. Matuszek [18] present grounded attribute learn-
ing for jointly learning visual classifiers and semantic parsers to produce rich, compositional models
that span directly from sensors to meaning. In this paper, we investigate how attributes are used to
identify specific object from a set of objects. This setting is more relevant to the robotics scenario in
which people want to use language to command a robot to, for instance, pick up an object.

3 Object Attributes

We developed a new RGB-D Object Attribute Dataset for training attribute classifiers. 110 objects in
12 categories (Ball, Coffee Mug, Food Bag, Food Box, Food Can, Instant Noodle, Marker, Sponge,
Stapler and Water Bottle, Garlic and Tomato) from the RGB-D Object Dataset [13] are selected.
Attributes of objects are collected using Amazon Mechanical Turk (AMT). In particular, we ask
turkers on AMT to describe color, shape, material, and name attributes of single object using simple
but precise sentences. We manually extract the attribute words from the AMT annotations. In
future work, we intend to use state-of-the-art semantic parsers [12, 18] to make it more automatic.
Annotations for color, shape and material attributes are rather consistent since different turkers tend
to use the same words for the same objects. For these attribute types, we use the dominant words
used for describing certain object. Overall, eleven color words, four shape words, and seven material
words, listed in Table 1, are used. The name attribute is more complex, since people use names of
different concept levels to refer to the same object in different scenarios. For instance, some people
say “Bag of chips” and others say “Sun chips” for the object instance of “Sun chips”. Fortunately,
people only choose one object name from the name hierarchy to identify the objects in a given
scenario. This allows us to treat the object names in the same manner as appearance attributes,
regardless of the name hierarchy. We thus associate all object names used by AMT workers with the
corresponding object instance. As a result, the name attribute has 46 different values (words) and,
for instance, the “Sun chips” object has three possible names (“Sun chips”, “Bag of chips”, “Bag”).
Table 1 shows words used for objects name in the bag and noodle categories as an example. This
data is mainly used for the experiments presented in Sections 5.2 and 5.4.

To collect test data for object identification using attributes, we present turkers with scenes of four
objects and ask them to identify the object within the red box using object attributes. We then
parse the sentences provided by workers into attributes. This test data consists of 1200 scenes of
four objects along with the attributes picked by workers on AMT. Note that in this setting, we did
not require that AMT workers provide values for all attributes, but only those they would choose
naturally to identify certain object.

4 Attribute Based Object Identification

In our object identification framework, the inputs are values for K attribute types, A =
{a1, . . . , aK}, and a set containing J segmented objects {I1, . . . , IJ}. The goal is to find the spe-
cific object j∗ referred to by a given set of attributes. We identify j∗ by maximizing the likelihood

3

of the attribute values A given object Ij∗ :

j∗ = argmax
1≤j≤J

p(A|Ij) = argmax
1≤j≤J

K∏
k=1

p(ak|Ij) (1)

where p(ak|Ij) is the likelihood function. Here, we have factorized p(A|Ij) by assuming that the
attributes are independent given the object Ij .

We model the probability of values of each attribute type using multinomial logistic regression. In
particular, the probability of object I (we omit the subscript when possible) having attribute value t
is defined as

p(t|I,W) =
exp(f t(I,W))∑T

t′=1 exp(f
t′(I,W))

(2)

where I is the segmented object, W is the model parameters for the attribute type k learned from
training data, and T is the number of attribute values belonging to the attribute type k. Since we
model each attribute type independently, we have used W and T instead of W k and T k for simplic-
ity. The functions f t(I,W) are discriminative functions. It might be useful to think of f t(I,W)
as a compatibility function that measures how compatible pairs of the attribute value t and the seg-
mented object I are. This is also called a soft-max function in the neural networks literature. The
corresponding log likelihood is of the form log p(t|I,W) = f t(I,W)− log

∑T
t′=1 exp(f

t′(I,W)).
We will detail the discriminative functions in the following sections.

The accuracy of attribute recognition strongly depends on rich features extracted from the color and
depth values of object segments. In our object identification framework, we first learn general feature
codebooks in an unsupervised way [3, 4], then sparsify these codebooks to learn attribute dependent
features via group lasso optimization [19]. We first describe the general codebook learning approach.

4.1 Unsupervised Feature Learning

Our attribute dependent feature learning is built upon a state-of-the-art unsupervised feature learn-
ing approach, hierarchical sparse coding [3, 4]. The key idea of sparse coding is to learn a code-
book, which is a set of vectors, or codes, such that the data can be represented by a sparse,
linear combination of codebook entries. In our case, the data are patches of pixel values sam-
pled from RGB-D images. Our codebook learning algorithm uses K-SVD [1] to learn codebooks
D = [d1, · · · , dm, · · · , dM] and the associated sparse codes X = [x1, · · · , xn, · · · , xN] from a
matrix Y of observed data by minimizing the reconstruction error

min
D,X

‖Y −DX‖2F (3)

s.t. ‖dm‖2 = 1, ∀m
‖xn‖0 ≤ Q, ∀n

Here, the notation ‖·‖F denotes the Frobenius norm, the zero-norm ‖·‖0 counts the non-zero entries
in the sparse codes xn, and Q is the sparsity level controlling the number of the non-zero entries.

With the learned codebooks, sparse codes can be computed for new images using orthogonal match-
ing pursuit or the more efficient batch tree orthogonal matching pursuit [3]. Spatial pyramid max
pooling is then applied to the resulting sparse codes to generate object-level features. A spatial pyra-
mid partitions an image into multiple levels of spatial cells, and the features of each spatial cell are
computed via max pooling, which simply takes the component-wise maxima over all sparse codes
within a cell (see [4] for details).

4.2 Attribute Dependent Features via Codeword Selection

As we will show in the experiments, the features learned via hierarchical sparse coding give excellent
results for attribute classification and object identification, when learned on raw RGB and Depth
image patches. However, a limitation of such rich features is that they might not generalize as well
as more specific features. For instance, imagine one wants to learn a classifier for the color “red”
by providing a small set of red objects. In this case, overly general features might lead to shape
specific codewords being used to learn a good classifier from training objects (overfitting). Thus,

4

instead of learning only one, general codebook, we learn subsets of such a codebook containing
only codewords useful for specific attribute types. Our approach sparsifies codebooks via group
lasso [19]. We describe this learning approach in the context of our attribute classification.

We learn attribute classifiers using linear decision functions

f t(I,W) =

P∑
p=1

β(Ip, D)>wp,t + bt (4)

where β(Ip, D) are pooled sparse code features over the spatial cell Ip, P is the number of
spatial cells drawn from the object I , wp,t and bt are the weight vectors and the bias term,
W = [w11, · · · , wS1, · · · , wST] and T is the number of attribute values belonging to one attribute
type. Here, t ∈ {1, · · · , T} denotes a specific attribute value for one attribute type. For instance,
attribute values for the shape attribute are circular, cylindrical, ellipsoid and rectangular. Note that
previous work has shown that linear classifiers are sufficient to obtain good performance with sparse
code features [4].

We learn the model parameters from the attribute training data collected from Amazon Mechanical
Turk. For each attribute type, the training data consists of G pairs of the segmented objects Ig and
their corresponding attribute values ag . Here, ag belongs to one of T attribute values (e.g. one of
the 13 color words for color attribute). We want to find the model parameters W by maximizing the
log likelihood of training data

G∑
g=1

log p(ag|Ig,W)− λ‖W‖21, (5)

in which ‖W‖21 is a regularization term, and its intensity is controlled by parameter λ. Let wi and
wj be the i-th row and the j-column of the matrixW , respectively. The matrix norm ‖·‖21 is defined
as ‖W ‖21=

∑M
i=1 ‖ wi ‖2. In our case, we have

‖W‖21 =

M∑
m=1

‖ w11
m , · · · , wS1

m , · · · , wST
m ‖2 . (6)

This regularization term is called group lasso, which accumulates the weights of the spatial cells
and the attribute values for each codeword using 2-norm and then enforces 1-norm over them to
drive the weight vectors of individual codewords toward zero. The group lasso thereby sparsifies
the codebook and thus leads to an attribute dependent codebook that is usually much smaller than
the full codebook. If the group lasso drives an entire weight vector wm to 0, the corresponding
codeword no longer has effect on the decision boundary and has been removed by the optimization
effectively. The log likelihood with (2, 1)-norm regularization is a concave function of W , so the
optimal parameter settings can be found and there is no local minima. We use the accelerated
gradient descent algorithm to solve the above optimization problem, which has been proven to have
a fast convergence rate [5, 17].

The intuition behind our codebook sparsification is that the full codebook learned by K-SVD consists
of many types of codewords while only a small number of codewords is relevant to a given attribute
type. To demonstrate this intuition, we visualize the codebooks selected by color and shape attributes
in Figure 2. It can be seen that the color-specific codebook only contains color codewords, while the
shape codebook is dominated by depth codewords (black and white) along with some color gradient
codewords.

5 Experiments

We evaluate the proposed attribute based object identification on the RGB-D Object Attribute
Dataset we collected. We train our attribute classifiers using individually captured objects and eval-
uate object identification on combinations of the segmented objects. We show different aspects of
attribute based object identification and the performance gain achieved by attribute-specific feature
learning.

5

Figure 2: Sparsified codebooks for color (left) and shape (right) attributes, respectively. Our approach learned
that solid color codewords are most relevant to classify colors, while mostly depth codewords (grey scale) are
selected for shape classification.

4 objects 10 objects

96.5 93.1
97.9 94.4 91.9

79.4 80.3

58.9 59.5

31.4

69.5

43.6

Object ID All Attributes Object Name Color Shape Material

Different Categories Same Category

98.9
90.6 92.4

22.1

70.1

88.5

48.3
39.7

61.2

37.6

All Attributes Object Name Color Shape Material

(a) Results for data used in Section 5.2 (b) Results for AMT data

Figure 3: Object identification results (Accuracy) using four types of attributes and their combination.

5.1 Experimental Setup

We learn general codebooks of size 1000 with sparsity level 5 on 1,000,000 sampled 8 × 8 raw
patches for both RGB and depth images. We remove the zero frequency component from raw
patches by subtracting their means. With these learned codebooks, we compute sparse codes of
each pixel (8× 8 patch around it) using batch orthogonal matching pursuit with sparsity level 5, and
generate object level features by spatial pyramid max pooling over the whole images with 4×4, 2×2,
and 1 × 1 partitions. The final feature vectors are the concatenation of the features over depth and
color channels, resulting in a feature size of 42,000 dimensions. Following the experimental setting
in [4], we take video sequences captured from the 30◦ and 60◦ elevation angles as training set and
ones captured from the 45◦ angle as test set (leave-sequence-out on the RGB-D dataset [13]). The
hyperparameters of sparse coding and multinomial logistic regression are optimized on the RGB-D
object attribute training set.

5.2 Attributes for Object Identification

The test data for object identification consists of 1000 scenes, and each scene is generated by ran-
domly picking 4-10 different segmented object instances from the 45◦ angle test sequences. We
consider two experimental settings. In the first setting, we identify the target object from a set of 4
or 10 objects, and use the attribute values provided by Turkers for the target object. We report the
identification accuracy results for different attributes and their combination in Figure 3 (a). First of
all, we can see that all four types of attributes are helpful for object identification and that their com-
bination outperforms each individual attribute by a large margin. For instance, the combination of all
four attributes achieves more than 10 percent higher accuracy than Object Name and more than 20
percent higher accuracy than the appearance attributes shape, color, and material. Not surprisingly,
the accuracy of object identification decreases with an increasing number of objects in the set, but
the combination of all four types of attributes drops much less than each individual attribute. Fig 3
(a) also contains results for object instance recognition, in which each object gets a unique Object
ID (note that this is not a realistic setting for a natural language interface, since not all objects in
an environment can be named uniquely). It is very satisfying to see that our attribute based identi-
fication slightly outperforms even this setting, indicating that learning multiple attribute classifiers
provides higher performance than a single classifier, even when trained on artificially provided IDs.

In the second setting, we aim at identifying the specific object from a set using a minimal subset of
attributes, that is, the fewest attributes required to distinguish the target object from the others. To
get minimal subsets, we try all combinations of one, two, three, and four attribute types in turn and

6

Table 2: Object identification results (Accuracy) using all attributes and only a minimal subset of attributes
required to identify an object from the other objects in the set.

of objects
4 6 8 10

All attributes 97.88 96.32 95.80 94.36
Minimal subset of attributes 91.24 89.25 87.57 86.62

Table 3: Object identification results (Accuracy) when the four objects are from different categories or all from
the same category. Results are given for raw Mechanical Turk annotations and for manually validated data.

Overall Different categories Same category
Raw Data 81.7 87.2 69.9

Validated Data 90.2 92.1 85.7

stop when the attribute types used are able to distinguish the target object from the others. We found
that for scenes containing 10 objects, 87.6% of them can be identified based on one attribute only,
12.6% of them can be identified based on two attributes, 0.01% of them have to use three attributes.
We report the results in Table 2. As can been seen, our approach obtains very high accuracy even
in this setting, suggesting the robustness of attribute based object identification. It is not surprising
that the minimal subset of attributes works slightly worse than the combination of all four types of
attributes since redundant attributes increase the robustness of object identification.

5.3 Object Identification Setting

To test if our system can successfully identify the target object based on the subset of attributes
provided by people in the context of a set of objects, we present two types of scenes to Amazon
Mechanical Turk and ask people to identify the target object based on object properties. The first
type of scenes consists of 800 images and each of them contains four objects randomly picked from
all objects (here calleddifferent categories). The second type of scenes consists of 400 images con-
taining four objects randomly picked from the same category. The second setting is more difficult
than the first one since one typically can not identify the target object using the object name only.

Figure 4 shows example object sets and the attributes collected from AMT. As can be seen, shape,
color, material, and object name attributes are frequently used to refer to a specific object. Since not
all workers on AMT follow the instructions and some of them actually make mistakes, we manually
checked the collected data to see if the collected attributes are sufficient to identify the target objects
from the scenes. We found about 15% of the annotations do not refer to a unique target object. We
report results on both the raw data and the validated subset (15% insufficient annotations removed)
in Table 3. As can bee seen, our object identification framework achieves high accuracy even for the
raw data. The accuracy on the verified data is even higher as expected: 92.1% on the first type of
test (objects are of different type), 85.7% on the second type of test (all objects are of same type),
and 90.2% on the joint set.

To shed light on the value of different attribute types in this setting, we perform these experiments
using individual types of attributes and the combination of all attributes. Results are given in Figure 3
(b). Again, the accuracy on the first type of scenes is higher than the second ones, and the combi-
nation of attributes works much better than individual attribute. Note the low accuracy achieved by
Object Name in the same category setting, caused by the fact that object names are typically not
sufficient when several objects of the same type are present. It is also worth emphasizing that the
accuracy on attributes collected from AMT is comparable with those obtained by all four types of
attributes, suggesting that attribute based object identification is very robust and realistic for real
data.

5.4 Sparsified Codebooks for Transfer Learning

To investigate if our attribute dependent codebooks are more suitable for learning new attribute
values when compared to the full codebooks, we perform the following experiments. For each type
of attribute, we leave two attribute values out as test attributes and learn a sparsified codebook using
the remaining attribute values. We then train models for the left-out attribute values and test them

7

(a) “Pick up the coffee mug.” since
category name is sufficient for iden-
tification.

(b) “Pick up the True Delight.” in
case instance name is necessary and
known.

(c) “Pick up the brown instant noo-
dle.” Both color and name attributes
are used.

(d) “Pick up the red circular thing.”
Attributes are used since it’s hard to
identify the name (sponge) of the ob-
ject.

Figure 4: Scenes and attributes collected from Amazon Mechanical Turk.

102 4 6 20 50
5

10

15

20

25

30

35

of training samples

E
rr

o
r

(%
)

Color

Full codebook

Sparsified codebook

102 4 6 20 50

15

20

25

30

35

of training samples

E
rr

o
r

(%
)

Shape

Full codebook

Sparsified codebook

102 4 6 20 50

10

15

20

25

30

35

of training samples

E
rr

o
r

(%
)

Material

Full codebook

Sparsified codebook

Figure 5: Learning new attribute values using sparsified codebooks. # of training samples are given on log
scale. Y-axis is the average error rate over all pairs of new tasks.

on the test set for these attribute values. For instance, in one setup we leave the colors blue and
yellow out, learn a sparsified codebook using the other colors, and then use that codebook to learn
classifiers for blue and yellow (see also Figure 4 for examples of sparsified codebooks for color and
shape). This result is compared to learning blue and yellow classifiers using the full codebook.

We report the results obtained by the sparsified codebook and the full codebook in Figure 5. As can
be seen, the sparsified codebooks significantly outperform the full codebooks especially on small
numbers of training samples for color, shape and material attributes. This is because the sparsified
codebooks effectively remove the codewords unrelated with the particular attribute type that could
confuse the learning procedure when faced with new attribute values, especially for limited training
samples. The sparsified codebooks result in much less chance to overfit to the training sets than the
full codebooks and thus achieve better accuracy in this scenario. We also tried the sparsified and
full codebooks for the object name attribute and found that these two approaches have comparable
accuracy on the test set. This is expected since the object name attribute is a highly mixed concept
and virtually all codewords are relevant for it.

6 Discussion

We presented an attribute based approach for object identification which considers four types of
attributes: shape, color, material, and name. Our model learns perceptual features used for attribute
classification from raw color and depth data. It incorporates sparse coding techniques for codebook
learning, and then uses group lasso regularization to select the most relevant codewords for each
type of attribute. Our experiments demonstrate that (1) each type of attribute is helpful for object
identification and their combination works much better than single attribute including the object
name attribute only; and (2) attribute dependent sparsified codebooks significantly improve the ac-
curacy over non-specific codebooks for learning new attribute values when only limited training
samples are available. We believe that the capability to learn from smaller sets of examples will be
particularly important in the context of teaching robots about objects and attributes.

Attribute based object identification is a very promising area of research in robotics, specifically due
to the growing importance of object manipulation and natural human robot interfaces. This work has
several limitations that deserve further research. We manually extract attributes from text provided
by AMT workers. We believe that automatic recognition and parsing of input speech is feasible in
this context and will greatly increase the usability of our approach. Finally, we only use a flat model
for object names, and a more complex, hierarchical model such as the one mentioned in Section 3
should further improve results.

8

References

[1] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An Algorithm for Designing Over-
complete Dictionaries for Sparse Representation. IEEE Transactions on Signal Processing,
54(11):4311–4322, 2006.

[2] M. Blum, J. Springenberg, J. Wlfing, and M. Riedmiller. A Learned Feature Descriptor for
Object Recognition in RGB-D Data. In IEEE International Conference on Robotics and Au-
tomation, 2012.

[3] L. Bo, X. Ren, and D. Fox. Hierarchical Matching Pursuit for Image Classification: Architec-
ture and Fast Algorithms. In Advances in Neural Information Processing Systems, 2011.

[4] L. Bo, X. Ren, and D. Fox. Unsupervised Feature Learning for RGB-D Based Object Recog-
nition. In International Symposium on Experimental Robotics, 2012.

[5] X. Chen, W. Pan, J. Kwok, and J. Carbonell. Accelerated Gradient Method for Multi-task
Sparse Learning Problem. In IEEE International Conference on Data Mining, 2009.

[6] K. Duan, D. Parikh, D. Crandall, and K. Grauman. Discovering Localized Attributes for Fine-
Grained Recognition. In IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[7] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by their attributes. In
IEEE Conference on Computer Vision and Pattern Recognition, 2009.

[8] V. Ferrari and A. Zisserman. Learning Visual Attributes. In Advances in Neural Information
Processing Systems, 2007.

[9] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab, and V. Lepetit. Multi-
modal Templates for Real-Time Detection of Texture-less Objects in Heavily Cluttered Scenes.
In IEEE International Conference on Computer Vision, 2011.

[10] G. Hinton, S. Osindero, and Y. Teh. A Fast Learning Algorithm for Deep Belief Nets. Neural
Computation, 18(7):1527–1554, 2006.

[11] N. Kumar, A. Berg, P. Belhumeur, and S. Nayar. Attribute and Simile Classifiers for Face
Verification. In IEEE International Conference on Computer Vision, 2009.

[12] T. Kwiatkowski, L. Zettlemoyer, S. Goldwater, and M. Steedman. Inducing Probabilistic CCG
Grammars from Logical Form with Higher-Order Unification. In Empirical Methods in Natu-
ral Language Processing, 2010.

[13] K. Lai, L. Bo, X. Ren, and D. Fox. A Large-Scale Hierarchical Multi-View RGB-D Object
Dataset. In IEEE International Conference on Robotics and Automation, 2011.

[14] K. Lai, L. Bo, X. Ren, and D. Fox. A Scalable Tree-based Approach for Joint Object and Pose
Recognition. In the AAAI Conference on Artificial Intelligence, 2011.

[15] C. Lampert, H. Nickisch, and S. Harmeling. Learning to Detect Unseen Object Classes by
Between-Class Attribute Transfer. In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2009.

[16] H. Lee, R. Grosse, R. Ranganath, and A. Ng. Convolutional Deep Belief Networks for Scal-
able Unsupervised Learning of Hierarchical Representations. In International Conference on
Machine Learning, 2009.

[17] J. Liu, S. Ji, and J. Ye. SLEP: Sparse Learning with Efficient Projections. Arizona State
University, 2009.

[18] C. Matuszek, N. FitzGerald, L. Zettlemoyer, L. Bo, and D. Fox. A Joint Model of Language
and Perception for Grounded Attribute Learning. In International Conference on Machine
Learning, 2012.

[19] G. Obozinski, B. Taskar, and M. Jordan. Joint Covariate Selection and Joint Subspace Selection
for Multiple Classification Problems. Statistics and Computing, 20(2):231–252, 2010.

[20] D. Parikh and K. Grauman. Relative Attributes. In IEEE International Conference on Com-
puter Vision, 2011.

[21] K. Yu, Y. Lin, and J. Lafferty. Learning Image Representations from the Pixel Level via
Hierarchical Sparse Coding. In IEEE Conference on Computer Vision and Pattern Recognition,
2011.

9

