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Abstract

Feature selection is an important technique for finding relevant features from high-
dimensional data. However, the performance of feature selection methods is often
limited by the raw feature representation. On the other hand, unsupervised feature
learning has recently emerged as a promising tool for extracting useful features
from data. Although supervised information can be exploited in the process of
supervised fine-tuning (preceded by unsupervised pre-training), the training be-
comes challenging when the unlabeled data contain significant amounts of irrele-
vant information. To address these issues, we propose a new generative model, the
conditional point-wise mixture restricted Boltzmann machine, which attempts to
perform feature grouping while learning the features. Our model represents each
input coordinate as a mixture model when conditioned on the hidden units, where
each group of hidden units can generate the corresponding mixture component.
Furthermore, we present an extension of our method that combines bottom-up
feature learning and top-down feature selection in a unified way, which can ef-
fectively handle irrelevant input patterns by focusing on relevant signals and thus
learn more informative features. Our experiments show that our model is effective
in learning separate groups of hidden units (e.g., that correspond to informative
signals vs. irrelevant patterns) from complex, noisy data.

1 Introduction

Over the years, feature selection [28, 8, 26, 12] has been an important tool for finding relevant
features from high-dimensional data. However, feature selection methods typically assume that there
exists a fixed set of raw features (e.g., input coordinates) that readily provides relevant information
about the tasks of interest. However, this assumption does not hold when there does not exist good
domain knowledge or hand-crafted features.

Recently, representation learning algorithms (e.g., [11, 3, 19, 14]; also see [2] for a survey) have
emerged as promising tools for learning useful feature representations from unlabeled and labeled
data. The strength of these methods is that they do not require much domain-specific knowledge, and
thus can be easily adapted to other domains. Among these methods, restricted Boltzmann machines
(RBMs) [22] have shown great promise in learning features from complex data. Despite the promise,
the RBM is an unsupervised learning algorithm and therefore lacks ability to distinguish relevant
information from noisy data. Although supervised information can be exploited in the process of
supervised fine-tuning (preceded by unsupervised pre-training), training becomes challenging when
the unlabeled data contains significant irrelevant information.

To address this issue, the paper presents the conditional point-wise mixture restricted Boltzmann
machine (pmRBM) which can learn features and group the learned features at the same time. In other
words, our model is able to separate between different groups of hidden units (where each group
of hidden units model semantically distinct patterns). Specifically, the proposed model assumes
that each visible unit (i.e., each coordinate in the input) is represented as a mixture model when
conditioned over the hidden units, and it learns groups of hidden units that correspond to each
mixture component. Our method can be naturally combined with a supervised setting, and we
present a generative model that can jointly perform feature learning and feature selection.



We apply our method in two scenarios: recognizing foreground digits from noisy background and
classifying objects from natural images. For the first scenario, our method shows strong performance
in learning features and separating the task-relevant features from task-irrelevant features, achieving
state-of-the-art classification results. In the second scenario, our model can successfully distinguish
the foreground objects and detect their bounding boxes in a weakly-supervised way (i.e., without
supervision about bounding boxes), which improves object recognition performance.

2 Preliminaries

Since our model is built upon the RBM, we briefly review it in this section. The RBM is an undi-
rected generative model that defines the distribution of visible units (i.e., input data) using binary
hidden units. Assuming that input data is binary-valued, the joint distribution of an RBM is defined
as follows:

P(v,h) = % exp(—E(v, h)),

E(v,h) = —c'v—-b"h—-vIWh,

where v € {0, 1} are visible units, h € 1@0, 1}% are hidden units, Z is the normalization constant,
W € RP*E js the weight matrix, b € R* is the hidden bias vector, and ¢ € RP is the visible bias
vector. We can also write the energy function as follows:
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Since there are no connections between units in the same layer, visible units are conditionally inde-
pendent given the hidden units (and vice versa). The conditional probabilities of individual v; and
h; can be explicitly written as follows:
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where o(z) = m. For training, computing the gradient of the log-likelihood for RBMs

is intractable. Instead, we can use the contrastive divergence approximation [10] through Gibbs
sampling for optimizing the parameters in the RBMs.

3 Proposed Model

3.1 Conditional point-wise mixture restricted Boltzmann machine

In this paper, we consider highly complex data where each example can be decomposed into many
semantically distinct patterns. In such cases, we assume that the data is generated from a mix-
ture model, where each mixture component models some portion of the example using distributed
representations. Specifically, our proposed model, the conditional point-wise mixture restricted
Boltzmann machine (pmRBM), represents each visible unit as a mixture model conditioned over the
hidden units.

In a generative modeling perspective, this can be interpreted as follows: (1) we first assume implicit
prior on groups of binary hidden units, where each group of hidden units defines a distinct distribu-
tion over visible units. (2) After conditioning over the hidden units, we can sample the switching
unit for each visible unit. (3) Finally, the switching unit determines which group of hidden units
will generate the corresponding visible unit. A schematic diagram is shown in Figure 1(a), and we
further specify this generative process using an undirected model.

To construct the conditional point-wise mixture RBM with C' mixture components, we first intro-
duce a switch unit z; € {1,---,C}' that represents the mixture component assignment for each

"For notational convenience, we also use the boldfaced, vector representation of switch unit, z, =
M, 289 € {0,131 where ¢ 2" = 1.
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Figure 1: Graphical model representation of the (a) unsupervised pmRBM and (b) supervised pm-
RBM. In this example, two groups of hidden units form the mixture components, and the Bernoulli
switch units z; specify under which of the two components the visible unit v; is modeled. For each
i, when z; = 1, v; is generated from the hidden units in group 1 (shown in red); when z; = 2, v; is
generated from the hidden units in group 2 (shown in green). See text for more details.

visible unit v;, and impose an element-wise multiplicative interaction between the switch unit and
the corresponding visible unit, as shown in Figure 1(a). Then, the energy function can be defined as
follows:
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where v, z and h are the visible, switch and the hidden units, respectively. Here, the switch unit
z; 1s a stochastic variable specifying the component assignment that is distributed under a Bernoulli
(when C = 2) or a Categorical (when C' > 2) distributions given the hidden units. The model
parameters W b(r) ) are the weights, hidden biases, and the visible biases corresponding to
the r-th component respectlvely

The visible, hidden, and switch units are conditionally independent given the other two types of
units. Therefore, the conditional probabilities can be computed as follows:
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One important aspect is that, while inferring the hidden units, our model re-weighs each input visible
unit according to the corresponding component weights provided by z; (Equation (2)). In other
words, the point-wise multiplicative interaction between the switch units and the visible units allows
the hidden units in each component to focus on a specific portion of the example, and therefore the
hidden units can be robust to irrelevant patterns in the data. Moreover, while inferring the switch
units, the top-down signal from the hidden units encourages assigning the same mixture component
to semantically correlated input coordinates, and this makes easy to prune out the irrelevant raw
features more accurately for each example. We will further discuss this aspect in Section 3.2.



It is worth noting that when we tie all the switch units (i.e., z; = z,Vi), the pmRBM becomes
equivalent to the implicit mixture of restricted Boltzmann machine (imRBM) [18]. Therefore, our
model can be viewed as an extension of the imRBM, but it has several advantages over the imRBM,
as will be discussed in detail in Section 4.

We train the pmRBM with stochastic gradient descent based on contrastive divergence. Due to
the three-way interaction, however, exact inference is intractable. Instead, we use alternate block
Gibbs sampling (i.e., iteratively sampling one type of variables given the other two based on Equa-
tions (2),(3), and (4)).

In principle, we can train pmRBM in a fully unsupervised way. However, we can learn a better model
when we provide a good initialization of the weight matrices for different mixture components.
For example, we can initialize the pmRBM with two components with regular RBM parameters;
specifically, we can divide the RBM features into two groups by sorting them with the scores of
simple feature selection algorithms, such as t-test [1].

3.2 Generative feature selection via supervised pmRBM

Although the pmRBM can learn distinct features for different mixture components, a generative
training is done in unsupervised way and therefore it may not necessarily learn discriminative fea-
tures. In this section, we propose a supervised pmRBM, which explicitly assigns which of C' compo-
nents to learn task-relevant features by connecting the hidden nodes of specific mixture components
to the label nodes. The graphical model representation of supervised pmRBM is shown in Fig-
ure 1(b). As we discuss later, by transferring the supervision information to the raw features through
the task-relevant hidden units, the supervised pmRBM can perform generative feature selection both
at the high-level (i.e., using only a subset of hidden units for classification) and the low-level features
(e.g., dynamically turning off the influence of the task-irrelevant visible units) in a unified way.

In this section, we present supervised pmRBM with two mixture components only, where the first
component contains task-relevant hidden units. The energy function can be defined as follows:

L
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where y € {0, 1}% is a label vector in the 1-of-L representation, U, is a weight connection between

the hidden units in task-relevant component and the labels, and d; is a label bias. The conditional
probabilities can be computed as follows:
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The conditional probability for the visible units is the same as Equations (3). As we can see in

Equation (6), the label information is used to infer the hidden units in the first component, and this
(1)

i

encourages the first component switch units z; ’ to activate at the task-relevant input coordinates.

We can train the supervised pmRBM in generative criteria whose objective is to maximize the joint
log-likelihood of the visible units and the labels [13]. Similar to the unsupervised pmRBM, we can
do inference using alternate block Gibbs sampling, following Equations (6), (7) and (8).



3.3 Variations of the model

Deep networks The proposed model can be used as a building block to build a deep network
(DN). Specifically, we can use pmRBM to model the first layer representation and stack layers of
neural networks or deep belief networks on top of the hidden units belonging to the fask-relevant
component, which can be determined by measuring the validation performance. As we show in
Section 5, the pmRBM can distinguish the groups of hidden units, which provides an implicit feature
selection mechanism (i.e., selecting hidden units) that improves the performance when the input data
inherently contains significant amounts of irrelevant patterns.

Convolutional pmRBM Convolutional models can be useful in representing spatially or tempo-
rally correlated data (e.g., images, speech, and video). Similar to RBMs, our patch-based model can
be extended to a convolutional setting [17], where the filter weights are shared over different loca-
tions in a large image. We will present experimental results showing that the convolutional pmRBM
can be used in segmenting the foreground object without bounding box information. Furthermore,
we will show the improved object recognition performance by accurately detecting the bounding
box of the foreground object with the convolutional pmRBM.

4 Related Work

As mentioned in Section 3, the pmRBM can be viewed as an extension of the imRBM by allow-
ing per-visible-unit switching. Although the two models appear similar, the pmRBM has several
important advantages over the imRBM. First, the pmRBM allows a specific subset of hidden units
to focus on the relevant patterns in the data (via switch units), which can be useful when the data
inherently contains significant amounts of irrelevant patterns in each sample. However, the imRBM
represents the entire data with the hidden units in a single mixture component and therefore it can-
not distinguish between relevant and irrelevant patterns. Second, per-visible-unit switching allows
grouping of the hidden units, which can be useful in unsupervised or supervised feature selection,
as discussed in Section 3.2. Third, our model is flexible and provides a new perspective that could
lead to interesting extensions. For example, when specific visible units are correlated, it is plausible
to apply the local sharing of switch units, which is left as a future work.

In the context of learning and selecting features simultaneously, our work is also related to the dis-
criminative RBM (discRBM) [13]. However, the pmRBM can be more robust to the input data that
contains significant amount of noise since the switch units can block the irrelevant input coordinates
dynamically for each input data, whereas, due to the static switch units, the discRBM accumulates
the energy from the noisy coordinates unless the weight connection between the hidden unit and the
visible layer is very sparse. Moreover, as we have discussed in Section 3.2, we can do generative
training of pmRBM with label nodes on top of task-relevant group of hidden units to incorporate
both bottom-up and top-down feature selection mechanisms (e.g., supervised pmRBM). We empir-
ically show that the pmRBM results in much better classification performance than the discRBM.

Our model is also related to several recently proposed models. For example, the robust Boltzmann
machine (RoBM) [24] shares similar motivation to our work. However, there are several differ-
ences. First, the RoBM models each background coordinate with unimodal Gaussian distribution,
whereas the pmRBM models the background coordinates with multimodal distribution with a group
of hidden units. Furthermore, the pmRBM can directly learn from the noisy data with proper initial-
ization using labels, which is arguably much easier information to obtain than the “clean” data that
is required to pre-train the GRBM part of the RoBM.

The (unsupervised) pmRBM also looks similar to the masked restricted Boltzmann machines [16, 9]
in terms of energy function. However, our main motivation is to perform joint feature selection both
at the low- and high-level, where the low-level features (e.g., raw pixels) are dynamically selected
during the switch unit inference with the top-down signal conditioned on the groups of hidden units,
and the high-level features can be grouped in an unsupervised manner with the bottom-up signal
given switch units. The difference becomes much clearer comparing with the supervised pmRBM
in Section 3.2 since we made it possible to perform generative feature selection at the raw feature
level as well using the top-down signal from the hidden units that are grouped according to their
relevance to the task. Finally, we achieved state-of-the-art classification performance on several
challenging datasets.



5 Experiments

5.1 Recognizing handwritten digits in the presence of irrelevant patterns

We evaluated the capability of our model on learning and separating task-relevant features from
the task-irrelevant features. In this experiment, we first tested a single-layer pmRBM on MNIST
variation datasets [14], mnist-back-rand and mnist-back-image, which consist of digits as the fore-
grounds and uniform random noise or natural images as the backgrounds, respectively. Furthermore,
we tested on the rotated version of above datasets, such as mnist-rot-back-rand> and mnist-rot-back-
image. We used the pmRBM with two components, each of which contains 500 hidden units.

In Figure 2, we visualize the filters and the activation of switch units for mnist-back-image dataset.
It is clear that most of the filters corresponding to one component represent the patterns in the fore-
ground (e.g., “pen-strokes”, Figure 2(a)). In contrast, the group of filters that correspond to the
background (Figure 2(b)) are indeed noisy due to the natural images in the background. Further-
more, the activations of the switch units (i.e., the posterior probabilities of the input pixel belonging
to the foreground component, Figure 2(c)) show a good distinction between the pixels belonging to
the digits (colored in white) and the background pixels (colored in gray). This suggests that our
model has a good potential to distinguish and group the features into relevant and irrelevant patterns
(e.g., foreground and background patterns).

For quantitative evaluation, we show test classification errors in Tables 1 and 2. In our experiments,
we used support vector machine [5] as a classifier for single-layer models, and softmax classifier
for the deep networks to perform fine-tuning. Since our model divides the hidden units into two
groups, we only used the “task-relevant hidden unit” activations as the input for the classifier, which
can be easily chosen by computing the validation performance for each component separately. Com-
pared to the regular RBM, the single-layer pmRBM achieved significantly lower classification errors
for all datasets. For comparison, we also evaluated performance of the imRBM [18]° and the dis-
cRBM [13]* after careful cross-validation. The classification errors for both models were much
higher than those of pmRBM, and this suggests that our point-wise mixture hypothesis is effective
in learning task-relevant features from complex data which contain highly irrelevant patterns.

To evaluate the advantage of joint feature learning and selection, we compared the results of our
model to that of a two-step process in which we first learn features with an RBM and apply feature
selection on the RBM features. We denote this as an “RBM-FS” model. As we can see in Table 2, the
RBM-FS model shows reasonable improvement over the baseline RBM in most cases. However, our
pmRBM model can improve the quality of task-relevant features through joint feature learning and
feature selection, which results in significant additional improvement in classification performance.

Algorithm RBM [25] | imRBM | discRBM | RBM-Fs | PMRBM | pmRBM
(Unsup) (Sup)
mnist-back-rand 9.80 9.94 9.64 10.18 6.29 6.20
mnist-back-image 16.15 15.96 15.35 13.84 13.29 13.00
mnist-rot-back-rand 51.05 52.16 47.75 49.87 45.36 41.44
mnist-rot-back-image 52.21 50.10 49.12 47.71 44.23 44.10

Table 1: Test classification errors of single-layer models on MNIST variation datasets. We refer
“RBM-FS” to an RBM with feature selection. We denote supervised pmRBM as “pmRBM (Sup)”.

[ Algorithm [ pmRBM [ pmRBM +DN-1 [[ DBN-3 [25] | CAE-2[21] [ CAE-H-2[20] ]
mnist-back-rand 6.29 5.05 6.73 10.90 -
mnist-back-image 13.29 12.30 16.31 15.50 14.8

mnist-rot-back-rand 45.36 29.67 - - -
mnist-rot-back-image 44.23 35.02 47.39 45.23 -

Table 2: Test classification errors of deep networks on MNIST variation datasets.

“We generated mnist-rot-back-rand dataset in a similar way of generating mnist-rot-back-image and mnist-
back-rand datasets. All the results for mnist-rot-back-rand dataset are produced by ourselves.

3For the imRBM, we report the results after cross-validating over the total number of hidden units, the
number of mixture components, and other hyperparameters.

“We used “hybrid” (discriminative-generative) RBM whose objective is defined as a combination of dis-
criminative objective (classification loss) and generative objective (log-likelihood), as defined in [13]. We cross
validated the generative weight o from a range between 0.01 and 0.5.



= = :
, roshevalR-BEE
S | F T D PR
(a) task-relevant filters  (b) task-irrelevant filters (c) switch unit activation (d) original images

Figure 2: (a, b) Visualization of filters corresponding to two components learned from the pm-
RBM, (c) visualization of the activation of switch units, and (d) corresponding original images on
mnist-back-image dataset. Specifically, (a) represents the group of hidden units that activates for the
foreground digits (task-relevant), and (b) represents the group of hidden units that activates for the
background images (task-irrelvant). See text for details.

Finally, we constructed a deep network by stacking a single-layer neural network with 1000 hidden
units on the task-relevant components of a first-layer pmRBM. Table 2 shows that the deep network
variant of the pmRBM (referred to as “pmRBM+DN-1") outperformed the DBN-3 or stacked con-
tractive autoencoders with a large margin. In particular, the result of DBN-3 on mnist-back-image
implies that stacking up unsupervised feature learning modules (e.g., RBM) does not necessarily
improve the performance even after fine-tuning, potentially due to the presence of highly-irrelevant
patterns in the data. In contrast, our model can selectively propagate task-relevant information to
the higher layers, which explains its superior performance over other baseline models. These results
suggest that the pmRBM can be a useful building block for deep networks, especially in dealing
with highly irrelevant patterns.

5.2 Unsupervised object segmentation, with application to object recognition

Unsupervised object segmentation In this section, we evaluated the capability of our model on
learning relevant features (e.g., foreground patterns) from the large images. To extract features
from images with higher resolution, we extend our proposed model to a convolutional pmRBM and
applied it to build a deep convolutional network. Specifically, we formed two-layer convolutional
network that is similar to the convolutional deep belief network (CDBN) proposed in [17]. While the
original CDBN is built using the convolutional RBM (with probabilistic max-pooling) as a building
block in all layers, we departed from this model by applying convolutional pmRBM only to the
second layer (on top of the first layer convolutional RBM) rather than stacking up the convolutional
pmRBM modules from the first layer. This strategy makes sense given that the convolutional RBM
learns generic oriented edge filters in the first layer.

To provide an appropriate initialization for the convolutional pmRBM, we first trained a set of
second-layer CRBMs composed of a small number of hidden units (e.g., 30) for each object cat-
egory® from Caltech 101 dataset [6], and performed a top-down supervised feature selection from
the union of category-specific CRBM features from all object classes. Once initialized, we used the
training images from all object categories to train convolutional pmRBM.

We visualize the second-layer task-relevant and task-irrelevant features learned from the two-layer
convolutional pmRBM network in Figure 3. As we can see, our model can learn object parts (e.g.,
face parts, wheels, etc.) for the foreground component and learn more generic patterns like contours
or corners for the background component. In Figure 4 (top row), we also visualize the activation
map of switch units, which shows that the switch units can select the most informative parts of
an object. Interestingly, although our model is not designed for unsupervised image segmentation,
using the activation of switch units, we can still segment out the object region from the background
image reasonably well.

Object recognition Motivated by the convolutional pmRBM'’s ability in distinguishing the fore-
ground object from the background image, we propose the novel object recognition pipeline that we
first detect the bounding box for the object in each image using the two-layer convolutional pmRBM

SWe trained CRBM on each class to learn more diverse patterns that can capture all object classes.
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Figure 3: Visualization of second-layer features learned from convolutional pmRBM network on
Caltech 101 dataset. Specifically, we show visualizations of all features in the task-relevant compo-
nent (top) and all features in the task-irrelevant component (bottom).

network as described above, and perform the classification on the Caltech 101 dataset augmented
with the detected bounding boxes. To detect the bounding box, we used convolutional pmRBM with
two groups that are composed of 100 hidden units for each.® For classification, we followed the
classification pipeline used in [23], which uses the gaussian RBMs on the SIFT features.

Before the classification tasks, we evaluated the

bounding box detection accuracy, where the over- 15

Training images | | 30 |

lap was measured as the ratio between the area of | Lazebniketal. [15] | 56.4% | 64.6%
the intersection and the union of predicted and the Griffin et al. [7] 59.0% | 67.6%
ground truth bounding boxes, and it is declared as Yang et al. [27] 67.0% | 73.2%
a correct detection if the overlap is greater than 0.5. Boureau et al. [4] - 75.7%
We obtained a mean overlap of 70.2% and a detec- RBM [23] 68.6% | 74.9%
tion accuracy of 88.3%. We visualize some exam- Our method + RBM | 70.2% | 76.8%
ples of detected bounding boxes (red) and ground CRBM [23] T13% | 77.8%
truth bounding boxes (green) at the bottom of Fig- [Our method + CRBM | 72.4% | 78.9%

ure 4. As we can see, the convolutional pmRBM can
be used to localize the bounding box around an ob- Table 3: Test classification accuracy on the
ject. Finally, we report the classification accuracy in ~ Caltech-101 dataset.

Table 3. Using 4096 hidden units, we were able to achieve improved classification accuracies upon
the baseline model [23], such as 70.2% and 76.8% with RBM and 72.4% and 78.9% with CRBM,
using 15 and 30 training images per class, respectively. As a baseline comparison, we also report the
classification accuracy on the augmented dataset where we simply crop the center region uniformly
across all the images with a fixed ratio. We used RBM with 4096 hidden units, and after cross-
validating with different ratios, we obtain a worse accuracy of 75.8% using 30 training images per
class. This suggests that our method is doing more than cropping the center region, but localizing
and tightening the bounding box around the object well.

6 Conclusion

In this paper, we proposed a conditional point-wise mixture restricted Boltzmann machine that can
effectively learn useful feature representations from data containing highly irrelevant patterns. Our
model can selectively learn distinct groups of features (e.g., foreground and background patterns).
This property of our model naturally enables unsupervised bottom-up feature selection by dynami-
cally activating switching variables in the input data. Furthermore, we proposed a generative model
for joint top-down and bottom-up feature selection. Our experimental results suggest that: (1) the
proposed method is effective in distinguishing different groups of features (e.g., task-relevant pat-

®Implementation detail: Specifically, for each image, we first estimate the posterior (activation) of the
switching units (arranged in 2d). Then, we simply computed the row-wise or column-wise cumulative sum of
the switch unit activations and estimated the bounding box by picking the range that contains (5, 95) percentiles
of the total activations in both row-wise and column-wise.



Figure 4: (Top) Visualization of activation map of switch units corresponding to each image below.
(Bottom) images overlayed with the estimated bounding boxes (red) and ground truth bounding
boxes (green).

terns and task-irrelevant patterns); (2) our model can filter out groups of hidden units that represent
irrelevant patterns, which then enables itself to focus on a subset of raw input coordinates dynam-
ically; (3) our model provides significant improvement in classification performance compared to
other strong baseline models on the challenging benchmark datasets; and (4) our convolutional ex-
tension of the pmRBM is effective in detecting objects without any ground truth bounding box
information, which leads to significantly improved object classification performance.
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