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Abstract

The proliferation of high density recording techniques presents us with new chal-
lenges for characterizing the statistics of neural activity over populations of many
neurons. The Ising model, which is the maximum entropy model for pairwise
correlations, has been used to model the instantaneous state of a population of
neurons. This model suffers from two major limitations: 1) Estimation for large
models becomes computationally intractable, and 2) it cannot capture higher-order
dependencies. We propose applying a more general maximum entropy model, the
semi-restricted Boltzmann machine (sRBM), which extends the Ising model to
capture higher order dependencies using hidden units. Estimation of large models
is made practical using minimum probability flow, a recently developed parameter
estimation method for energy-based models. The partition functions of the models
are estimated using annealed importance sampling, which allows for comparing
models in terms of likelihood. Applied to 32-channel polytrode data recorded
from cat visual cortex, these higher order models significantly outperform Ising
models. In addition, extending the model to spatiotemporal sequences of states
allows us to predict spiking based on network history. Our results highlight the
importance of modeling higher order interactions across space and time to char-
acterize activity in cortical networks.

1 Introduction

Electrophysiology is rapidly moving towards high density recording techniques that are capable of
capturing the simultaneous activity of large populations of neurons. This raises the challenge of
understanding how networks encode and process information in ways that go beyond feedforward
receptive field models for individual neurons. Towards this goal, modeling the distribution of net-
work states provides a way to discover communication patterns and functional connectivity between
cells.

The Ising model, originally developed in the 1920s to describe magnetic couplings in a lattice [1],
has been applied to modeling electrophysiological data, particularly in the retina [2], but also for
cortical recordings [3]. This model treats spikes from a population of neurons binned in time as
binary vectors and captures pairwise correlation between them. However, the model only provides
a good approximation for small groups of cells [4] and is difficult to extend to capture higher-order
correlations. Another approach is to model each cell conditioned on the rest of the population, using
Generalized Linear Models (GLM, see [5]) with terms for cross-spike couplings which capture
interactions between cells. A major limitation of GLMs is that they can only be estimated efficiently
if they are linear in the data, so they are not easily extended to higher order interactions. While there
is progress extending the GLM with additional nonlinearities, preserving convexity on subproblems,
this approach has so far only been applied to stimulus terms [6], but not nonlinear interactions
between cells.
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In this work, we attempt to apply maximum entropy models to data from the visual cortex, which is
less understood than retina or LGN. Even the existence of significant correlations between cortical
cells is controversial [7, 8] and the relevance of pairwise and higher order correlations remains an
open question. In contrast to retinal recordings, the complex 3D structure of cortical circuits makes it
virtually impossible to record from more than a tiny fraction of cells in a microcircuit. Therefore it is
important to have a mechanism to deal with missing data, which we do by including latent variables
in the model. The resulting model is equivalent to a semi-restricted Boltzmann machine (sRBM),
which combines a restricted Boltzmann machine with additional connections between visible units.

The main difficulty in working with energy-based models such as this is that they cannot be nor-
malized in closed form, as the energy function only provides probabilities up to a multiplicative
normalization constant. This makes exact maximum likelihood estimation intractable and often ne-
cessitates sampling or approximations. Using Minimum Probability Flow (MPF, [9]), these models
can be learned more efficiently without computing the intractable partition function. This allows us
to estimate Ising models on higher-dimensional data than is otherwise possible, and to estimate the
sRBM in a straightforward way. We show that the sRBM can capture the distribution of states in a
cortical network of tens to hundreds of cells recorded from cat visual cortex significantly better than
a pairwise model, giving a strong indication of structure beyond pairwise correlations.

2 Methods

2.1 Model and Estimation

The sRBM consists of a set of binary visible units x ∈ {0, 1}N corresponding to observed neurons
in the data and a set of hidden units h ∈ {0, 1}M that capture higher order dependencies. Weights
between visible units, corresponding to an Ising model or fully visible Boltzmann machine, capture
pairwise correlations in the data. Weights between visible and hidden units, corresponding to a
Restricted Boltzmann Machine (RBM, [10]), learn to describe higher order structure.

The Ising model with visible-visible coupling weights J ∈ RN×N and biases b ∈ RN has an
energy function

EI(x) = xTJx+ bTx, (1)
with associated probability distribution pI (x) = 1

ZI
exp [−EI(x)], where the typically intractable

normalization constant, or partition function, ZI =
∑
{x′} exp [−EI(x

′)] consists of a sum over all
2N system states.

The RBM with visible-hidden coupling weights W ∈ RN×M and hidden and visible biases bv ∈
RN and bh ∈ RM has an energy function

ER(x,h) = xTWh+ bT
v x+ bT

hh, (2)
with associated probability distribution pR (x,h) = 1

ZR
exp [−ER(x,h)]. The latent variables h

can be analytically marginalized out of the distribution to obtain

p (x) =

∫
dh p (x,h) =

1

ZR
exp [−ER(x)] , (3)

where the energy for the marginalized distribution over x (sometimes referred to in machine learning
literature as the free energy) is

ER(x) = −
∑
i

log(1 +wT
i x+ bh,i) + bT

v x, (4)

where wi are rows of the matrix W. The energy function for an sRBM combines the Ising model
and RBM energy terms,

Es (x,h) = xTJx+ xTWh+ bT
v x+ bT

hh. (5)
As with the RBM, it is straightforward to marginalize over the hidden units for an sRBM,

ps (x) =
1

Zs
exp [−Es(x)] , (6)

Es(x) = xTJx−
∑
i

log(1 +wT
i x+ bh,i) + bT

v x. (7)
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A model based on the sRBM has previously been applied to natural image patches [11], with the
parameters estimated using contrastive divergence (CD, [12]).

Instead of CD or other methods based on sampling, we train the models using Minimum Probability
Flow (MPF, [9]), a recently developed estimation method for energy based models. MPF works by
minimizing the KL divergence between the data distribution and the distribution which results from
moving slightly away from the data distribution towards the model distribution. This KL divergence
will be uniquely zero in the case where the model distribution is identical to the data distribution.
While CD is a stochastic heuristic for parameter update, MPF provides a deterministic and easy
to evaluate objective function. Second order gradient methods can therefore be used to speed up
optimization considerably. The MPF objective function

K =
∑
x∈D

∑
x′ /∈D

g (x,x′) exp

(
1

2
[E(x)− E(x′)]

)
(8)

measures the flow of probability out of data states x into neighboring non-data states x′, where the
connectivity function g (x,x′) = g (x′,x) ∈ {0, 1} identifies neighboring states, andD is the list of
data states. We consider the case where the connectivity function g (x,x′) is set to connect all states
which differ by a single bit flip,

g (x,x′) =

{
1 H (x,x′) = 1
0 otherwise

, (9)

where H (x,x′) is the Hamming distance between x and x′. See the supplementary material for a
derivation of the MPF objective function and gradients for the sRBM, RBM, and Ising models. In
all experiments, minimization of K was performed by LBFGS.

To prevent overfitting, all models were estimated with an L1 sparseness penalty on the coupling
parameters. This was done by adding a term of the form λ

∑
i,j |Jij |+λ

∑
j,k |Wjk| to the objective

function, summing over the absolute values of the elements of both the visible and hidden weight
matrices. The optimal sparseness λ was chosen by cross-validating the log-likelihood on a holdout
set.

Since MPF learning does not give an estimate of the partition function, we use Annealed Importance
Sampling (AIS, [13]) to compute normalized probabilities. AIS is a sequential Monte Carlo method
that works by gradually morphing a distribution with a known normalization constant (in our case
a uniform distribution over x) into the distribution of interest. Normalizing the distribution allows
us to compute the log likelihood of the Ising and Boltzmann machine models pmodel and compare it
to the likelihood of an independent firing rate model pind(x) =

∏
i(rixi + (1 − ri)(1 − xi)) with

firing rates ri for individual cells i. The independent rate model does not have free parameters, and
provides a useful reference point. We express the log likelihood as a gain in information rate over
this baseline. The excess log likelihood is defined in terms of sample expectations as

L =
1

N

∑
x∈D

(
log2 pmodel(x)−

∑
i

log2 (rixi + (1− ri)(1− xi))

)
. (10)

Logarithms with base 2 gives the likelihood in units of bits per time bin, dividing by the bin size
it can be expressed as an information rate in bits/s. This provides a quantitative way to do model
comparison.

2.2 Recordings

Data were recorded from anesthetized cat visual cortex in response to a custom set of full field
natural movie stimuli. Movies of 8-30 minutes duration were captured at 300 frames per second
with a minimum of scene changes and presented with 150 Hz frame rate to avoid artifacts such as
cells synchronizing to the frame rate or evoked potentials due to sudden luminance changes.

Recordings were made with single shank 32 channel polytrodes with a channel spacing of 50µm,
spanning all the layers of visual cortex. Individual data sets had on the order of of 25 simultaneously
recorded neurons. The data was spike sorted offline using k-means clustering (KlustaKwik) with a
manual cleanup step (MClust). Unless noted otherwise, spikes were binned at 20ms where bins with
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Figure 1: (a) Example data from 28 cells, 20ms bins, 3s of data total. Columns of this matrix are
the input to our algorithm. (b) Power-law distribution of data patterns, log-log plot showing all
data states ordered by the frequency of occurrence. The dashed line indicates states that have only
been observed once. (c) Histogram of correlation coefficients between pairs of states. The data is
dominated by weak positive correlations.

a single spike (2.4% of bins) and multiple spikes (0.9% of bins) were both treated as spiking and the
rest as non-spiking bins.

To register individual recording channels with cortical layers, recording locations were reconstructed
from Nissl-stained histological sections, and a current source density analysis in response to flashed
full-field stimuli was performed to infer the location of cortical layer IV on the polytrode [14].

The models were estimated on a data set of 180, 000 data vectors corresponding to 60 minutes of
recording time. The data were split into two subsets of 90, 000 data points: one a training set for
parameter estimation and the other a test set for cross-validation. We also analyzed spatiotemporal
patterns of data, which were created by concatenating consecutive state vectors. Concatenating 15
time bins of 6.7ms allows us to discover spatiotemporal patterns and predict spiking given the history
over the last 100ms past state. These models were trained on 54, 000 samples and cross-validated
on a hold-out set of equal size to determine the optimal sparseness penalty.

3 Results

We estimated Ising, RBM and sRBM models for a population of cortical cells simultaneously
recorded across all cortical layers in a microcolumn. The data sets had 23 single units and 28
multiunits, from which we estimated separate models (results are qualitatively similar, single unit
data not shown). The population was verified to be visually responsive and the majority of cells
were orientation selective simple cells (20 of the multiunits, 10 of the isolated single cells). Fig. 1
a) shows an example of the 20ms binned data. Since the firing is sparse, the distribution of states
follows an approximate power law, which is shown in (b). Consistent with the literature [7], there
are weak positive correlations between most pairs of cells, as Fig. 1 c) shows.

The coupling matrices for all three models are shown in Fig. 2. The Ising model has many small
weights that encourage positive pairwise correlations by lowering the energy of connected states
being active simultaneously. The matrix consists of two dominant clusters, one with the 9 deepest
cells and one with the 19 more superficial cells. This general structure is also picked up in the RBM,
which has two hidden units that connect almost exclusively to superficial cells (1 and 2), and other
units that connect to deep (3 and 4) or intermediate (5 and 6) cells. The sRBM has more sparse
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Figure 2: Connectivity matrices of the three models estimated for 28 multiunits, and the correlation
matrix of the training data. The horizontal lines indicate approximate boundaries between cortical
layers V/VI, layer IV and layer II/III. (a) Correlation matrix of training data. (b) Ising model with
the bias terms on the diagonal. The model has many small coupling terms that encode positive
correlations. (c) The RBM coupling matrix is shown with hidden units ordered by activity from left
to right, and an additional visible unit on top which corresponds to the hidden bias. (d) The sRBM
weights are shown in the same way with the visible couplings on the left and hidden couplings on
the right. The visible couplings are qualitatively very different from the Ising model, as much of the
structure is now captured by hidden units.

connectivity for both the pairwise and second order units. The pairwise units are balanced around
zero, showing that there are both excitatory and inhibitory pairwise connections once the strong
global patterns have been explained by higher order units. Positive couplings within the superficial
(II/III) and intermediate laminae (IV), as well as the inhibitory interactions between intermediate
and deep (V/VI) layers become visible. The majority of the structure though is explained by a small
number of hidden units that connect to groups of either deep or superficial neurons. The separation
agrees well with the physiological layer boundaries, which are indicated as horizontal lines in the
coupling matrices.

The RBM and sRBM in this comparison were both estimated with 25 hidden units, but we show
only units that did not go to zero due to the sparseness constraint. Since the model with the optimal
level of sparseness already turns off some of the hidden units entirely, it was unnecessary to vary the
number of hidden units.

In the sRBM it is easy to distinguish features of the data explained by second order interactions,
from those that require higher order interactions. As observed in [11], the effect of the pairwise
couplings is similar to whitening. By having pairwise units that explain pairwise interactions in the
data, the hidden units are left to capture only higher order dependencies, significantly simplifying
the structure of both coupling matrices.

We compare the likelihood of the different models as a function of the sparseness parameter λ so that
each model is optimized individually to give the maximum likelihood on a cross-validation dataset.
Fig. 3 a) shows the comparison of the excess log likelihood over the independent model for the three
different models in units of bits/s for the entire population. Both higher-order models significantly
outperform the Ising model in fitting the data.

While the optimal sparseness parameter λ is largest for the Ising model, it is worth pointing out
that the RBM requires significantly fewer nonzero parameters to provide a better fit to the data.
In the Ising model 227/529 elements are larger than a cut-off of .001 (43%), in the RBM 191/624
elements are above this value (31%), and in the sRMB 285/1129 elements are active (26%). The
RBM provides a high log likelihood with the fewest parameters, showing the importance of higher
order over pairwise dependencies.

In Fig. 3 b) we compare the relative performance of Ising model with RBM and sRBM models as a
function of model dimensionality. The number of parameters of the RBM and Ising model were kept
the same by fixing the number of hidden units in the RBM to be equal to the number of visible units,
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Figure 3: (a) Model comparison using likelihood gain over the firing rate model. All three models
outperform the independent model by about 20 bits/s for the population of 28 cells. The higher
order models with hidden units give a further improvement of about 2 bit/s for the population.
The models profit relatively little from the L1 regularization, as there is sufficient training data to
constrain the parameters (b) Comparing models of different size, we can see how the likelihood per
neuron increases as each neuron is modeled as part of a larger population. This effect holds both
for Ising and higher order models, but since the Ising model cannot capture many of the relevant
dependencies, the increase in likelihood levels off much more quickly. (c) Scatter plot of test data
set showing empirical probabilities against model probabilities for all three models. For frequent
states, all models perform well. For rare states, the sRBM significantly outperforms simpler models.

the sRBM was also estimated with a square weight matrix for the hidden layer. As expected, the
likelihood per visible unit increases monotonically with the network size for all models, as additional
information gained from network interactions can only improve the predictive power of the model.
However, the curve levels off more quickly for the Ising model than for the RBM and sRBM. This

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

a) Temporal kernels for RBM hidden units

0 1 2 3 4 5
0

0.1
0.2
0.3
0.4

0.1

time / sTime bins

Pr
ob

ab
ilit

y

Vi
si

bl
e 

un
its c) Spike prediction based on the network history

b) Likelihood, cells sorted by spike rate

Cell

lo
gL

 / 
bi

ts
 s

−1

1

1

1

2

2

2

3

3

3

4 5 6 7 8 9 10
0

.02

.04

.06 sRBM
RBM
Ising

Ising
RBM
sRBM
Data

Figure 4: (a) Hidden units of spatiotemporal sRBM model. For each hidden unit, the horizontal
axis is time and the vertical axis visible units. (b) Likelihood gain over independent rate model
of the model for one cell condition on the network state. Depending on the firing rate of the cell,
more additional information can be encoded by the higher order models. (c) Spike prediction from
network history. For a randomly selected cell, we show 5s of predicted activity given the history of
the network state. The inserts show model predictions at times where actual spikes occur, in each
case there is an elevated probability under the models. The Ising model tends to give more false
positives than the higher order models.

suggests that as the model size increases, higher order structure that is not well captured by the Ising
model becomes increasingly important. Only for very small models with on the order of 10 units
does the Ising model perform similarly to the higher order models. This observation is in agreement
with [4], who noted the same limitation of Ising models for higher dimensional data from the retina.

Another way to compare the different models is to show a scatter plot of probabilities under the
model against empirical probabilities for the test data. Fig. 3c compares the independent, Ising,
RBM and sRBM models to the empirical distribution. In this plot, we can also visualize the expected
performance range for a perfect model that assigns patterns the same probability with which they
are generated by the brain. This performance range follows from the counting error in a binomial
distribution. The 5% and 95% confidence intervals for the binomial counting error on the model
probabilities are shown as dotted lines, the solid line is the identity. Even though the higher order
models outperform the Ising model significantly in log likelihood, all three closely approach the
empirical probabilities.

3.1 Spatiotemporal models

The same models can be used to capture spatiotemporal patterns. Consecutive network states binned
at 6.7ms are concatenated in blocks of 15 time steps, for a total network dimensionality of 150 with
subpopulations of 10 cells. The model was cross-validated and the sparseness parameter optimized
in the same way as for the instantaneous model. This allows us to learn kernels that describe the
temporal structure of interactions between cells. Additionally, we can compute the conditional dis-
tribution of single units given the state of the rest of the network and use this distribution to predict
spiking based on the network history.

Fig. 4a shows the learned weights of 25 hidden units for a spatiotemporal sRBM model. Each
subplot corresponds to one hidden unit, which connects to 10 neurons (vertical axis) across 15 time
steps or 100ms (horizontal axis, present to past). There are two types of patterns learned by the hid-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

den units. One population specializes in spatial coupling across different cells at a constant time lag.
The remaining units describe smooth, long-range temporal dependencies, typically for individual
cells. Both of these populations capture higher order structure connecting many neurons that would
be hard to approximate with pairwise couplings. For instance, it is difficult for a pairwise model to
assign high probability to a group of neurons activating simultaneously without also assigning high
probability to the activation of subgroups. The temporal structure occurs at time scales of 20ms to
50ms, falling into the beta and gamma frequency range.

By conditioning on the state of the network, we can compute how much information about a cell
is captured by the model over a naive prediction based on the firing rate of a cell. This is plotted
in 4 b) in a similar way to excess log likelihood for the entire population in Fig. 3. Depending
on the firing rate of the cell, all three models significantly increase the prediction performance over
the independent model. The higher order models consistently outperform the pairwise Ising model,
and the sRBM consistently outperforms the RBM. Fig. 4 c) provides a more intuitive look at the
prediction. For 5s of data we show the actual spikes and the network prediction for one cell. The
independent model would correspond to a constant probability over time. The inserts show three
randomly chosen 150ms segments where an actual spike occurred in the data. In each case there is
an elevation in the model’s firing probability.

4 Conclusion

Our comparison of second- and higher order models shows that in cortical networks, higher order
interactions play a significant role. This effect is independent of network size and holds for spatial
and temporal interactions between cells.

While the present paper is the first attempt at probabilistically modeling the population response of
neurons within a column of cat visual cortex, several works have characterized other neural popu-
lations with similar models. The original idea of applying Ising models to retinal data [2] has since
been extended to include higher order interactions [4]. The authors claim that in the retina, small
populations of cells can be modeled well using only pairwise correlations. This is not the case for
cortical data, where higher order interactions dominate even small networks.

The key difference between our work and that by Ganmor and Elad [4] is that our estimation method
allows us to assign probabilities to all activity patterns. Their model uses higher order coupling
terms to build an accurate probabilistic model of patterns observed in the data. However, they do
not assign probabilities to unobserved patterns. If the energy function from their model is used for
a probabilistic model over all activity patterns, then the majority of the probability mass is assigned
to states far from the data, and the resulting log likelihood is poor.

In contrast to these maximum entropy models, which have the goal to describe the distribution
of states without making any predictions about connectivity or function, generalized linear models
(GLMs) have been established as successful stimulus-response models for primary visual cortex. By
including the response of other neurons in addition to stimulus terms to predict the response of a cell
in the population, GLMs have also been used to capture network interactions. This has been shown
to greatly improve the performance over a feedforward stimulus model even in the retina [5], and
is presumably of even greater importance in cortex. By computing conditional distributions on the
network state we have shown that the maximum entropy population model can be used in a similar
way for spike prediction, opening the possibility for future comparisons of the relative performance
of these two model classes.
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