
Learning High-Level Concepts by Training
A Deep Network on Eye Fixations

 Chengyao Shen, Mingli Song, Qi Zhao

Visual attention is the ability to select visual stimuli that are most
behaviorally relevant among the many others. It allows us to
allocate our limited processing resources to the most informative
part of the visual scene. In this work, we learn general high-level
concepts with the aid of selective attention in a multi-layer deep
network. Greedy layer-wise training is applied to learn mid- and
high- level features from salient regions of images. The network is
demonstrated to be able to successfully learn meaningful high-
level concepts such as faces and texts in the third-layer and mid-
level features like junctions, textures, and parallelism in the
second-layer. Unlike object detectors that are recently included in
saliency models to predict semantic saliency, the higher-level
features we learned are general base features that are not restricted
to one or few object categories. A saliency model built upon the
learned features demonstrates its competitive power in object/
social saliency prediction compared with existing methods.

Abstract

NUS Graduate School for Integrative
Science & Engineering (NGS)

General Structure

1.  Input Layer:

Whitened to have zero-mean and unit variance in each channel

2.  Filtering Layer:
Sparse Coding for Feature Learning and Inference

3.  Pooling Layer:
Max-pooling to provide invariance to translation and scale change

4.  SVM Layer:
Linear SVM for feature integration and saliency prediction

Methods
1.  Feature Learning: Greedy layer-wise training on 100×100 salient

patches extracted from MIT fixation [1] and FIFA[2] datasets.

2.  Training and Saliency Prediction:
§  Train a two-class linear SVM using the responses of salient

patches and non-salient patches extracted from the datasets.
§  Predict Saliency using full images in the datasets as inputs.

3.  Feature Visualization:
§  First Layer Feature: Visualize its weight in direct.
§  Higher Layer Feature:

•  Compute the effect receptive sizes of a higher layer neuron in
input space.

•  Crop the regions of 36 top responsive input stimuli throughout
the full images in database.

•  Average these input stimuli (optional).

The Model

z z z z z

z
z z z Pooling

Filtering
Pooling

wTx

Filtering

SVM

Input

x1
a1

Φ1 x2
a2

Φ2

In our model, we implement the max-pooling in the complex cell sub-

layer. We use the max-pooling here mainly because of its good performance

for sparse codes and simplicity in implementation [22].

Given a disjoint local neighborhood W of size l× l in the sparse response

maps, the max-pooling responses z can be obtained by:

z = max
i∈W

(|ai|) (3)

Here ai indicates the a local neighborhood of sparse responses in a.

After this operation, the sparse responses of the layer would shrink in a

scale of l and become more tolerant to minor translation and scaling.

2.3. Multi-layer Sparse Network
To model the hierarchical structure of the ventral stream, we stack mul-

tiple layers of simple cells (feature units) and complex cells (pooling units)

together to construct a hierarchical sparse network.

2.3.1. Preprocessing
The input data of the network is sampled from natural images. Be-

fore reaching the first layer, the raw data x is whitened with local contrast

normalization to have zero mean and unit variance:

x1 =
x− x
var(x)

(4)

This operation approximates the visual processing in retina and LGN

and is very important for fast convergence in unsupervised feature learning.

2.3.2. Training and Inference
In the training stage, the network is trained to learn the hierarchy of fea-

tures from salient and non-salient patches extracted from images in existing

eye tracking datasets. A salient patch is extracted by aligning the bounding

box in the center of a fixation cluster, and a non-salient patch is randomly

selected from regions without fixations.

In each layer, a large number of mini-patches of the first layer feature size

are extracted from the input of the layer in the size of the predefined feature

size and features are learned by alternatively updating Φ and a according

to the rule derived from sparse coding. The sparse responses of the previous

layer are pooled and then fed as the input of the subsequent layer. The

responses of the salient and non-salient patches are then fed into the linear

SVM and trained as a two-class classification problem.

5

modeling image patches [28], it can be described as a generative image model as:

E = �x− Φa�2
2 + λ�a�1 (1)

where x is the input data, Φ denotes the bases or features learnt from the data, a is

the sparse codes for the data, and λ is the penalty constant for sparsity. Here �a�p =

(
�

m |am|p)
1
p is called Lp norm.

In (1), if we see x as an image, the first item �x−Φa�2
2 can be seen as the difference

between the original image and the reconstructed image and the second item λ�a�1 can

be seen as the sparse penalty which regularizes the sparseness of the output codes. The

features Φ and the sparse codes a can be found by iteratively minimizing the energy

function:

Φ = arg min
Φ

�min
a

E� (2)

Φ = arg min
Φ,a

E (3)

a = arg min
a

E (4)

In our model, we update a with coordinate descent [19] by fixing Φ and updating Φ

with the Lagrange dual method [17] by fixing a.

2.1.2 Spatial Pooling

Spatial pooling is an operation that integrates the responses of nearby feature detectors

into one. It is often used in image recognition models to obtain a more compact repre-

sentation that preserves the important information in the input signal while discarding

noises and irrelevant details.

8

modeling image patches [28], it can be described as a generative image model as:

E = �x− Φa�2
2 + λ�a�1 (1)

where x is the input data, Φ denotes the bases or features learnt from the data, a is

the sparse codes for the data, and λ is the penalty constant for sparsity. Here �a�p =

(
�

m |am|p)
1
p is called Lp norm.

In (1), if we see x as an image, the first item �x−Φa�2
2 can be seen as the difference

between the original image and the reconstructed image and the second item λ�a�1 can

be seen as the sparse penalty which regularizes the sparseness of the output codes. The

features Φ and the sparse codes a can be found by iteratively minimizing the energy

function:

Φ = arg min
Φ

�min
a

E� (2)

Φ = arg min
Φ,a

E (3)

a = arg min
a

E (4)

In our model, we update a with coordinate descent [19] by fixing Φ and updating Φ

with the Lagrange dual method [17] by fixing a.

2.1.2 Spatial Pooling

Spatial pooling is an operation that integrates the responses of nearby feature detectors

into one. It is often used in image recognition models to obtain a more compact repre-

sentation that preserves the important information in the input signal while discarding

noises and irrelevant details.

8

modeling image patches [28], it can be described as a generative image model as:

E = �x− Φa�2
2 + λ�a�1 (1)

where x is the input data, Φ denotes the bases or features learnt from the data, a is

the sparse codes for the data, and λ is the penalty constant for sparsity. Here �a�p =

(
�

m |am|p)
1
p is called Lp norm.

In (1), if we see x as an image, the first item �x−Φa�2
2 can be seen as the difference

between the original image and the reconstructed image and the second item λ�a�1 can

be seen as the sparse penalty which regularizes the sparseness of the output codes. The

features Φ and the sparse codes a can be found by iteratively minimizing the energy

function:

Φ = arg min
Φ

�min
a

E� (2)

Φ = arg min
Φ,a

E (3)

a = arg min
a

E (4)

In our model, we update a with coordinate descent [19] by fixing Φ and updating Φ

with the Lagrange dual method [17] by fixing a.

2.1.2 Spatial Pooling

Spatial pooling is an operation that integrates the responses of nearby feature detectors

into one. It is often used in image recognition models to obtain a more compact repre-

sentation that preserves the important information in the input signal while discarding

noises and irrelevant details.

8

Also closely related are deep learning models that aim to learn mid-/high-level features from natural

images. In one seminal work [9], Lee et. al. show that, by training on well-aligned images from the

Caltech 101 dataset [16], hierarchies of representations which correspond to object parts and objects

could be learned with a convolutional Restricted Boltzmann Machine (RBM). In [10], Zeiler et. al.
propose a hierarchical sparse network in which each layer reconstructs the input and show that edges,

junctions, and even object parts can be learned out from the images that contain objects. In one recent

work[11], Le et. al. build a three-layer deep auto-encoder and prove that neurons representing faces,

human bodies, and cats can be learned out in a fully unsupervised way on images sampled from 10

million YouTube videos. These models all validate that, by training on natural images, meaningful

high-level features can be learned out using a deep network. However, none of them has considered

the influence of visual attention on the feature learning in deeper levels. Furthermore, compared

with existing works, our model is able to learn out meaningful high-level neurons in relatively few

samples.

3 The Model

In this section, we describe a multilayer network that is used to learn features from salient regions.

Normally the model is composed of three layers of sparse coding units and pooling units stacking

together with a linear classifier at the end to read out the response of the network. This hierarchical

model shares similarity with several hierarchical models that aim to model the structure of the ventral

stream [17, 18, 19].

3.1 Sparse Coding Algorithm

Sparse coding is an unsupervised scheme that learns to represent input data using a small set of bases

(or features). It is the core computational algorithm in our model.

The idea of sparse coding originates from Barlow’s principle of redundancy reduction [20], which

states that a useful goal of sensory coding is to transform the input in such a manner that reduces

the redundancy of the input stream. In its original form of modeling image patches [21], it can be

described as a generative image model as:

E = �x− Φa�2
2 + λ�a�1 (1)

where x is the input data, Φ denotes the bases or features learnt from the data, a is the sparse codes

for the data, and λ is the penalty constant for sparsity. Here �a�p = (
�

m |am|p)
1
p is called Lp

norm.

In (1), if we see x as an image, the first item �x − Φa�2
2 can be seen as the difference between the

original image and the reconstructed image and the second item λ�a�1 can be seen as the sparse

penalty which regularizes the sparseness of the output codes. The features Φ and the sparse codes a
can be found by iteratively minimizing the energy function:

Φ = arg min
Φ
�min

a
E� (2)

In our model, we update sparse codes a with coordinate descent [22] by fixing basis Φ and updating

Φ with the Lagrange dual method [23] by fixing a.

3.2 Spatial Pooling

Spatial pooling is an operation that integrates the responses of nearby feature detectors into one. It

is often used in image recognition models to obtain a more compact representation that preserves

the important information in the input signal while discarding noises and irrelevant details.

In our model, we implement the max-pooling in the pooling layer. We use the max-pooling here

mainly because of its good performance for sparse codes and simplicity in implementation [24].

Given a disjoint local neighborhood W of size l × l in the sparse response maps, the max-pooling

responses z can be obtained by:

z = max
i∈W

(|ai|) (3)

3

Figure 4: Average of top 36 stimuli for all the second-layer (left) and third-layer (right) neurons
trained on FIFA Dataset.

Through visualization, we found that, by training on salient regions, neurons in the second-layer
encode mid-level features like junctions, contours, textures, and parallelism (as shown in Figure. 1
and Figure. 4) and neurons in the third-layer are able to learn high-level concepts like faces, texts,
windows, and round objects (as illustrated in Figure. 2, Figure. 3 and Figure. 4). To further verify the
role of salient regions on the results of feature learning, we train the network by sampling random
patches and visualize the second-level and third-level features learned. We found that without salient
region sampling, the second-level neurons tend to learn features like long edges and the third-level
neurons fail to learn out meaningful features after optimization.

4.4 Saliency Prediction

We then integrate the features learned in previous section to predict visual saliency on the two
datasets. Here we take an approach similar to Judd et. al.[6], using a linear SVM to learn optimal
weights for feature integration. To train the linear SVM, we divide the two datasets into two halves.
Positive samples are collected from salient regions and negative ones are randomly sampled from
non-fixated are of the training set. The saliency map is then constructed by the output value of the
linear SVM on each local region:

s = g ◦max(wT x, 0) (5)

Here w denotes the weight of the linear SVM, x represents the vectorized feature responses for
the local region, and g is a gaussian mask with a standard deviation of 1 visual degree in the input
space. To compensate the boundary loss after stages of convolution, a zero-value boundary is added
according to the effective receptive size of the high-level neuron. Since there is a strong bias for
human fixations to be near the center of the image [6, 8], we also compare our model with a center
bias modeling (i.e., adding a Gaussian mask centered in the middle of the image on the final saliency
map) with that of Judd et. al.s model which also includes a distance to center channel to account
for center bias. All the saliency maps are resized to the original image size in the final evaluation.
It is worth emphasizing that our model does not include particular well-trained object detectors, but
learn all features in an unsupervised manner.

We evaluate our model using ROC curve. The ROC curve is obtained by varying the threshold
saliency map and calculating the true positive rate with respect to fixations across all subjects. The
first fixation for each image is eliminated as it is always the center of the image. The ROC curve
of human fixation data is also provided for comparison. This curve is computed by iterating all the
subjects and averaging the ROC Curve on whether the fixations of this subject can be predicted by
the saliency map generated by the other n− 1 subjects.

MIT Dataset For the MIT Dataset, we divide it into 501 training images and 502 testing images
and train a linear SVM based on the second layer responses. We then compare our algorithm with

6

Datasets
MIT fixation dataset [1]:

•  1003 images with a variety of objects (mostly 36° × 27°)
•  Fixation data collected from 15 subjects
•  Largest ever dataset with eye fixations

FIFA (Fixations on Faces) dataset [2]:
•  181 colored natural images (28° × 21°)
•  Fixation data collected from 8 subjects
•  Most of the images contain faces different sizes and postures

Results on MIT fixation dataset:
Feature Visualization

Saliency Prediction Results

Results on FIFA dataset:
Feature Visualization

Saliency Prediction Results

Experiments & Results

2nd Layer Features (Average)

Corner Curves

Texture Parallelism

Text-like Textures

Circle Shapes Man-made Structure

Face-like Shapes

3rd Layer Features (Top 36) 2nd Layer Features (Top 36)

Qualitative examples with good performance (Left: original,
Mid: Prediction, Right: Ground Truth)

ROC curve (MIT on 2nd layer responses)

1st Layer Features

2nd Layer Features (Average)

Qualitative examples with good performance (Left: original,
Mid: Prediction, Right: Ground Truth) ROC curve (FIFA on 3rd layer responses)

3rdLayer Features (Average)

Contributions
§  Learning out meaningful high-level visual features on human fixations.
§  The first saliency model that attempt to utilize hierarchies of features

learned from natural images to tackle the problem of object/social saliency.
Future Works
§  Improve current model in feature learning and parameter tuning.
§  Extend the work to dynamic scene, learning invariant feature with temporal

coherence and mimic human daily visual experience in feature learning.

Conclusion

[1]. T. Judd, K. Ehinger, F. Durand, and A. Torralba, “Learning to predict where humans look,” in Computer Vision, 2009 IEEE 12th International Conference on, pp. 2106–2113,
IEEE, 2009.
[2]. M. Cerf, E. Frady, and C. Koch, “Faces and text attract gaze independent of the task: Experi- mental data and computer model,” Journal of Vision, vol. 9, no. 12, 2009.

Reference

