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Consider a broadcast scenario in a three node network, where the source node broadcasts information
to both the relay and destination nodes. Let γsd, γsr, and γrd respectively denote the instantaneous channel
SNR of each of the three wireless channels, which are governed by the Nakagami m-distribution:
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where x ∈ {sd, sr, rd}.
Now consider two cases: (i) γsr ≤ γsd; (ii) γsr > γsd. In case (i), the channel capacity of the s-r channel

is less than the that of the s-d channel. Hence, more information of the source node broadcast is received
at the destination node than the relay and the relay fails to provide any additional information. In case (ii),
however, the opposite is true and the relay node receives more information than the destination node from
the same broadcast. The optimal strategy is for the relay to forward the additional information it receives
along the r-d channel to the destination, but depending on the size of such information, the transmission
may be limited by the capacity of the r-d channel.

Denote Csd, Csr, and Crd as the capacity of the respective channels. The effective capacity of the
three-node network is thus expressed as:

R0 =

{
Csd if γsr ≤ γsd;

Csd + min
{
Csr − Csd, Crd

}
if γsr > γsd.

(2)

Eq. (2) is extendable to two layers using SPC. Suppose we employ SPC modulation with power allocation
parameters β1 and β2 at the source and relay nodes, respectively. With SIC-based decoding, the capacities
of each channel can now be separated into two layers such that Csd = Csd

1 +Csd
2 , Csr = Csr

1 +Csr
2 , and

Crd = Crd
1 + Crd

2 , where

Cx
1 =

log
[
1 + β1γx
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]
if x = sd, sr

log
[
1 + β2γx

1+(1−β2)γx

]
if x = rd

(3)

Cx
2 =

{
log [1 + (1− β1)γx] if x = sd, sr

log [1 + (1− β2)γx] if x = rd
(4)

Due to the dependency of layer 2 on layer 1 in SPC, however, the total achieved capacity along each
channel depends on the condition of each channel. Define γth,1(β1) as the SNR threshold such that only
layer 1 of the SPC broadcast is decodable along channel x ∈ {sd, sr} if γx ≤ γth,1(β1), while both layers
are decodable if γx > γth,1(β1). Similarly define γth,2(β2) for x = rd, such that both layers are only
decodable if γrd > γth,2(β2). The SNR threshold γth,1(β1) and γth,2(β2) defined in this manner captures
the outage probability effects of channel capacity through the consideration of a maximum error threshold
εth that must be satisfied in order to achieve reliable decoding in a practical system. Since the error
probabilities of each layer is a function of the power allocation parameters, so must the SNR thresholds.

The number of end-to-end decodable layers at the destination hence depends on the SNR of each
channel in relation to γth,1(β1) and γth,2(β2). Only layer 1 is decodable under two scenarios:

L11 = {γsd ≤ γth,1, γsr ≤ γsd}; (5)
L12 = {γsd ≤ γth,1, γsr ≤ γth,1, γsr > γsd} ∪ {γsd ≤ γth,1, γsr > γth,1, γrd ≤ γth,2, γsr > γsd}. (6)
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Both layers are decodable under the scenarios:
L21 = {γsd > γth,1, γsr ≤ γsd}; (7)
L22 = {γsd > γth,1, γsr > γsd} ∪ {γsd ≤ γth,1, γsr > γth,1, γrd > γth,2, γsr > γsd}. (8)

Define R′ = Csr
1 − Csd

1 and R′′ = Csr
2 − Csd

2 . If only layer 1 is decodable, the effective rate received
at the destination node is expressed as:

R1 =

{
Csd

1 if γsr ≤ γsd,

Csd
1 + min

{
R′, Crd

1

}
if γsr > γsd.

(9)

However, if both layers are decodable, the effective rate becomes R1 +R2, where R1 is as above and R2

is expressed as:

R2 =

{
Csd

2 if γsr ≤ γsd,

Csd
2 + min

{
R′′, Crd

2

}
if γsr > γsd.

(10)

Finally, define four additional events based on the limiting capacity of the r-d channel as follows:
S1 = {Crd

1 < R′, Crd
2 < R′′, γsr > γsd}; (11)

S2 = {Crd
1 > R′, Crd

2 > R′′, γsr > γsd}; (12)

S3 = {Crd
1 < R′, Crd

2 > R′′, γsr > γsd}; (13)

S4 = {Crd
1 > R′, Crd

2 < R′′, γsr > γsd}. (14)
The expected effective rate at the destination node is hence expressed as follows:

E[Reff ] = E[R1 | L11] Pr{L11}+ E[R1 +R2 | L21] Pr{L21}

+
4∑
i=1

E[R1 | SiL12] Pr{SiL12}+
4∑
i=1

E[R1 +R2 | SiL22] Pr{SiL22} (15)

= E[Csd
1 | L11] Pr{L11}+ E[Csd | L21] Pr{L21}

+ E[Csd
1 + Crd

1 | S1L12] Pr{S1L12}+ E[Csd + Crd | S1L22] Pr{S1L22}
+ E[Csr

1 | S2L12] Pr{S2L12}+ E[Csr | S2L22] Pr{S2L22}
+ E[Csd

1 + Crd
1 | S3L12] Pr{S3L12}+ E[Csd

1 + Crd
1 + Csr

2 | S3L22] Pr{S3L22}
+ E[Csr

1 | S4L12] Pr{S4L12}+ E[Csr
1 + Csd

2 + Crd
2 | S4L22] Pr{S4L22}. (16)

Given the channel parameters for each of the three fading channels, each term in Eq. (15) can be evaluated
as follows:

E[g(γsd, γsr, γrd) | K] Pr{K} =

∫∫∫
K

g(γsd, γsr, γrd)fΓsd
fΓsrfΓrd

dγsddγsrdγrd. (17)


