
Laplace Transform 
•  Review 

•  Slides borrowed from Evans, U. of Texas @ 
Austin 



Zero-State Response 
•  Linear constant coefficient differential equation 

Input x(t) and output  
Zero-state response: all initial conditions are zero 
 
 
 
Laplace transform both sides of differential equation with 

all initial conditions being zero and solve for Y(s)/X(s) 
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Transfer Function 
•   H(s) is called the transfer function because it 

describes how input is transferred to the output 
in a transform domain (s-domain in this case) 
Y(s) = H(s) X(s) 
y(t) = L-1{H(s) X(s)} = h(t) * x(t) ⇒ H(s) = L{h(t)} 

•  Transfer function is Laplace transform of 
impulse response 
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Transfer Function Examples 
•  Laplace transform 

•  Assume input x(t) and output y(t) are causal 
•  Ideal delay of T seconds 

Initial conditions (initial voltages in delay buffer) are zero 
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Transfer Function Examples 
•  Ideal integrator with 

y(0-) = 0 
•  Ideal differentiator 

with x(0-) = 0 
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Cascaded Systems 
•  Assume input x(t) and output y(t) are causal 

•  Integrator first, 
then differentiator 

•  Differentiator first, 
then integrator 

•  Common transfer functions 
A constant (finite impulse response) 
A polynomial (finite impulse response) 
Ratio of two polynomials (infinite impulse response) 
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Block Diagrams 
H(s) X(s) Y(s) 

H1(s) + H2(s) X(s) Y(s) 
H1(s) 

X(s) Y(s) 
H2(s) 

Σ = 

H1(s) X(s) Y(s) H2(s) H1(s)H2(s) X(s) Y(s) = 
W(s) 

       G(s)        
1 + G(s)H(s) X(s) Y(s) G(s) X(s) Y(s) 

H(s) 

Σ 
- = 

E(s) 
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Cascade and Parallel Connections 
•  Cascade 

W(s) = H1(s) X(s)                      Y(s) = H2(s)W(s) 
Y(s) = H1(s) H2(s) X(s) ⇒ Y(s)/X(s) = H1(s)H2(s) 

One can switch the order of the cascade of two LTI 
systems if both LTI systems compute to exact precision 

•  Parallel Combination 
Y(s) = H1(s)X(s) + H2(s)X(s) èY(s)/X(s) = H1(s) + H2(s) 

H1(s) X(s) Y(s) H2(s) H2(s) X(s) Y(s) H1(s) ⇔ 

H1(s) + H2(s) X(s) Y(s) 
H1(s) 

X(s) Y(s) 
H2(s) 

Σ = 
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Feedback Connection 
•  Governing equations 

•  Combining equations 
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•  What happens if H(s) is 
a constant K? 
Choice of K controls all 

poles in transfer function 

       G(s)        
1 + G(s)H(s) F(s) Y(s) G(s) F(s) Y(s) 

H(s) 

Σ 
- = 

E(s) 



External Stability Conditions 
•  Bounded-input bounded-output stability 

Zero-state response given by h(t) * x(t) 
Two choices: BIBO stable or BIBO unstable 

•  Remove common factors in transfer function H(s) 
•  If all poles of H(s) in left-hand plane, 

All terms in h(t) are decaying exponentials 
h(t) is absolutely integrable and system is BIBO stable 

•  Example: BIBO stable but asymptotically 
unstable 
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Based on slide by Prof. Adnan Kavak 



Internal Stability Conditions 
•  Stability based on zero-input solution 
•  Asymptotically stable if and only if 

Characteristic roots are in left-hand plane (LHP) 
Roots may be repeated or non-repeated 

•  Unstable if and only if 
(i) at least characteristic root in right-hand plane and/or 
(ii) repeated characteristic roots are on imaginary axis 

•  Marginally stable if and only if 
There are no characteristic roots in right-hand plane and 
Some non-repeated roots are on imaginary axis 

Based on slide by Prof. Adnan Kavak 



Frequency-Domain Interpretation 

•   y(t) = H(s) e s t 
for a particular value of s 

•  Recall definition of 
frequency response: 
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Frequency-Domain Interpretation 
•  Generalized frequency: s = σ + j 2 π f 
•  We may convert transfer function into 

frequency response by if and only if region of 
convergence of H(s) includes the imaginary axis 

•  What about h(t) = u(t)? 
We cannot convert H(s) to a frequency response 
However, this system has a frequency response 

•  What about h(t) = δ(t)? 
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Frequency Selectivity in Filters 
•  Lowpass filter 

•  Highpass filter 

•  Bandpass filter 

•  Bandstop filter 

Linear time-invariant filters are BIBO stable 
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Passive Circuit Elements 
•  Laplace transforms 

with zero-valued 
initial conditions 

•  Capacitor 

•  Inductor 

•  Resistor 
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First-Order RC Lowpass Filter 
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Plot Bode plot – Amplitude & Phase? 



First-Order RC Highpass Filter 
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Passive Circuit Elements 
•  Laplace transforms 

with non-zero initial 
conditions 

•  Capacitor 
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•  Inductor 
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Operational Amplifier 
•  Ideal case: model this nonlinear circuit as 

linear and time-invariant 
Input impedance is extremely high (considered infinite) 
vx(t) is very small (considered zero) 
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Operational Amplifier Circuit 
•  Assuming that Vx(s) = 0, 

•  How to realize a gain of –1? 
•  How to realize a gain of 10? 
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Differentiator 
•  A differentiator amplifies high frequencies, e.g. 

high-frequency components of noise: 
H(s) = s for all values of s (see next slide) 
Frequency response is H(f) = j 2 π f  ⇒ | H( f ) |= 2 π | f |  

•  Noise has equal amounts of low and high 
frequencies up to a physical limit 

•  A differentiator may amplify noise to drown 
out a signal of interest 

•  In analog circuit design, one would generally 
use integrators instead of differentiators 
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DECIBEL SCALE 
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Ø  The DECIBEL value is a logarithmic measurement of the ratio of one variable to another of the same type.  
Ø  Decibel value has no dimension. 

Ø  It is used for voltage, current and power gains. 



Typical Sound Levels and Their Decibel Levels.  



•  Express transfer function in Standard form. 

•  Express the magnitude and phase responses.  

•  Two corner frequencies at ω=2, 10 and a zero at the origin ω=0. 

•  Sketch each term and add to find the total response. 

EXAMPLE 1 Construct Bode plots for  
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EXAMPLE 1 Construct Bode plots for  
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EXAMPLE 2 Continued: Let us calculate |H| and φ at ω=50 rad/sec graphically.   

26 dB 

10(50) (10) 20log (50 /10) 26 20 0.7 26 14 12H H dB= − = − × = − =

10 10 10(50) 90 45 log (1/ 0.2) 90 log (20 /1) 45 log (50 / 20)
90 45 0.7 90 1.3 45 0.4 90 31.5 117 18 76.5

φ = °− °× − °× − °×

= °− °× − °× − °× = °− °− °− ° = − °

ω=50 

ω=50 



EXAMPLE 1 Construct Bode plots for  ( )2
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•  Express transfer function in Standard form. 

•  Express the magnitude and phase responses.  

•  Two corner frequencies at ω=5, 10 and a zero at ω=10. 

•  The pole at ω=5 is a double pole. The slope of the magnitude is -40    
dB/decade and phase has slope -90 degree/decade. 

•  Sketch each term and add to find the total response. 



EXAMPLE 3 Construct Bode plots for  ( )2
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PRACTICE PROBLEM 4 Obtain the transfer function for the Bode plot given. 
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