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roduction

s describes the integration of mechanical, electromagnetic, and computer elements to pro-
s and systems that monitor and control machine and structural systems. Examples include
sumer machines such as VCRs, automatic cameras, automobile air bags, and cruise control
stinguishing feature of modern mechatronic devices compared to earlier controlled machines
turization of electronic information processing equipment. Increasingly computer and elec-
rs and actuators can be embedded in the structures and machines. This has led to the need
on of mechanical and electrical design. This is true not only for sensing and signal processing
 actuator design. In human size devices, more powerful magnetic materials and supercon-
e led to the replacement of hydraulic and pneumatic actuators with servo motors, linear
 other electromagnetic actuators. At the material scale and in microelectromechanical systems
ectric charge force actuators, piezoelectric actuators, and ferroelectric actuators have made
.
 materials used in electromechanical design are often new, the basic dynamic principles of
 Maxwell still apply. In spatially extended systems one must solve continuum problems using
f elasticity and the partial differential equations of electromagnetic field theory. For many
, however, it is sufficient to use lumped parameter modeling based on i) rigid body dynamics
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for inertial components, ii) Kirchhoff circuit laws for current-charge components, and iii) magnet circuit
laws for magnetic flux devices.
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apter we will examine the basic modeling assumptions for inertial, electric, and magnetic
ich are typical of mechatronic systems, and will summarize the dynamic principles and
 between the mechanical motion, circuit, and magnetic state variables. We will also illustrate

les with a few examples as well as provide some bibliography to more advanced references
chanics.

dels for Electromechanical Systems

ental equations of motion for physical continua are partial differential equations (PDEs),
ibe dynamic behavior in both time and space. For example, the motions of strings, elastic
lates, fluid flow around and through bodies, as well as magnetic and electric fields require

 and temporal information. These equations include those of elasticity, elastodynamics, the
es equations of fluid mechanics, and the Maxwell–Faraday equations of electromagnetics.
etic field problems may be found in Jackson (1968). Coupled field problems in electric fields
ay be found in Melcher (1980) and problems in magnetic fields and elastic structures may

 the monograph by Moon (1984). This short article will only treat solid systems. 
ctical electromechanical devices can be modeled by lumped physical elements such as mass
e. The equations of motion are then integral forms of the basic PDEs and result in coupled

ferential equations (ODEs). This methodology will be explored in this chapter. Where physical
ve spatial distributions, one can often separate the problem into spatial and temporal parts
tion of variables. The spatial description is represented by a finite number of spatial or

 each of which has its modal amplitude. This method again results in a set of ODEs. Often
d equations can be understood in the context of simple lumped mechanical masses and
magnetic circuits. 

id Body Models

cs of Rigid Bodies

s the description of motion in terms of position vectors r, velocities v, acceleration a, rotation
, and generalized coordinates {qk(t)} such as relative angular positions of one part to another

e (Fig. 7.1). In a rigid body one generally specifies the position vector of one point, such as
 mass rc, and the velocity of that point, say vc. The angular position of a rigid body is specified
s call Euler angles. For example, in vehicles there are pitch, roll, and yaw angles (see, e.g.,
). The angular velocity vector of a rigid body is denoted by ω. The velocity of a point in a
ther than the center of mass, rp = rc + ρ, is given by

vP = vc + ω × ρ (7.1)

cond term is a vector cross product. The angular velocity vector w is a property of the entire
In general a rigid body, such as a satellite, has six degrees of freedom. But when machine
 modeled as a rigid body, kinematic constraints often limit the number of degrees of freedom.

ts and Generalized Coordinates

e often collections of rigid body elements in which each component is constrained to have
f freedom relative to each of its neighbors. For example, in a multi-link robot arm shown
ach rigid link has a revolute degree of freedom. The degrees of freedom of each rigid link
ed by bearings, guides, and gearing to have one type of relative motion. Thus, it is convenient
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 generalized motions {qk: k = 1,…,K} to describe the dynamics. It is sometimes useful to
or or matrix, J(qk), called a Jacobian, that relates velocities of physical points in the machine
alized velocities . If the position vector to some point in the machine is rP(qk) and is
by geometric constraints indicated by the functional dependence on the {qk(t)}, then the
hat point is given by

(7.2)

m is on the number of generalized degrees of freedom K. The three-by-K matrix J is called
nd  is a K × 1 vector of generalized coordinates. This expression can be used to calculate

Sketch of a rigid body with position vector, velocity, and angular velocity vectors.

Multiple link robot manipulator arm.

q̇k{ }

vP

∂ rP

∂qr

--------qr˙∑ J q̇⋅= =

q̇
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nergy of the constrained machine elements, and using Lagrange’s equations discussed below,
uations of motion (see also Moon, 1999).

c versus Dynamic Problems

ines are constructed in a closed kinematic chain so that the motion of one link determines
of the rest of the rigid bodies in the chain, as in the four-bar linkage shown in Fig. 7.3. In
ms the designer does not have to solve differential equations of motion. Newton’s laws are
rmine forces in the machine, but the motions are kinematic, determined through the geo-
raints.

ink problems, such as robotic devices (Fig. 7.2), the motion of one link does not determine
s of the rest. The motions of these devices are inherently dynamic. The engineer must use
ematic constraints (7.2) as well as the Newton–Euler differential equation of motion or
rms such as Lagrange’s equation discussed below.

sic Equations of Dynamics of Rigid Bodies

on we review the equations of motion for the mechanical plant in a mechatronics system.
ould be a system of rigid bodies such as in a serial robot manipulator arm (Fig. 7.2) or a
 levitated vehicle (Fig. 7.4), or flexible structures in a MEMS accelerometer. The dynamics
ructural systems are described by PDEs of motion. The equation for rigid bodies involves
 for the motion of the center of mass and Euler’s extension of Newton’s laws to the angular

 of the rigid body. These equations can be formulated in many ways (see Moon, 1999):

on–Euler equation (vector method)
nge’s equation (scalar-energy method)
mbert’s principle (virtual work method)
al power principle (Kane’s equation, or Jourdan’s principle)

Euler Equation

e rigid body in Fig. 7.1 whose center of mass is measured by the vector rc in some fixed
ystem. The velocity and acceleration of the center of mass are given by

(7.3)

ot” represents a total derivative with respect to time. We represent the total sum of vector
 body from both mechanical and electromagnetic sources by F. Newton’s law for the motion

Example of a kinematic mechanism.

ṙc vc, v̇c ac= =
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r of mass of a body with mass m is given by

(7.4)

or to some point in the rigid body, we define a local position vector ρ by rP =  rc + ρ. If a
 at a point ri in a rigid body, then we define the moment of the force M about the fixed

(7.5)

rce moment is then given by the sum over all the applied forces as the body

(7.6)

ne the angular momentum of the rigid body by the product of a symmetric matrix of second
 mass called the inertia matrix Ic. The angular momentum vector about the center of mass

(7.7)

symmetric matrix, it can be diagonalized with principal inertias (or eigenvalues) {Iic} about
ections (eigenvectors) {e1, e2, e3}. In these coordinates, which are attached to the body, the
entum about the center of mass becomes

(7.8)

gular velocity vector is written in terms of principal eigenvectors {e1, e2, e3} attached to the

tension of Newton’s law for a rigid body is then given by

(7.9)

Magnetically levitated rigid body (HSST MagLev prototype vehicle, 1998, Nagoya, Japan).

mv̇c F=

Mi ri Fi×=

M ri Fi×∑ rc F Mc+× where Mc ri Fi×∑= = =

Hc Ic w⋅=

Hc I1cw1e1 I2cw2e2 I3cw3e3+ +=

Ḣc Mc=
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ation, which is not necessarily the center of mass, as in the example of the compound
iven below. 
 (7.4) and (7.9) are known as the Newton–Euler equations of motion. Without constraints,

nt six coupled second order differential equations for the position of the center of mass and
lar orientation of the rigid body.

y Dynamics

nk robot arm, as shown in Fig. 7.2, we have a set of connected rigid bodies. Each body is
th applied and constraint forces and moments. The dynamical equations of motion involve

 of the Newton–Euler equations for each rigid link subject to the geometric or kinematics
etween each of the bodies as in (7.2). The forces on each body will have applied terms Fa,
rs or external mechanical sources, and internal constraint forces Fc. When friction is absent,

ne by these constraint forces is zero. This property can be used to write equations of motion
scalar energy functions, known as Lagrange’s equations (see below).
 the method used to derive the equation of motions, the dynamical equations of motion for
ystems in terms of generalized coordinates {qk(t)} have the form

(7.10)

m on the left involves a generalized symmetric mass matrix mij = mji. The second term
riolis and centripetal acceleration. The right-hand side includes all the force and control
equation has a quadratic nonlinearity in the generalized velocities. These quadratic terms
 out for rigid body problems with a single axis of rotation. However, the nonlinear inertia

ally appear in problems with simultaneous rotation about two or three axes as in multi-link
(Fig. 7.2), gyroscope problems, and slewing momentum wheels in satellites.
n dynamic simulation software, called multibody codes, these equations are automatically
 integrated once the user specifies the geometry, forces, and controls. Some of these codes
DAMS, DADS, Working Model, and NEWEUL. However, the designer must use caution as
are sometimes poor at modeling friction and impacts between bodies.

ple Dynamic Models

examples of the application of the angular momentum law are now given. The first is for
otation about a single axis and the second has two axes of rotation.

d Pendulum

y is constrained to a single rotary degree of freedom and is acted on by the force of gravity
, the equation of motion takes the form, where θ is the angle from the vertical,

(7.11)

s the applied torque, I =  m1  + m2  is the moment of inertia (properly called the second
mass). The above equation is nonlinear in the sine function of the angle. In the case of small
ut θ =  0, the equation becomes a linear differential equation and one can look for solutions

 θ  = A cosωt, when T(t) = 0. For this case the pendulum exhibits sinusoidal motion with

mijq̇̇j mijkq̇jq̇k∑∑+∑ Qi=

IJ m1L1 m2L2–( )g qsin– T t( )=

L1
2 L2

2
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uency

(7.12)

ple pendulum m1 = 0, and we have the classic pendulum relation in which the natural
epends inversely on the square root of the length:

(7.13)

ic Motions

vices such as high speed motors in robot arms or turbines in aircraft engines or magnetically
wheels (Fig. 7.6) carry angular momentum, devoted by the vector H. Euler’s extension of

s says that a change in angular momentum must be accompanied by a force moment M,

(7.14)

imensional problems one can often have components of angular momentum about two dif-
This leads to a Coriolis acceleration that produces a gyroscopic moment even when the two
ions are steady. Consider the spinning motor with spin  about an axis with unit vector e1 and

Sketch of a compound pendulum under gravity torques.

Sketch of a magnetically levitated flywheel on high-temperature superconducting bearings.

w g m2L2 m1L1–( )/I[ ]1/2=

w g/L2( )1/2=

M Ḣ=

f
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e an angular motion of the e1 axis,  about a perpendicular axis ez called the precession axis
 parlance. Then one can show that the angular momentum is given by

(7.15)

 of change of angular momentum for constant spin and presession rates is given by

(7.16)

hen exist a gyroscopic moment, often produced by forces on the bearings of the axel (Fig. 7.7).
t is perpendicular to the plane formed by e1 and ez, and is proportional to the product of

 rates:

(7.17)

 same form as Eq. (7.10), when the generalized force Q is identified with the moment M, i.e.,
 is the product of generalized velocities when the second derivative acceleration terms are zero.

stic System Modeling

tures take the form of cables, beams, plates, shells, and frames. For linear problems one can
hod of eigenmodes to represent the dynamics with a finite set of modal amplitudes for
degrees of freedom. These eigenmodes are found as solutions to the PDEs of the elastic
e, e.g., Yu, 1996).
lest elastic structure after the cable is a one-dimensional beam shown in Fig. 7.8. For small
assume only transverse displacements w(x, t), where x is a spatial coordinate along the beam.
assumes that the stresses on the beam cross section can be integrated to obtain stress vector

 shear V, bending moment M, and axial load T. The beam can be loaded with point or concen-
s, end forces or moment or distributed forces as in the case of gravity, fluid forces, or
etic forces. For a distributed transverse load f(x, t), the equation of motion is given by

(7.18)

Gyroscopic moment on a precessing, spinning rigid body.

y

H I1fe1 Izyez+=

Ḣ y˙ez H×=

M I1fyez e1×=

D
∂ 4w

∂x4
--------- T

∂ 2w

∂x2
---------– rA

∂ 2w

∂t2
---------+ f x, t( )=
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e bending stiffness, A is the cross-sectional area of the beam, and ρ is the density. For a beam
 modulus Y, rectangular cross section of width b, and height h, D = Ybh3/12. For D = 0, one
r string under tension T, and the equation takes the form of the usual wave equation. For a
ension T, the natural frequencies are increased by the addition of the second term in the
r T = −P, i.e., a compressive load on the end of the beam, the curvature term leads to a decrease
equency with increase of the compressive force P. If the lowest natural frequency goes to zero
ng load P, the straight configuration of the beam becomes unstable or undergoes buckling. The
−P) to stiffen or destiffen a beam structure can be used in design of sensors to create a sensor
 resonance. This idea has been used in a MEMS accelerometer design (see below).
eature of the beam structure dynamics is the fact that unlike the string or cable, the frequen-
atural modes are not commensurate due to the presence of the fourth-order derivative term
on. In wave type problems this is known as wave dispersion. This means that waves of different
 travel at different speeds so that wave pulse shapes change their form as the wave moves
 structure. 
to solve dynamic problems in finite length beam structures, one must specify boundary
t the ends. Examples of boundary conditions include

clamped end w = 0,

pinned end w = 0, (zero moment) (7.19)

free end , (zero shear)

tic Beam

materials exhibit a coupling between strain and electric polarization or voltage. Thus, these
n be used for sensors or actuators. They have been used for active vibration suppression in
ures. They have also been explored for active optics space applications. Many natural mate-
piezoelasticity such as quartz as well as manufactured materials such as barium titanate, lead
anate (PZT), and polyvinylidene fluoride (PVDF). Unlike forces on charges and currents (see
electric effect takes place through a change in shape of the material. The modeling of these
be done by modifying the equations for elastic structures. 

ing work on piezo-benders is based on the work of Lee and Moon (1989) as summarized
3). One of the popular configurations of a piezo actuator-sensor is the piezo-bender shown
he elastic beam is of rectangular cross section as is the piezo element. The piezo element

Sketch of an elastic cantilevered beam.

∂w
∂x
------- 0=

∂ 2w

∂x2
--------- 0=

∂ 2w

∂x2
--------- 0= ∂ 3w

∂x3
--------- 0=
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nted on one or both sides of the beam either partially or totally covering the surface of the
ubstructure.
l the local electric dipole polarization depends on the six independent strain components
 normal and shear stresses. However, we will assume that the transverse voltage or polariza-
led to the axial strain in the plate-shaped piezo layers. The constitutive relations between
nd strain, T, S, electric field and electric displacement, E3, D3 (not to be confused with the

fness D), are given by

(7.20)

ts c11, e31, ε3, are the elastic stiffness modulus, piezoelectric coupling constant, and the electric
 respectively.
o layers are polled in the opposite directions, as shown in the Fig. 7.9, an applied voltage will
rain extention in one layer and a strain contraction in the other layer, which has the effect of
oment on the beam. The electrodes applied to the top and bottom layers of the piezo layers
haped so that there can be a gradient in the average voltage across the beam width. For this
ation of motion of the composite beam can be written in the form

(7.21)

hS + hP)/2.
 is the average of piezo plate and substructure thicknesses. When the voltage is uniform,

ht-hand term results in an applied moment at the end of the beam proportional to the
oltage.

ctromagnetic Forces

eys to modeling mechatronic systems is the identification of the electric and magnetic forces.
es act on charges and electric polarization (electric dipoles). Magnetic forces act on electric
 magnetic polarization. Electric charge and current can experience a force in a uniform
agnetic field; however, electric and magnetic dipoles will only produce a force in an electric

 field gradient.
nd magnetic forces can also be calculated using both direct vector methods as well as from
iples. One of the more popular methods is Lagrange’s equation for electromechanical systems
low.

Elastic beam with two piezoelectric layers (Lee and Moon, 1989).

T1 c11S1 e31E3, D3– e31S1 e3E3+= =

D
∂ 4w

∂x4
--------- rA

∂ 2w

∂t2
---------+ 2e31zo

∂ 2V3

∂x2
-----------–=
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gnetic systems can be modeled as either distributed field quantities, such as electric field E
 flux density B or as lumped element electric and magnetic circuits. The force on a point
given by the vector equation (Fig. 7.10):

(7.22)

enerated by a single charge, the force between charges Q1 and Q2 is given by

(7.23)

ed along the line connecting the two charges. Like charges repel and opposite charges attract
. 
etic force per unit length on a current element I is given by the cross product

F = I × B (7.24)

agnetic force is perpendicular to the plane of the current element and the magnetic field
otal force on a closed circuit in a uniform field can be shown to be zero. Net forces on closed
roduced by field gradients due to other current circuits or field sources.

oduced by field distributions around a volume containing electric charge or current can be
sing the field quantities of E, B directly using the concept of magnetic and electric stresses,
eveloped by Faraday and Maxwell. These electromagnetic stresses must be integrated over

rounding the charge or current distribution. For example, a solid containing a current
 can experience a magnetic pressure, P = /2µ0, on the surface element and a magnetic

/2µ0, where the magnetic field components are written in terms of values tangential and
e surface. Thus, a one-tesla magnetic field outside of a solid will experience 40 N/cm2 pressure
 tangential to the surface.
l there are four principal methods to calculate electric and magnetic forces:

 force vectors and moments between electric charges, currents, and dipoles;

ic field-charge and magnetic field-current force vectors;

 Electric forces on two charges (top). Magnetic force on a current carrying wire element (bottom).

F +Q F

Electric
Current, I

Magnetic  Field Vector
B

Magnetic Force
Vector, F = I × B 

 +Q

F QE=

F
Q1Q2

4pe0r2
----------------=

Bt
2

Bn
2
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omagnetic tensor, integration of electric tension, magnetic pressure over the surface of a
ial body; and

y methods based on gradients of magnetic and electric energy.

 the direct method and stress tensor method are given below. The energy method is described
n on Lagrange’s equations.

. Charge–Charge Forces

 elastic beams in a MEMS device have electric charges Q1, Q2 coulombs each concentrated
(Fig. 7.11). The electric force between the charges is given by the vector 

(newtons) (7.25)

 = 8.99 × 109 .
ial separation between the beams is d0, we seek the new separation under the electric force.
ty, we let Q1 = −Q2 = Q, where opposite charges create an attractive force between the beam
flection of the cantilevers is given by

(7.26)

e length, Y the Young’s modulus, I the second moment of area, and k the effective spring constant.
 electric force, the new separation is d = d0 − 2δ,

(7.27)

 to first order we have

(7.28)

 shows the potential for electric field buckling because as the beam tips move closer together,
e force between them increases. The nondimensional expression in the denominator

(7.29)

f the negative electric stiffness to the elastic stiffness k of the beams.

 Two elastic beams with electric charges at the ends.
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. Magnetic Force on an Electromagnet

rromagnetic keeper on an elastic restraint of stiffness k, as shown in Fig. 7.12. Under the
ic keeper, we place an electromagnet which produces N turns of current I around a soft
ic core. The current is produced by a voltage in a circuit with resistance R.
netic force will be calculated using the magnetic stress tensor developed by Maxwell and
, e.g., Moon, 1984, 1994). Outside a ferromagnetic body, the stress tensor is given by t and
ctor on the surface defined by normal n is given by ττττ = t ⋅ n:

(7.30)

gnetic permeability as in a ferromagnetic body, the tangential component of the magnetic
 the surface is near zero. Thus the force is approximately normal to the surface and is found
egral of the magnetic tension over the surface:

(7.31)

 represents a magnetic tensile stress. Thus, if the area of the pole pieces of the electromagnet
ing fringing of the field), the force is

(7.32)

he gap field. The gap field is determined from Amperes law

(7.33)

luctance is approximately given by

(7.34)

 Force on a ferromagnetic bar near an electromagnet.
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The balance of magnetic and elastic forces is then given by

or
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(7.35)

he expression µ0N
2I2 has units of force.) Again as the current is increased, the total elastic

stiffness goes to zero and one has the potential for buckling. 

namic Principles for Electric and Magnetic Circuits

ental equations of electromagnetics stem from the work of nineteenth century scientists such
enry, and Maxwell. They take the form of partial differential equations in terms of the field

 electric field E and magnetic flux density B, and also involve volumetric measures of charge
d current density J (see, e.g., Jackson, 1968). Most practical devices, however, can be modeled
 electric and magnetic circuits. The standard resistor, capacitor, inductor circuit shown in

s electric current I (amperes), charge Q (columbs), magnetic flux Φ (webers), and voltage V
namic variables. The voltage is the integral of the electric field along a path:

(7.36)

Q is the integral of charge density q over a volume, and electric current I is the integral of
ponent of J across an area. The magnetic flux Φ is given as another surface integral of
x.

(7.37)

 Electric circuit with lumped parameter capacitance, inductance, and resistance.
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When there are no mechanical elements in the system, the dynamical equations take the form of
conservation of charge and the Faraday–Henry law of flux change.
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(Conservation of charge) (7.38)

(Law of flux change) (7.39)

Φ is called the number of flux linkages, and N is an integer. In electromagnetic circuits the
echanical constitutive properties is inductance L and capacitance C. The magnetic flux in an
 example, often depends on the current I.

(7.40)

inductor we have a definition of inductance L, i.e., φ = LI. If the system has a mechanical
e such as displacement x, as in a magnetic solenoid actuator, then L may be a function of x.
 storage circuit elements, the capacitance C is defined as 

(7.41)

evices and in microphones, the capacitance may also be a function of some generalized
displacement variable.
ges across the different circuit elements can be active or passive. A pure voltage source can
given voltage, but the current depends on the passive voltages across the different circuit
summarized in the Kirchhoff circuit law:

(7.42)

’s Equations of Motion for Electromechanical Systems

wn that the Newton–Euler equations of motion for mechanical systems can be derived using
rinciple called Lagrange’s equation. In this method one identifies generalized coordinates
be confused with electric charges, and writes the kinetic energy of the system T in terms of
velocities and coordinates, T( , qk). Next the mechanical forces are split into so-called
 forces, which can be derived from a potential energy function W(qk) and the rest of the
h are represented by a generalized force Qk corresponding to the work done by the kth
coordinate. Lagrange’s equations for mechanical systems then take the form:

(7.43)

, in a linear spring–mass–damper system, with mass m, spring constant k, viscous damping
nd one generalized coordinate q1 = x, the equation of motion can be derived using, T =
 kx2, Q1 = −c , in Lagrange’s equation above. What is remarkable about this formulation
 be extended to treat both electromagnetic circuits and coupled electromechanical problems.
mple of the application of Lagrange’s equations to a coupled electromechanical problem,
 one-dimensional mechanical device, shown in Fig. 7.14, with a magnetic actuator and a
actuator driven by a circuit with applied voltage V(t). We can extend Lagrange’s equation to
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efining the charge on the capacitor, Q, as another generalized coordinate along with x, i.e.,
s formulation, q1 = x, q2 = Q. Then we add to the kinetic energy function a magnetic energy
( , x), and add to the potential energy an electric field energy function We(Q, x). The
 both the mass and the circuit can then be derived from

(7.44)

zed force must also be modified to account for the energy dissipation in the resistor and the
t of the applied voltage V(t), i.e., Q1 = , Q2 =  + V(t). In this example the magnetic
portional to the inductance L(x), and the electric energy function is inversely proportional

citance C(x). Applying Lagrange’s equations automatically results in expressions for the
d electric forces as derivatives of the magnetic and electric energy functions, respectively, i.e.,

(7.45)

(7.46)

kable formulii are very useful in that one can calculate the electromagnetic forces by just
 dependence of the inductance and capacitance on the displacement x. These functions can
nd from electrical measurements of L and C. 

lectric Force on a Comb-Drive MEMS Actuator

 motion of an elastically constrained plate between two grounded fixed plates as in a MEMS
actuator in Fig. 7.15. When the moveable plate has a voltage V applied, there is stored electric
in the two gaps given by

(7.47)

ession the electric energy function is written in terms of the voltage V instead of the
e plates Q as in Eqs. (7.45) and (7.46). Also the initial gap is d0, and the area of the plate is A.

 Coupled lumped parameter electromechanical system with single degree of freedom mechanical
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rce expressions derived from Lagrange’s equations (7.44), the electric charge force on the
 by

(7.48)

ion shows that the electric stiffness is negative for small x, which means that the voltage will
 natural frequency of the plate. This idea has been applied to a MEMS comb-drive actuator
996) in which the voltage could be used to tune the natural frequency of a MEMS acceler-
own in Fig. 7.16.

 Example of electric force on the elements of a comb-drive actuator.

 Decrease in natural frequency of a MEMS device with applied voltage as an example of negative
ss [From Adams (1996)].
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7.9 Earnshaw’s Theorem and Electromechanical Stability
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 known that electric and magnetic forces in mechanical systems can produce static instability,
own as elastic buckling or divergence. This is a consequence of the inverse square nature of

ic and magnetic forces. It is well known that the electric and magnetic field potential Φ
lace’s equation, . There is a basic theorem in potential theory about the impossi-
lative maximum or minimum value of a potential Φ(r) for solutions of Laplace’s equation
oundary. It was stated in a theorem by Earnshaw (1829) that it is impossible for a static set
agnetic and electric dipoles, and steady currents to be in a stable state of equilibrium without

or other feedback or dynamic forces (see, for example, Moon, 1984, 1994).
ple of Earnshaw’s theorem is the instability of a magnetic dipole (e.g., a permanent magnet)
agnetic surface (Fig. 7.17). Levitated bearings based on ferromagnetic forces, for example,

back control. Earnshaw’s theorem also implies that if there is one degree of freedom with
ing forces, there must be another degree of freedom that is unstable. Thus the equilibrium
r a pure electric or magnetic system of charges and dipoles must be saddle points. The
for the force potentials is that the matrix of second derivatives is not positive definite. For
pose there are three generalized position coordinates {su} for a set of electric charges. Then

alized forces are proportional to the gradient of the potential, , then the generalized
ess matrix Kij, given by

ositive definite. This means that at least one of the eigenvalues will have negative stiffness.
xample of electric buckling is a beam in an electric field with charge induced by an electric
 nearby stationary plates as in Fig. 7.15. The induced charge on the beam will be attracted
he two plates, but is resisted by the elastic stiffness of the beam. As the voltage is increased, the
ectric and elastic stiffnesses will decrease until the beam buckles to one or the other of the
fore buckling, however, the natural frequency of the charged beam will decrease (Fig. 7.16).

ty has been observed experimentally in a MEMS device. A similar magneto elastic buckling
for a thin ferromagnetic elastic beam in a static magnetic field (see Moon, 1984). Both
 and magnetoelastic buckling are derived from the same principle of Earnshaw’s theorem.

 dramatic exceptions to Earnshaw’s stability theorem. One of course is the levitation of 50-ton
 magnetic fields, known as MagLev, or the suspension of gas pipeline rotors using feedback
agnetic bearings (see Moon, 1994). Here either the device uses feedback forces, i.e., the fields

Magnetic force on a magnetic dipole magnet near a ferromagnetic half space with image dipole

∇2Φ 0=

∇Φ

Kij
∂ 2Φ

∂si∂sj

-------------=
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are not static, or the source of one of the magnetic fields is a superconductor. Diamagnetic forces are
exceptions to Earnshaw’s theorem, and superconducting materials have properties that behave like dia-
magnetic m
magnetic flu
feedback (se
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aterials. Also new high-temperature superconductivity materials, such as YBaCuO, exhibit
x pinning forces that can be utilized for stable levitation in magnetic bearings without
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