
Cache-Oblivious Scheduling of Shared Workloads

Arian Bär #, Lukasz Golab ∗, Stefan Ruehrup #, Mirko Schiavone # and Pedro Casas #

Telecommunications Research Center Vienna (FTW), Vienna, Austria
{baer, ruehrup, schiavone, casas}@ftw.at

∗ University of Waterloo, Waterloo, Canada
lgolab@uwaterloo.ca

Abstract—Shared workload optimization is feasible if the
set of tasks to be executed is known in advance, as is the
case in updating a set of materialized views or executing an
extract-transform-load workflow. In this paper, we consider data-
intensive workloads with precedence constraints arising from data
dependencies. While there has been previous work on identifying
common subexpressions and task re-ordering to enable shared
scans, in this paper we solve the problem of scheduling shared
data-intensive workloads in a cache-oblivious way. Our solution
relies on a novel formulation of precedence constrained schedul-
ing with the additional constraint that once a data item is in the
cache, all tasks that require this item should execute as soon as
possible thereafter. We give an optimal algorithm using A* search
over the space of possible orderings, and we propose efficient
and effective heuristics that obtain nearly-optimal schedules in
much less time. We present experimental results on real-life data
warehouse workloads and the TCP-DS benchmark to validate
our claims.

I. INTRODUCTION

There are several data management scenarios in which the
workload consists of a set of tasks that are known in advance.
For example, extract-transform-load (ETL) processing involves
executing a predefined workflow of operations that pre-process
data before inserting it into the database. Another example
is data stream processing and publish-subscribe systems, in
which a predefined set of queries is continuously executed on
incoming data. Also, in data warehouses, materialized view
maintenance is often done periodically, in which all the views,
which are known in advance, are updated together.

Previous work has recognized optimization opportunities
in these scenarios, referred to as shared workloads, including
scan sharing, shared query plans and evaluating common sub-
expressions only once [24]. In this paper, we address the
following problem: given a shared workload, even after identi-
fying common sub-expressions and shared scan opportunities,
it is still not clear what is an optimal ordering of tasks
that minimizes cache misses? Furthermore, since we may not
know the exact amount of cache that is available to the data
management system at a given time, we want to generate a task
ordering in a cache-oblivious way, i.e., in a way that exploits
caching without knowing the cache size.

Throughout this paper, we will use the term “cached
results” in a general sense. Depending on the application, this
could refer to the disk-RAM hierarchy or the RAM-cache
hierarchy.

A. Motivating Example

While the solution presented in this paper is applicable
to any data-intensive shared workload (i.e., where data I/O is
the bottleneck, not CPU), our motivation for studying cache-
oblivious task ordering comes from Data Stream Warehouses
(DSWs) such as DataDepot [15] and DBStream [6]. DSWs
are a combination of traditional data warehouse systems and
stream engines. They support very large fact tables, materi-
alized view hierarchies and complex analytics; however, in
contrast to traditional data warehouses that are usually updated
once a day or once a week, DSWs are refreshed more often
(e.g, every 5 minutes) to enable queries over nearly-real time
and historical data. Example applications include network,
datacenter or infrastructure monitoring, data analysis for in-
telligent transportation systems and smart grid monitoring.

Since the “claim to fame” of DSW systems is their ability
to ingest new data and refresh materialized views frequently,
view maintenance must be performed efficiently. The system
must finish propagating one batch of new data throughout the
view hierarchy before the next batch arrives. Otherwise, at best
a backlog of buffered data will build up, and at worst some
data will be lost and not available for future analysis.

For example, consider the simple view hierarchy shown in
Fig. 1, with 0 and 1 being base tables and the other nodes
corresponding to materialized views. Note that some views
(e.g., 2 and 4) are computed directly over base tables while
others are computed over other views (e.g., 5). This is the
predefined workload that a DSW will repeatedly execute when
a batch of new data arrives for tables 0 and 1.

The view hierarchy forms a precedence graph. When a
batch of new data arrives for table 1, we first insert it into table
1, and then we can use it to update views 2 and 4. Since view
5 needs view 2 as an input, it can only start processing after
view 2 was updated. Thus, a legal ordering of view updates
must satisfy the given precedence constraints; e.g., we cannot
update view 5 if we have not yet updated view 2.

However, different legal orderings may lead to different
cache performance. For example, right after updating table 1
with new data, that new batch of data is likely to be in the
cache. Therefore, we should then update views 2 and 4 while
the new batch of data is in the cache. On the other hand, if we
update table 0 in between views 2 and 4, then the new batch
of data from table 1 is more likely to be evicted and will have
to be reloaded before updating view 4. Put another way, we
would need a larger cache to avoid cache misses.

4

1

2 5

30

Fig. 1. A precedence graph corresponding to two base tables and four
materialized views.

B. Challenges and Contributions

Even in the simple example above, it is not obvious which
ordering minimizes cache misses. It makes sense to update
views 2 and 4 immediately after updating table 1, but should
we update view 2 before 4 or vice versa? As the number of
tasks in the workload and their data dependencies increase,
so does the complexity of choosing an efficient ordering.
Furthermore, in practice we usually do not know exactly how
much cache is available for a given task at a given time. For
instance, in a DSW, view updates compete for resources with
ad-hoc queries.

The intuition behind our solution is simple: tasks that
require some data item should be scheduled as soon as possible
after this item is placed in the cache. Otherwise, other tasks
that require other data items will be scheduled, increasing the
odds that the original data item will be evicted from the cache.
In other words, we need to minimize the amount of time a data
item (e.g., a new batch of data loaded into a materialized view)
spends in the cache until all the subsequent tasks that need it
have been executed.

For example, Fig. 2 illustrates two possible legal orderings
of the five tasks from Fig. 1, obtained by linearizing the view
precedence graph. For each node that includes at least one
outgoing edge (e.g., each task that produces data required
by other task(s)), we can compute how long these data must
remain in the cache. At the top of the figure, the “distance”
between table 0 and view 3, which requires data from table
0, is four, i.e., three other tasks will run in between. For view
2, the maximum distance is three, since both view 3 and view
5 need data from view 2, and a total of three view updates
will run from the time view 2 data are inserted into the cache
until both view 3 and view 5 updates are completed. On the
other hand, the ordering shown at the bottom of the figure has
a distance of only one between table 0 and view 3—they are
executed one after the other and data from table 0 is more
likely to still be in the cache at the time of execution of view
3. The idea behind our approach is to minimize the distance
between related tasks and therefore decrease the possibility
of cache misses, without having to know the cache size (our
notion of distance will be formalized in Section II).

The specific contributions of this paper are as follows.

1) We formalize the problem of ordering tasks within
shared data-intensive workloads to optimize cache us-
age, but without knowing the cache size. We formal-
ize our objective of minimizing the distances between
related tasks as minimizing the Total Maximum

41 2 5 30

41 2 530

Optimized solution:

Simple solution:

Fig. 2. A simple and a optimized ordering of the tasks from Figure 1.

Bandwidth (TMB) of the resulting schedule, which
extends two related classical problems: directed band-
width and directed optimal linear arrangement [8],
[13] (details in Section II).

2) We give an algorithm for finding an optimal ordering
that uses A* search to efficiently examine the space
of all possible orderings.

3) Since the optimal A*-based algorithm is infeasible
in practice for all but the simplest workloads, we
propose two heuristics that search a small subspace
of possible orderings and return good orderings in
much less time.

4) We experimentally show that the proposed heuristics
obtain nearly-optimal answers on small problem in-
stances, where it is feasible to compute an optimal
solution, and we show the effectiveness and efficiency
advantages of the heuristics against a baseline algo-
rithm using real data stream warehouse workloads
and the TPC-DS decision support benchmark.

C. Roadmap

The remainder of this paper is organized as follows.
Section II formally defines our problem; Section III discusses
related work in shared workload optimization, scheduling and
cache-oblivious algorithms; Section IV presents the proposed
algorithms; Section V discusses experimental results; and
Section VI concludes the paper.

II. PROBLEM STATEMENT

The general problem we investigate in this paper is the
scheduling of tasks with precedence constraints corresponding
to data dependencies. Precedence constraints impose a partial
order on the tasks. This partial order is given as input in the
form of a directed acyclic graph (DAG) G = (V,E), where
each node v ∈ V represent a task and each directed edge
e = (u, v) ∈ E is a precedence constraint, which requires that
task u has to be scheduled before task v. Optionally, the input
may include the size the output of each task; we will deal with
this later on in this section. In addition to satisfying the given
precedence constraints, we will impose optimization goals on
the generated ordering to minimize cache misses.

G may consist of a number of connected components, e.g.,
a view hierarchy that uses some set of base tables, and another
view hierarchy that is sourced from a different set of base

tables. Since inter-dependencies and therefore cache optimiza-
tion opportunities only exist in each connected component, we
can deal with each connected component separately, and thus
we assume from now on that G is connected.

We assume the tasks are data-intensive. That is, the bot-
tleneck is loading the data into the cache rather than the
subsequent processing; otherwise, even having an unlimited
cache would not help much. We assume a cache-oblivious
setting, in which we do not know the size or granularity of
the cache. Further, we assume that the tasks belonging to a
given connected component are to be scheduled serially on a
single machine, although different connected components can
be scheduled in parallel. We defer a full treatment of multi-
threaded scheduling in our context, as well as handling task
priorities, to future work.

Let σ : V → {0, 1, ..., |V |} be a schedule function that
orders the tasks (i.e., the nodes in the precedence graph)
in a given workload. The precedence constrained scheduling
problem as formulated in [13] asks whether a schedule can
meet a deadline. On a single-processor system, the problem of
scheduling tasks with precedence constrains, without taking
caching into account, is solvable in polynomial time [13].
However, real systems benefit from caching: the result of a
preceding task u can be retrieved from the cache for task v, if
the cache has enough capacity to keep the result of v despite
other tasks that are scheduled between u and v. Therefore,
minimizing the distance between u and v in the schedule σ,
which is expressed by |σ(u)− σ(v)|, increases the likelihood
of a cache hit.

There are two classical problems that express related
objectives: (1) directed bandwidth, which aims to construct
a schedule with a bound on the maximum distance of an
edge in the precedence graph, and (2) directed optimal linear
arrangement, which aims to construct a schedule with a bound
on the sum of the distances for all edges:

Directed bandwidth (DBW) (GT41 in [13], GT43 in [8]):
Given a graph G = (V,E) and a positive integer K, is there a
schedule function σ : V → {1, ..., |V |} such that ∀(u, v) ∈ E :
σ(u) < σ(v) and

max |σ(v)− σ(u)| ≤ K ? (1)

Directed optimal linear arrangement (DLA) (GT42 in [13],
cf. GT44 in [8]): Given a graph G = (V,E) and a positive
integer K, is there a schedule function σ : V → {1, ..., |V |}
such that ∀(u, v) ∈ E : σ(u) < σ(v) and∑

(u,v)∈E

|σ(v)− σ(u)| ≤ K ? (2)

Both of the above problems are NP-complete [14], [23].
Note that the problems are defined as decision problems, for
which the corresponding optimization problems can be shown
to be equally complex.

In our context, solving the DBW problem only optimizes
for the single longest edge in the entire workload and does
not take any other data dependencies into account. DLA is not
suitable in the context of caching as it was originally meant for
scheduling of production workloads, in which a task produces

multiple items, one for each subsequent tasks it is connected
to. For example, recall Fig. 2 and note the edges from task 2
to tasks 3 and 5. DLA counts both of these edges, effectively
assuming that two copies of the output of task 2 need to be
stored. However, we are only interested in the longest edge
from a task to any subsequent task that depends on it, as that
determines how long the data generated by the initial task need
to stay in the cache.

Based on the above observations, we formulate a new
problem, total maximum bandwidth, that reflects our objective,
which is a combination of DBW and DLA:

Total Maximum Bandwidth (TMB): Given a graph G =
(V,E) and a positive integer K, is there a schedule function
σ : V → {1, ..., |V |} such that ∀(u, v) ∈ E : σ(u) < σ(v) and∑

u∈V
max

{v|(u,v)∈E}
|σ(v)− σ(u)| ≤ K ? (3)

If the input also includes the size of the output of each
task u, call it ωu, then we can extend TMB to Weighted Total
Maximum Bandwidth (WTMB) by optimizing for the weighted
distance of the longest edge from any task to a dependent task.
For WTMB, the optimization problem becomes:∑

u∈V
ωu max
{v|(u,v)∈E}

|σ(v)− σ(u)| ≤ K ? (4)

Examples

We close this section with two examples, one comparing
the TMB and DBW cost functions and the other comparing
TMB with WTMB.

Fig. 3 shows a precedence graph for five tasks (top),
followed by two possible schedules (bottom). At the bottom
of each schedule, we show the minimal cache contents at
every step to avoid cache misses (labeled min. cache). The first
schedule has an optimal DBW cost of only 2, the length of
the longest edge. Its TMB cost is seven, which is the distance
between A and C (of 2) plus the distance between B and D (of
2) plus the distance between C and E (of 2) plus the distance
between D and E (of 1). To understand the cache contents
illustrated below the schedule, note that when A is done, its
output must be stored for C to use later. Then, when B is done,
its output is stored for use by D. When C is done, its output is
stored for use by E, but the output of A is no longer needed.
When D is done, its output and C’s output are stored for use
by E, and B’s output is no longer needed.

The lower schedule in Fig.3 has an optimal TMB cost of
six, but its DBW cost is higher than that of the first schedule—
here, the longest edge has a length of three. This schedule also
requires less cache over time to avoid cache misses since only
one item (namely C) has to be stored in the second step.

Fig. 4 compares two schedules for the same precedence
graph as in Fig. 3 in terms of TMB and WTMB costs. The
notation A(3) indicates that that size of the output of A is three.
Both schedules have the same TMB cost of six, but the second
one has a lower WTMB cost of ten (which is the distance
between B and D of one, plus the distance between D and E of
three, plus the distance between A and C multiplied by the size
of A of three, plus the distance between C and E multiplied by

E

A C

B D

A C B D E

3

1 1 1

Total Maximum Bandwidth (TMB)

A B C D E
1

222
Directed Maximum Bandwidth (DBW)

A C B D

A A B C

C C

B C D

min.

DBW: 2

TMB: 7

DBW: 3

TMB: 6

cache:

min.
cache:

Fig. 3. An example comparing DBW with TMB.

E(1)

A(3) C(3)

B(1) D(1)

A(3) C(3) B(1) D(1) E(1)

3

1 1 1

Total Maximum Bandwidth (TMB)

A C B D
C C

TMB: 6

WTMB: 14

B(1) D(1) A(3) C(3) E(1)

3

1 1 1

Weighted Total Maximum Bandwidth (WTMB)

B D D D
A C

TMB: 6

WTMB:10

C
C

C
C

C
C

C
CA

A

A
Amin.

cache:

min.
cache:

Fig. 4. An example comparing TMB with WTMB assuming we know the
size of the output of each task.

the size of E of three). The minimal cache contents are shown
at the bottom, as before; note that the output of A and C now
has size three and therefore both take up three cache slots, as
illustrated. The bottom schedule has a lower WTMB cost, and
requires less cache over time to avoid cache misses.

III. RELATED WORK

This paper is related to three areas: cache-oblivious algo-
rithms, optimizing shared workloads and scheduling.

Cache-oblivious algorithms have been studied for over a
decade, beginning with Frigo et al. [10]. The idea is to make
(nearly) optimal use of the cache without knowing its size,
and a common approach has been to divide-and-conquer a
given problem so that at some level the resulting sub-problems
are small enough to fit in the cache, regardless of the size of
the cache. There has been some very recent work on cache-
oblivious scheduling [1], but only for the special case of a

chain of streaming operators, which is not applicable to our
problem of scheduling a DAG of operators.

In shared workload optimization, there has been work on
efficiently refreshing a data warehouse consisting of a collec-
tion of materialized views. One set of optimizations focuses on
sharing work among similar views; examples include finding
common sub-expressions among similar views [19], [21], and
choosing an optimal view graph when there are many possible
source views to choose from [9]. There is also similar work in
shared data processing systems, e.g., computing a global query
plan [5], [12], sharing work across MapReduce jobs [22] and
enabling shared table scans [11], [20], [27]. In this paper, we
address a complementary issue: once a shared query plan is
found, we order the execution of the tasks to maximize the
chances of reusing cached results.

The other set of optimizations addresses ordering of view
updates, and, to the best of our knowledge, there is no prior
work on cache-oblivious ordering. Labio et al. considered
select-project-join views and ordered the updates according
to whichever view has the smallest delta [18]. Golab et al.
proposed a scheduling algorithm for view refresh in an on-line
data warehouse, which orders jobs by their improvement in
freshness divided by the processing time [16]. This algorithm
is for on-line settings where new data arrive asynchronously,
and therefore work sharing may not be feasible.

Similarly, there has been work on query re-ordering to
maximize sharing opportunities. Agrawal et al. addressed the
problem of scheduling file scans given an expected frequency
of queries that access each file [2]. Ahmad et al. [3] studied
query re-ordering to take advantage of positive interactions
among queries. Wolf et al. [26] deal with scheduling MapRe-
duce jobs to enable shared scans. In our solution, we also
reorder tasks to take advantage of sharing, but in a cache-
oblivious way. Gupta et al. studied the problem of choosing
which common sub-expressions to materialize in order to
speed up the evaluation of a sequence of queries, given a fixed-
sized cache to store the subexpressions [17]. Our solution does
not require the knowledge of the cache size.

Finally, from a scheduling point of view, as we mentioned
earlier, previous work on precedence constrained schedul-
ing [7], directed optimal linear arrangement and directed
bandwidth [8] cannot model our objective of minimizing the
distance between related tasks that require the same data
item(s). Scheduling with sequence-dependent setup times [4]
is also related; in this problem, the execution time of each
task includes some setup time that depends on the all the
tasks that have been executed up to now, plus the actual
task processing time. However, this work mostly considers
production scheduling where physical objects are involved,
leading to different assumptions and objectives.

IV. ALGORITHMS

In this section, we present algorithms that take in a
precedence graph and output a schedule optimized for TMB
or WTBM if the task output sizes are known (Equations 3
and 4, respectively). We start by defining the concepts and
subroutines that will be used by the algorithms (Section IV-A).
We then present an optimal algorithm based on A*-search
of the complete space of possible schedules (Section IV-B),

0,1

1

0

0,2,4

1

2,4

1 0

0,4,5

2

0,2

4

3,4,5

2

2

40

0,5

4

0,4

5 0 2

3,5

4

4,5

3

3,4

5 2 0

0

50 4

5

3

3

54

4

5 43 0

Ø

5 34

Step 4

Step 3

Step 2

Step 1

Step 5

Step 6

Fig. 5. Candidate search graph for the workload whose precedence graph
was shown in Figure 1.

followed by three approximate algorithms that examine a
subset of possible schedules: a simple breadth-first baseline
approach (Section IV-C) and two heuristics, a greedy algorithm
that always chooses a task whose distance to its predecessor is
the smallest (Section IV-D) and an algorithm that chooses tasks
which are likely to lead to efficient schedules (Section IV-E).

A. Preliminaries

First, we define the candidate search graph, G = (V ,E),
in which the sequence of edge labels along every path from
the start to the sink is a feasible schedule that obeys the
precedence constraints encoded by the given precedence graph
G = (V,E)1. For example, the candidate search graph corre-
sponding to the precedence graph from Fig. 1 is shown in
Fig. 5. Each node v ∈ V denotes the schedulable tasks at that
point in the schedule, i.e., those which can now be executed
because all of their precedence constraints have been met. Each
edge (u, v) ∈ E is labeled with the name of the task that is
to be executed at that step. The start node at the top of Fig. 5
contains tasks 0 and 1, which must run before any other tasks.
If we follow the right edge, labeled 1, the schedulable tasks
are now 0, 2 and 4, and so on.

1A similar search graph was used in [25] in the context of the direct optimal
linear arrangement problem.

We can construct G from G in a straightforward way.
In the first step, the source node in G contains all the root
nodes in G (i.e., the tasks without any predecessors). In each
subsequent step, we create edges for all tasks contained in the
labels of nodes created in the previous step, labeled with the
task number. For each of the created edges, we created a new
node in G that contains the tasks that are now schedulable
(if such a node has not already been created). Finally, if no
more nodes are schedulable, the edges are connected to the
sink node, labeled with ∅.

Since we create G on-the-fly, the following definitions are
based on a partial schedule. Let s be a possibly partial schedule
of |s| tasks. Let get cands(G, s) := {v : (u, v) ∈ E and u ∈
s and v /∈ s}. That is, get cands returns the set of schedulable
tasks that can now be appended to s assuming that all the tasks
in s have already been executed. Furthermore, for a task u,
let successors(u) be the set of tasks that depend on u, i.e.,
successors(u) = {v : (u, v) ∈ E(G)}.

Finally, we define a tmb cost(s,G) function that evaluates
the Total Maximum Bandwidth cost of a possibly partial
schedule s according to Equation 3 (or Equation 4 if the task
output sizes ω(u) are known). Let σ be the ordering function
of s (recall Section II). For each task u in s, we compute
tmb cost(s,G) as follows.

1) If u has no successors, do nothing;
2) else if all of u’s successors are already in s, add to the

total cost the distance between u’s last successor and
u, i.e., maxv∈successors(u) |σ(v) − σ(u)|, multiplied
by ω(u) if given;

3) else (if not all of u’s successors are in s), add to
the total cost the quantity |s| + 1 − σ(u), which
is a lower bound on the distance between u’s last
successor (which has not yet been scheduled) and u
(again, multiplied by ω(u) if given).

For example, consider the partial schedule s = 〈0, 1, 2, 4〉
for the precedence graph from Fig. 1. For task zero, the cost is
four since its successor, task 3, appears four positions later in
the sequence. For task 1, the cost is two since its successor, task
4, appears two positions later. The cost for task 2 is two, which
is a lower bound for its true cost (its successor, task three, has
not yet been scheduled). Finally, the cost for task 4 is zero since
it has no successors. Thus, tmb cost(s,G) = 4+2+2+0 = 8.

Algorithm 1 shows the pseudocode for the WTMB cost
function. Each task in the possibly partial schedule s is
considered sequentially. Lines 6 through 11 count how many of
the current task’s successors are in s and record the position in
s of the furthest successor of the current task. Note the use of
the position function σ to find the position of outTask in s. Line
12 counts the total number of successors of a given task. If this
number is zero, the current task does not incur any TMB cost.
Otherwise, if all the successors have already been scheduled,
we can precisely compute the TMB cost in line 16, which is
simply the difference in the position of the furthest successor
and the task itself. Otherwise, line 18 computes a lower bound
on the given task’s TMB cost. In line 20, we add the cost of
the current task to the total cost of the schedule. Note the ω
function that determines the output sizes for WTMB. In case
of TMB, ω(task) is simply one for every task.

Algorithm 1 (Weighted) tmb cost
1: cost = 0 // the overall cost of the schedule
2: for task in s do
3: stepCost = 0
4: maxOutPos = 0 // position of furthest successor
5: outTasksDone = 0
6: for outTask in successors(task) do
7: if outTask in s then
8: outTasksDone++
9: maxOutPos = max(σ[outTask], maxOutPos)

10: end if
11: end for
12: ` = len(successors(task))
13: if ` == 0 then
14: do nothing // no successors
15: else if outTasksDone == ` then
16: stepCost = maxOutPos - σ(task)
17: else
18: stepCost = len(s) - σ(task)
19: end if
20: cost += ω(task) * stepCost
21: end for
22: return cost

B. Optimal Algorithm Based on A* Search

We begin with an optimal algorithm based on A* search
that considers every possible schedule and selects an optimal
one with the lowest tmb cost. As we will experimentally show
in Section V, this algorithm is not feasible in practice for
non-trivial problem instances because the number of possible
schedules can be prohibitively large.

A* search finds a least-cost path between two nodes, in
our case the start node and the sink node of the candidate
search graph (i.e., a least-cost schedule). For each node x,
the cost function used by A* includes two parts: g(x), which
is the cost of the path from the start node to x, and h(x)
which is a heuristic function that approximates, but must not
overestimate, the cost of the path from x to the sink node.
In our problem, g(x) is simply tmb cost(s) where s is the
schedule corresponding to the path from the start node to x.
The more interesting part is h(x).

To solve our problem, we define h(x) as the sum of the
outgoing edges present in the precedence graph for each task
that has not yet been scheduled along the path from the start
node to x. To understand why this is an admissible function for
A* search (i.e., one that does not overestimate the remaining
cost of the path), note that if a task node has an outgoing edge
in the precedence graph, then there is a successor task that
must be scheduled after that node. Thus, a lower bound on
the total maximum bandwidth cost for the given task is the
number of its outgoing edges in the precedence graph, i.e., the
number of its successors. This lower bound occurs if all the
successors are scheduled immediately after the given task. If
any other task is scheduled before the last successor, the cost
can only increase.

For example, consider the partial schedule s = 〈0, 1, 4〉
based on Fig. 1. The g(x) function of the node in the candidate
search graph corresponding to this partial schedule is simply

tmb cost(s,G), which is 5 (three for task zero and two for
task one, since not all of their successors have been scheduled,
and zero for task 4 because it does not have any successors).
To compute h(x), note that tasks 2, 3 and 5 are yet to be
scheduled. The sum of the outgoing edges of these three nodes
in the given precedence graph is two, which gives us h(x).
Thus, the total cost of s as computed by A* search is g(x) +
h(x) = 7. It is easy to verify that no complete schedule with
s as its prefix can have a tmb cost of less than 7.

C. Baseline Algorithm

We now present the first of three algorithms that consider
a subset of the possible schedules and therefore are faster than
the A*-based algorithm, but are not guaranteed to find a good
solution. The first such algorithm is the simplest and fastest
approach we refer to as Baseline: at every step, it randomly
chooses one of the currently-schedulable tasks. Thus, using
the precedence graph from Fig. 1 as input, in the first step,
Baseline executes tasks 0 and 1 in random order, then tasks 2,
3 and 4 in random order, and then task 5. The running time
of Baseline corresponds to that of breadth-first-search, which
is O(|V |+ |E|).

D. Greedy Algorithm

The next algorithm is the standard greedy heuristic applied
to our problem: at every step, it chooses a schedulable task that
yields the lowest tmb cost(s,G) when added to the current
partial schedule s. Ties are broken randomly.

Using the precedence graph from Fig. 1 as input, the greedy
heuristic first decides between tasks zero and 1. For both s=〈0〉
and s=〈1〉, tmb cost(s,G) = 1 since not all of 0’s or 1’s
successors, respectively, have been scheduled. Suppose the tie-
break results in task 1 being sequenced first. In the next step,
the schedulable tasks are still zero, plus 2 and 4. For s=〈1, 0〉,
tmb cost(s,G) = 2. For s=〈1, 2〉, tmb cost(s,G) is 2 due
to task 1 plus 1 due to task 2, which gives 3. For s=〈1, 4〉,
tmb cost(s,G) = 2 due to task 1 (plus zero due to task 4 since
it has no successors). Thus, the greedy algorithm randomly
chooses between task 0 and 4 to follow task 1. We omit the
remaining steps for brevity.

We now analyze the runtime complexity of the greedy
algorithm. It uses the get cands function to retrieve the set of
currently schedulable tasks. However, since each step of the
algorithm adds one task to the schedule, only the successors
of this new task need to be added to the schedulable set.
This gives O(|V | + |E|) for all get cands calls over all
the iterations. The runtime is dominated by calling tmb cost
for the considered schedules, which requires looping over all
the outgoing edges of the tasks already in the schedule. This
gives O(|E|) per call. Since the algorithm iterates |V | times,
and, clearly, at every iteration there are no more than |V |
schedulable tasks, for which tmb cost is evaluated, the overall
complexity of the greedy algorithm is O(|V |2|E|).

E. Heuristic Algorithm

Our final algorithm is called Heuristic. In contrast to
the greedy algorithm, which only examines the tmb cost
of adding every schedulable task to the current schedule in
each iteration, the heuristic algorithm computes a complete

feasible schedule for each schedulable task in every iteration,
and chooses the task with the lowest-cost complete schedule.
However, to keep the running time manageable, the heuristic
algorithm cannot explore every possible feasible schedule (as
does the A* algorithm). Instead, the complete schedules for
each schedulable task are heuristically computed via deepest-
first traversal, as explained below.

First, the heuristic algorithm pre-processes the precedence
graph G by adding depth information to each node, corre-
sponding to the distance to the furthest ancestor. For instance,
in Fig. 1, the depth of tasks zero and 1 is zero, the depth of
tasks 2 and 4 is one, the depth of task 5 is two, and the depth
of task 3 is also two (its distance to task zero is one, but the
distance to its other ancestor, task 1, is two).

Next, we illustrate what happens in the first iteration using
Fig. 1 as input. Initially, the only schedulable tasks are zero
and 1. We need to build complete schedules starting with zero
and 1, respectively, compute their tmb cost, and choose the
task whose complete schedule has a lower tmb cost (and we
break ties arbitrarily).

The complete depth-first schedule that starts with task 1
is computed as follows. After task 1 has been scheduled, the
schedulable tasks are zero, 2 and 4, of which either 2 or 4
have the largest depth. Let us assume task 2 is chosen next.
The schedulable tasks then become zero, 4 and 5, of which
is chosen because its depth is the largest. With the partial
schedule now 〈1, 2, 5〉, the schedulable tasks are zero and 4. We
choose 4, and finally zero and three. This gives the complete
schedule s = 〈1, 2, 5, 4, 0, 3〉. Its tmb cost is three for task 1,
4 for task 2, and one for task zero, which gives 8.

Similarly, the complete depth-first schedule that starts with
task zero is computed as follows. After task zero has been
scheduled, the only schedulable task is 1, so we choose it.
Next, we have a choice between tasks 2 and 4, both of which
have the same depth, so let us say we choose task 2. Then, the
schedulable tasks are 3, 4 and 5, of which 3 and 5 have the
highest depth, so let us say we choose task 3. This leaves tasks
4 and 5, and we choose 5 first because its depth is higher. This
gives a complete schedule of 〈0, 1, 2, 3, 5, 4〉, whose tmb cost
is three for task 0, 4 for task 1 and 2 for task 2, which is 9.

Thus, at the end of the first iteration, the Heuristic algo-
rithm chooses task 1 and the second iteration begins. Note
that the complete schedules calculated in the first iteration are
now discarded and new complete schedules will be built in the
second iteration, all of which will have task 1 scheduled first.

Fig. 6 summarizes the way in which the heuristic algorithm
traverses the candidate search graph using Fig. 1 as input.
As we described above, in the first iteration, two complete
schedules are built, one starting with task zero and one starting
with task 1. The latter is chosen by the heuristic algorithm,
indicated by the bold arrow. The tmb cost is also shown in
the figure; note the cost of 9 if we choose task 0, versus the
cost of 8 if we choose task 1. In the second iteration, the
heuristic algorithm considers tasks 0, 2 and 4, and computes
the corresponding three depth-first schedules. Choosing task
4 next is the best option. After task 4 has been selected, the
algorithm computes two new depth-first complete schedules
corresponding to adding tasks 0 and 2, respectively, to the
existing partial schedule of 〈1, 4〉. Adding task 2 is cheaper,

0,1 (9)

1 (9)

0

0,2,4 (8)

1

2,4 (9)

0

0,2 (6)

4

0,4,5 (8)

2

2 (7)

0

0,5 (6)

2

0 (6)

5

3,5 (6)

0

3 (7)

5

5 (6)

3

(6)

5

Best Path

Path to candidate

Deepest first estimate

Candidates Cost

3,5 (6)

Fig. 6. Visualization of a run of the Heuristic algorithm on the candidate
search graph created from the precedence DAG in Fig. 1.

as shown in the figure. The complete schedule generated
by the heuristic algorithm is indicated by the bold arrows:
〈1, 4, 2, 0, 3, 5〉. Its tmb cost is 6.

The intuition behind computing complete schedules in a
depth-first manner is to schedule successors right after their
ancestors; notice that when a task with a higher depth than
the previous task is chosen, these two tasks should be very
close together in the topological sort of the precedence graph.
However, any other heuristic for building possible complete
schedules for a given schedule prefix is compatible with the
framework we have described in this section.

Finally, we discuss the time complexity of the heuristic
algorithm. Pre-processing the precedence graph to compute
depth information (i.e. longest paths to a root in G) can be
done via a linear-time shortest-paths algorithm on G with
negative edge weights (this is only possible because G is a
DAG, where after edge weight negation no negative cycles are
possible). Now, one iteration of the algorithm involves comput-
ing multiple complete schedules in a deepest-first manner. For
each such complete schedule, exactly one task is moved from
the schedulable set to the actual schedule, and the successors
of this task are added to the schedulable set. Therefore, each
node and edge in G need to be visited only once. If the set
of schedulable tasks is maintained in a data structure such
as a binary heap that allows retrieval and deletion of the
minimum-depth node and insertion in O(log |V |), computing
one complete schedule requires O(|E|+ |V | log |V |).

The overall heuristic algorithm iterates |V | times. In each
iteration, there are at most |V | schedulable tasks, each of
which requires a complete schedule to be built, at a cost of

O(|E| + |V | log |V |), and its tmb cost must be computed,
but the former dominates the runtime. This gives the overall
runtime complexity of the heuristic algorithm as O(|V | · |V | ·
(|E|+ |V | log |V |)) = O(|E| · |V |2 + |V |3 log |V |).

V. EXPERIMENTAL EVALUATION

This section presents our experimental findings on the
effectiveness and efficiency (for both TMB and WTMB) of
the algorithms we presented in Sec. IV (A*, Baseline, Greedy
and Heuristic). We start with a description of our data sets and
experimental environment (Sec. V-A), followed by the results:

• In Sec. V-B, we experiment with different precedence
graphs as inputs, and we report the TMB/WTMB
scores obtained by each algorithm as well as the time
it took to generate the schedules. In general, we find
that Heuristic obtains nearly-optimal schedules, but is
slower than Greedy and Baseline (but still much faster
than A*). Furthermore, both Greedy and Heuristic
generate significantly better schedules than Baseline.

• In Sec. V-C, we run the proposed algorithms (except
A*) on very large random precedence graphs to see
if they can efficiently compute schedules for complex
workloads. We found that Heuristic does not scale as
well as Baseline and Greedy, but can still handle large
precedence graphs.

• In Sec. V-D, we execute various workloads in Post-
greSQL and show the real-world performance im-
provements due to our scheduling algorithms. Again,
Heuristic and Greedy outperform Baseline.

A. Experimental Setup

We used a dual CPU Xeon E5-2630 machine, with 64
GB of RAM, and a 10-disk RAID10 storage subsystem.
As a database we use PostgreSQL 9.2.4. We implemented
all the algorithms presented in Sec. IV in the Go language
(http://golang.org).

The pgfincore (http://pgfoundry.org/projects/
pgfincore/) library is used to advise the operating system to
drop tables from the disk cache. We use this functionality
to evict tables from the cache when they are no longer
needed. We will explicitly state whenever we make use of
this function.

We used the following groups of data sets. The number
of nodes and edges in the corresponding precedence graphs
is shown in Table I, under the columns labeled |V | and |E|.
Below, we also provide the depth of each precedence graph,
measured as the number of nodes on the longest path. Further
details on the precedence graphs, as well as the source code of
our algorithms and the random graph generator, may be found
at https://github.com/arbaer/schedule.

• running corresponds to the running example from
Fig. 1 with a depth of 3.

• test1, test2, test3 and test5 correspond to small hand-
crafted workloads with various features. Their depths
are three, four, five and four, respectively; however,
test5 additionally contains a node with a very high
fan-out.

• realworld1 and realworld2 are two network monitor-
ing workloads from data warehouses we are currently
operating using the DBStream DSW [6]. The tasks are
base tables and materialized view updates. realworld1
has a depth of 5 and contains two nodes with a high
fan-out, whereas realworld2’s depth is 6, but the fan-
out is lower.

• tpc-ds-scan, tpc-ds-7q, tpc-ds-11q and tpc-ds-63q are
based on the TPC-DS decision support benchmark
(http://www.tpc.org/tpcds/). TPC-DS contains 24 base
tables (7 fact tables and 17 dimension tables) and 99
predefined queries over the base tables. The number
of tables required by a query ranges from one to 13,
with an average of 4. We generated two versions of the
benchmark: one with a scale factor of 10 and one with
100. All TPC-based precedence graphs have a depth
of 2 since they consist of a layer of queries accessing
a set of tables.
The tpc-ds-scan workload consists of scan queries
over the largest base tables: catalog sales, web sales
and store sales. These three tables account for 8.4GB
in the scale-factor-10 version. The other three work-
loads contain 7, 11 and 63 queries from TPC-DS;
the corresponding precedence graphs get progressively
more complex. We do not use all 99 queries as not all
of them are data-intensive and benefit from caching.
The precedence graph for tpc-ds-7q is shown in Fig. 7.

• In one experiment, we also use large randomly-
generated precedence graphs to test the scalability of
our algorithms. These will be described later.

We use the small running and test workloads to test how
close the solutions obtained by the heuristics are to an optimal
solution; these are the only workloads on which it was feasible
to run the A* algorithm. The realworld and TPC-DS workloads
show that Greedy and Heuristic are scalable and outperform
Baseline. We have the task output sizes for realworld and TPC-
DS, so these are also used to test the WTMB version of our
problem.

B. Comparison of Scheduling Algorithms

In the first set of experiments, we generate schedules using
all the algorithms, and report how long it takes to create the
schedules and the TMB cost of the schedules (even though we
know the output sizes for some workloads, we ignore them for
now and will consider WTMB shortly). We do not actually run
the workloads in a database system. Table I shows the results.
Each row corresponds to a different workload (we omit tpc-ds-
scan as it is only relevant to the PostgreSQL experiments later
in this section). For Baseline, Greedy and Heuristic, we report
the mean TMB score and the standard deviation (SD) over 100
runs, since these algorithms break ties randomly and therefore
may return different schedules for the same input. Bold TMB
numbers indicate the best algorithms. For Heuristic and A*,
we also count the number of node visits during execution (the
number of node visits for Baseline and Greedy is small and
not reported). Note that A* finished running within one hour
only on small problem instances and the number of nodes it
visits is very large.

catalog_sales

query20query32query40

catalog_returnsinventory

query21query22 query39

date_dim

query3 query42 query98

store_salesitemwarehouse

Fig. 7. Precedence graph for the 7 selected TPC-DS queries and tables in tpc-ds-7q.

TABLE I. PERFORMANCE COMPARISON OF THE IMPLEMENTED ALGORITHMS. TIMES MARKED WITH * INDICATE THAT THE EXPERIMENT WAS
STOPPED AFTER 1 HOUR OF WALL CLOCK TIME.

Baseline Greedy Heuristic A*
TMB time TMB time TMB time nodes TMB time nodes

Graph |V | |E| Mean SD Mean SD Mean SD opt
running 6 5 9 0.00 0.010s 8 0.00 0.012s 6 0.00 0.016s 18 6 0.019s 33

test1 5 4 6 0.00 0.010s 5 0.00 0.013s 5 0.00 0.012s 13 5 0.012s 21
test2 11 10 16.16 0.64 0.010s 16.16 1.32 0.011s 14 0.00 0.017s 34 14 0.031s 336
test3 22 21 65.54 3.69 0.010s 47.52 6.62 0.012s 37.44 0.50 0.038s 90 35 1.451s 12.4K
test5 25 30 91.58 12.96 0.010s 66.68 5.91 0.014s 48.40 0.49 0.053s 123 46 37.771s 325K

realworld1 43 48 269.1 11.8 0.048s 107.2 16.9 0.022s 80.0 1.8 0.075s 163 – 1h* 25.0M
realworld2 57 69 297.6 24.6 0.028s 120.4 10.3 0.023s 119.2 11.8 0.184s 616 – 1h* 29.5M
tpc-ds-7q 14 25 62.0 2.9 0.017s 52.8 3.7 0.019s 43.9 2.8 0.018s 55 40 0.27s 56.6K

tpc-ds-11q 31 70 362.4 13.3 0.028s 311.7 15.3 0.020s 220.5 11.8 0.054s 313 – 1h* 43.0M
tpc-ds-63q 85 310 1488.2 60.2 0.099s 1162.5 78.7 0.046s 853.2 12.2 1.505s 1598 – 1h* 16.2M

To summarize the results so far: for the workloads where
A* was able to finish, we see that Heuristic gives a nearly-
optimal schedule. Greedy also works well for some of the
smaller problem instances. Baseline gives the most expensive
schedules. On the other hand, Baseline and Greedy are ex-
tremely fast, Heuristic is still very fast, and A* is the slowest.

Fig. 8 compares the TMB and WTMB costs of the
schedules returned by Heuristic, Greedy and Baseline for the
workloads that come with output sizes, namely real-world and
TPC-DS (these workloads are too large for A* to handle). The
average costs and error bars are included, based on 100 runs
of each algorithm.

Fig. 8a starts with the TMB costs that were already reported
in Table I, indicating that both Greedy and Heuristic are
significant improvements over Baseline, and that Heuristic
is the overall winner (but it takes longer to compute the
schedules).

In Fig. 8b, we show the WTMB costs of the schedules
from Figure 8a, i.e., we have the algorithms optimize for TMB
as before, but we compute the WTMB score of the resulting
schedules by incorporating output sizes (which, of course, were
not given to the algorithms). Heuristic continues to give the
best and most stable results—note the wide error bars for
Baseline and Greedy. In particular, different runs of Greedy
may give widely different TMB results. For instance, if there
are several base tables with various sizes but same TMB costs,
Greedy randomly chooses the first table to update, regardless
of the table size.

Note that the y-axis scales of Fig. 8a and Fig. 8b are
different. TMB effectively assumes that each output size is
one, whereas the WTMB scores are much higher because they
reflect the true sizes of the inputs.

Fig. 8c shows the WTMB scores assuming the algorithms
know the output sizes and are actually optimizing for WTMB,
not TMB. Comparing to Fig. 8b, which has the same y-
axis scale, knowing the output sizes clearly helps to lower
the WTMB score of the resulting schedules for Greedy and
Heuristic. Interestingly, Greedy slightly outperforms Heuristic

TABLE II. SCALABILITY RESULTS.

Graph |V | |E| Baseline Greedy Heuristic
rand1 100 200 0.02s 0.04s 0.84s
rand3 300 600 0.04s 0.95s 40.01s
rand5 500 1K 0.09s 4.59s 5m43s
rand6 1K 2K 0.34s 34.20s 85m46s
rand7 2K 4K 0.71s 4m22s –
rand8 4K 8K 2.75s 31m47s –

in this experiment, meaning that greedily selecting tasks with
the lowest WTMB scores is a good strategy (and there are no
more ties that Greedy has to break randomly, unless the output
sizes are exactly the same). We hypothesize that Heuristic
could be tuned for the WTMB problem, e.g., by incorporating
output sizes in the deepest-first schedule generation, but even
now it is not much worse than Greedy.

C. Scalability Comparison

In this experiment, we randomly generate very large prece-
dence graphs (much larger than those used in the previous
experiment) and measure the running time of Baseline, Greedy
and Heuristic. Table II reports the number of nodes and edges
for each random graph and the running times. Baseline and
Greedy are very simple algorithms and scale extremely well.
Heuristic does not scale as well, but can still handle graphs
with up to 1000 nodes and edges in reasonable time (few or
tens of minutes).

D. PostgreSQL Experiments

In this set of experiments, we execute various work-
loads under various schedules in the PostgreSQL database
to measure the real-world performance improvements of our
techniques. Here, we focus on the disk-RAM hierarchy.

Experiment 1: We start by running the simple tpc-ds-scan
workload of three queries that scan three base TPC-DS tables:

Q1: select count(*) from catalog_sales;
Q2: select count(*) from web_sales;
Q3: select count(*) from store_sales;

realworld1 realworld2 tpcds7q tpcds11q tpcds63q
0

200

400

600

800

1.0K

1.2K

1.4K

1.6K

TM
B

 C
os

t

Heuristic
Greedy
Baseline

(a)
realworld1 realworld2 tpcds7q tpcds11q tpcds63q
0

200K

400K

600K

800K

1.0M

1.2M

W
TM

B
 C

os
t

Heuristic
Greedy
Baseline

(b)
realworld1 realworld2 tpcds7q tpcds11q tpcds63q
0

200K

400K

600K

800K

1.0M

1.2M

W
TM

B
 C

os
t

Heuristic
Greedy
Baseline

(c)

Fig. 8. Comparison of a) TMB costs, b) WTMB costs assuming the algorithms are optimizing for TMB, and c) WTMB costs assuming the algorithms are
optimizing for WTMB.

In PostgreSQL, these queries result in full table scans, resulting
in an I/O intensive workload. We also use the following three
functions calls to drop tables from the cache:

X1: select drop_table_cache(catalog_sales);
X2: select drop_table_cache(catalog_sales);
X3: select drop_table_cache(catalog_sales);

We create three schedules, S1, S2 and S3, executing each
query three times to demonstrate the differences in running
time. In schedule S3, we also actively evict tables from the
cache when they are not needed any more, indicated by the
operations X1, X2 and X3.

S1: Q1,Q2,Q3, Q1,Q2,Q3, Q1,Q2,Q3
S2: Q1,Q1,Q1, Q2,Q2,Q2, Q3,Q3,Q3
S3: Q1,Q1,Q1,X1, Q2,Q2,Q2,X2, Q3,Q3,Q3,X3

In Fig. 9a and 9b, we show the processing time and read
I/O, respectively, of the three schedules under varying amounts
of available cache (RAM), ranging from 500MB to 10GB
in steps of 100MB. We control this by running a program
that allocates and fills a specific amount of memory, making
that amount unavailable to the database. In each experimental
iteration, we first execute one schedule, force the operating
system to drop all caches and then execute the next schedule.

Fig. 9a reports the processing times. Schedule 1 is clearly
the least efficient, so long as either no data fit into RAM (under
2GB) or all data fit into RAM (over 8.4GB). Additionally,
Schedule 3 achieves even better performance since tables that
are not required any more are explicitly removed from the
cache, simulating a optimal cache eviction strategy. The largest
difference occurs at 4.5 GB of free RAM since now the biggest
of the three tables fits entirely into the disk cache. At this
point, Schedule 1 finishes in 45 seconds while Schedule 2 and
Schedule 3 in 33 seconds and 26 seconds, respectively. The
resulting performance increase of Schedule 3 over Schedule 1
is 73 percent.

Fig. 9b illustrates the amount of disk read I/O during
the run of this experiment under the same available cache
conditions as before. These results indicate that there is a
correlation between the amount of disk read I/O during the
execution of a schedule and its execution time. Schedule 1
needs to fit nearly all the tables into the cache before larger
amounts of data can be reused. In Schedule 2, much more

data can be reused through the cache and but even for larger
amounts of available cache, between 4.5 and 8.4 GB, some
data has to be fetched multiple times from disk. Finally, in
Schedule 3 since an optimal cache eviction strategy is applied,
as soon as the biggest table fits entirely into the cache, data
are only fetched once from disk.

We conclude from this experiment that changing the exe-
cution order of a workload can reduce the amount of disk I/O
if not all the data fit into the cache, which also influences the
execution time of a workload if it is I/O bound.

Experiment 2: Next, we show that the reduced amounts of
disk read I/O are reproducible with queries from the TPC-DS
benchmark. We use the tpc-ds-7q workload, consisting of 7
data-intensive queries, and execute them on TPC-DS tables
generated using scale factor 100. This gives approximately
100GB of data. During the execution of a schedule, whenever
a table is no longer needed in that schedule, it is evicted
from the cache using the drop_table_cache() function,
simulating a optimal cache eviction strategy.

We create schedules using Baseline, Greedy and Heuristic,
each not considering the sizes of the outputs (tables), i.e.,
optimizing for TMB, not WTMB. We run the experiment four
times and reduce the total amount of available system memory
from 64 GB to 16 GB in steps of 16 GB, simulating machines
with different amounts of available memory. We do this in the
same manner as in the previous experiment.

Fig. 10a shows the results, with disk read I/O on the y-axis.
For 64 and 48 GB, only the Baseline schedule shows increased
amounts of disk I/O. At 32 GB of available RAM, Heuristic
performs better than Baseline. Although Greedy is also better
than Baseline, it does not perform as well as Heuristic. Finally,
for the 16 GB case all schedules perform nearly the same.

Fig. 10b shows the results of a similar experiment, but one
in which we also give the algorithms the table sizes, allowing
the algorithms to optimize for WTMB. The main difference
compared to Fig. 10a are the reduced I/O reads for the 32 GB
run for Greedy and Heuristic. Even in the 16 GB case, these
algorithms perform better than Baseline.

If we extrapolate the memory needs linearly, the Greedy
and Heuristic schedules would need about 320 GB to execute
without additional read I/O for the larger TPC-DS scale factor
of 1000.

0 2 4 6 8 10
Available Cache [GB]

25

30

35

40

45

50

Pr
oc

es
si

ng
 T

im
e

[s
]

Schedule 1
Schedule 2
Schedule 3

(a) Processing time

0 2 4 6 8 10
Available Cache [GB]

8

10

12

14

16

18

20

22

24

26

D
is

k
R

ea
d

IO
 [G

B
]

Schedule 1
Schedule 2
Schedule 3

(b) Disk I/O

Fig. 9. Performance analysis executing the same workload with different schedules and increasing cache size.

64 48 32 16
Available System Memory [GB]

0

20

40

60

80

100

120

140

160

D
is

k
R

ea
d

IO
 [G

B
]

Heuristic
Greedy
Baseline

(a) Algorithms not considering table sizes.

64 48 32 16
Available System Memory [GB]

0

20

40

60

80

100

120

140

160

D
is

k
R

ea
d

IO
 [G

B
]

Heuristic
Greedy
Baseline

(b) Algorithms considering sizes.

Fig. 10. Disk read I/O for the tpc-ds-7q workload scheduled by the Heuristic and the Baseline algorithms.

Experiment 3: In the last experiment, we study the effect
of different schedules on cache usage over time. We use
the tpc-ds-63q workload, which contains the 63 most data-
intensive queries. We use scale TPC-DS scale factor 10. Only
the raw data are imported into the database, without creating
any further auxiliary data structures such as indices. We do
not optimize the queries in terms for processing time since
our focus is on I/O optimization via scheduling to exploit
the cache. Before each experimental run, we first clear the
cache and then we execute the tpc-ds-63q workload in the
order specified by the scheduling algorithm. Every second, we
sample the disk cache usage. As soon as a table is no longer
needed by any other query in the schedule, we remove it from
the cache using the drop_table_cache() function. Note
that we never actively load any data into the cache, but instead
tables are loaded automatically when they are accessed by a
query.

Fig. 11a shows the RAM usage (on the y-axis) as a function
of time since the start of the experiment (x-axis) for Baseline,
Greedy and Heuristic optimizing for TMB (i.e., the algorithms
do not know the table sizes). Fig. 11b shows the results for
WTMB. In both cases, the cache usage over time is greatly
reduced by Greedy and Heuristic as compared to Baseline.

Finally, we compare the algorithms by their areas under
the cache usage curves. If cs(t) denotes the cache usage of
schedule s at any given point in time t, we can formulate the

TABLE III. AVERAGE AND MAXIMUM CACHE USAGE FOR DIFFERENT
SCHEDULES OF THE TPC-DS-63Q WORKLOAD.

Algorithm Avg [GB] Decr. Max [GB] Decr.
Baseline 10.439 100% 15.025 100%
Greedy TMB 7.514 71% 13.217 88%
Greedy WTMB 4.430 42% 9.529 63%
Heuristic TMB 9.190 88% 9.586 63%
Heuristic WTMB 7.113 68% 10.511 70%

average cache usage for the total execution time ∆T as cus
as

cus =

∫ t0+∆T

t0
cs(t) dt

∆T
. (5)

The resulting cache usages are shown in Table III. The
schedule of the Greedy algorithm needs on average only 42%
of RAM of the Baseline schedule. This leaves either more
RAM for other concurrently running applications or results in
less read I/O if RAM is scarce.

VI. CONCLUSION AND FUTURE WORK

In this paper, we formulated and solved a novel problem
in the context of shared data-intensive workload scheduling.
Given a set of tasks with data dependencies, such as those
corresponding to updating a hierarchy of materialized views,
we computed an ordering of the tasks that 1) obeys the
precedence constraints encoded by the data dependencies and

(a) Scheduled without considering table sizes. (b) Scheduled considering table sizes.

Fig. 11. Cache usage over time for tpc-ds-63q.

2) minimizes cache misses in a cache oblivious setting. Our
solution relied on sequencing all tasks that need a particular
data item as soon as possible after this item is loaded into
the cache. We gave an optimal algorithm based on A* search
and efficient heuristics that find nearly-optimal orderings in a
fraction of the time needed to run the A* algorithm.

As the experimental results showed, there is still room for
improvement of the heuristic algorithm. Another interesting di-
rection for future work is to extend our approach to distributed
scheduling of MapReduce jobs.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Union under the FP7 Grant Agreement
n.318627 (Integrated Project mPlane). All members of FTW
are supported by the Austrian Government and by the City of
Vienna within the competence center program COMET.

REFERENCES

[1] K. Agrawal, J. T. Fineman: Brief announcement: cache-oblivious
scheduling of streaming pipelines. SPAA 2014: 79-81

[2] P. Agrawal, D. Kifer, C. Olston: Scheduling shared scans of large data
files. PVLDB 1(1): 958-969 (2008)

[3] M. Ahmad, A. Aboulnaga, S. Babu, K. Munagala: Interaction-aware
scheduling of report-generation workloads. VLDB J. 20(4): 589-615
(2011)

[4] A. Allahverdi, C. Ng, T. Cheng, M. Kovalyov: A survey of scheduling
problems with setup times or costs. European Journal of Operational
Research 187(3):985-1032, 2008

[5] S. Arumugam, A. Dobra, C. Jermaine, N. Pansare, L. Perez: The
DataPath system: a data-centric analytic processing engine for large
data warehouses. SIGMOD 2010: 519-530

[6] A. Bär, A. Finamore, P. Casas, L. Golab, M. Mellia: Large-Scale
Network Traffic Monitoring with DBStream, a System for Rolling Big
Data Analysis. IEEE BigData 2014: 165-170

[7] C. Chekuri, R. Motwani: Precedence Constrained Scheduling to Mini-
mize Weighted Completion Time on a Single Machine. Discrete Applied
Mathematics 98(1-2):29-38 (1999)

[8] P. Crescenzi, V. Kann: A compendium of NP optimization problems,
1998. ftp://ftp.nada.kth.se/Theory/Viggo-Kann/compendium.pdf

[9] N. Folkert, A. Gupta, A. Witkowski, S. Subramanian, S. Bellamkonda,
S. Shankar, T. Bozkaya, L. Sheng: Optimizing Refresh of a Set of
Materialized Views. VLDB 2005: 1043-1054

[10] M. Frigo, C. Leiserson, H. Prokop, S. Ramachandran: Cache-Oblivious
Algorithms. FOCS 1999: 285-297

[11] G. Giannikis, G. Alonso, D. Kossmann: SharedDB: Killing One Thou-
sand Queries With One Stone. PVLDB 5(6):526-537 (2012)

[12] G. Giannikis, D. Makreshanski. G. Alonso, D. Kossmann: Shared
Workload Optimization. PVLDB 7(6):429-440 (2014)

[13] M. Garey, D. Johnson: Computers and Intractability: A Guide to the
Theory of NP-Completeness, 1979, W. H. Freeman & Co.

[14] M. Garey, D. Johnson, L. Stockmeyer: Some simplified NP-complete
graph problems. Theoretical Computer Science 1(3):237-267 (1976)

[15] L. Golab, T. Johnson, J. S. Seidel, V. Shkapenyuk: Stream warehousing
with DataDepot. SIGMOD 2009: 847-854

[16] L. Golab, T. Johnson, V. Shkapenyuk: Scalable Scheduling of Updates
in Streaming Data Warehouses. TKDE 24(6):1092-1105 (2012)

[17] A. Gupta, S. Sudarshan, S. Viswanathan: Query Scheduling in Multi
Query Optimization. IDEAS 2001: 11-19

[18] W. Labio, R. Yerneni, H. Garcia-Molina: Shrinking the Warehouse
Update Window. SIGMOD 1999: 383-394

[19] W. Lehner, R. Cochrane, H. Pirahesh, M. Zaharioudakis: fAST Refresh
using Mass Query Optimization. ICDE 2001: 391-398

[20] G. Luo, J. F. Naughton, C. J. Ellmann, M. Watzke: Transaction
reordering. DKE 69(1): 29-49 (2010)

[21] H. Mistry, P. Roy, S. Sudarshan, K. Ramamritham: Materialized View
Selection and Maintenance Using Multi-Query Optimization, SIGMOD
2001: 307-318.

[22] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, N. Koudas: Sharing
across Multiple MapReduce Jobs. ACM Trans. Database Syst. 39(2):
12 (2014)

[23] C. Papadimitriou: The NP-completeness of the Bandwidth Minimization
Problem, Computing, 16(3):263-270 (1976)

[24] I. Psaroudakis, M. Athanassoulis, A. Ailamaki: Sharing Data and Work
Across Concurrent Analytical Queries, PVLDB 6(9):637-648 (2013)

[25] D. Tsaih, G. Wu, C. Chang, S. Hung, C. Wu, and H. Lin: An Efficient
A* Algorithm for the Directed Linear Arrangement Problem. WSEAS
Transactions on Computers, 7(12):1958-1967 (2008)

[26] J. L. Wolf, A. Balmin, D. Rajan, K. Hildrum, R. Khandekar, S. Parekh,
K.-L. Wu, R. Vernica: On the optimization of schedules for MapReduce
workloads in the presence of shared scans. VLDB J. 21(5): 589-609
(2012)

[27] M. Zukowski, S. Héman, N. Nes, P. A. Boncz: Cooperative Scans:
Dynamic Bandwidth Sharing in a DBMS. VLDB 2007: 723-734

