
A

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking

XIUFENG LIU, Technical University of Denmark
LUKASZ GOLAB, University of Waterloo
WOJCIECH GOLAB, University of Waterloo
IHAB F. ILYAS, University of Waterloo
SHICHAO JIN, University of Waterloo

Smart electricity meters have been replacing conventional meters worldwide, enabling automated collec-
tion of fine-grained (e.g., every 15 minutes or hourly) consumption data. A variety of smart meter analytics
algorithms and applications have been proposed, mainly in the smart grid literature. However, the focus has
been on what can be done with the data rather than how to do it efficiently. In this paper, we examine smart
meter analytics from a software performance perspective. First, we design a performance benchmark that
includes common smart meter analytics tasks. These include off-line feature extraction and model building
as well a framework for on-line anomaly detection that we propose. Second, since obtaining real smart meter
data is difficult due to privacy issues, we present an algorithm for generating large realistic data sets from a
small seed of real data. Third, we implement the proposed benchmark using five representative platforms:
a traditional numeric computing platform (Matlab), a relational DBMS with a built-in machine learning
toolkit (PostgreSQL/MADlib), a main-memory column store (“System C”), and two distributed data process-
ing platforms (Hive and Spark/Spark Streaming). We compare the five platforms in terms of application
development effort and performance on a multi-core machine as well as a cluster of 16 commodity servers.

CCS Concepts: rInformation systems → Database performance evaluation; Data mining;

Additional Key Words and Phrases: Smart meters; Data analytics; Performance benchmarking; Hadoop;
Spark

ACM Reference Format:
Smart Meter Data Analytics: Systems, Algorithms and Benchmarking ACM Trans. Datab. Syst. V, N, Arti-
cle A (January YYYY), 39 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Smart electricity grids, which include renewable energy sources such as solar and
wind, and allow information sharing among producers and consumers, are beginning
to replace conventional power grids worldwide. Smart electricity meters are a fun-
damental component of the smart grid, enabling automated collection of fine-grained
(usually every 15 minutes or hourly) consumption data. This enables, among other
things, dynamic electricity pricing strategies, in which consumers are charged higher
prices during peak times to help reduce peak demand. Additionally, smart meter data
analytics, which aim to help utilities and consumers understand electricity consump-
tion patterns, has become an active area in research and industry. According to a recent
report, utility data analytics is already a billion dollar market and is expected to grow
to nearly 4 billion dollars by year 20201.

A variety of smart meter analytics algorithms have been proposed, mainly in the
smart grid literature, to predict electricity consumption and enable accurate planning
and forecasting, extract consumption profiles to provide personalized energy-saving
tips to consumers, and design targeted engagement programs to clusters of similar
consumers. However, the research focus has been on the insight that can be obtained
from the data rather than performance and programmer effort. Implementation de-
tails were omitted, and the proposed algorithms were tested on small data sets. More-
over, a recent industry survey found that smart grid analytics are severely lacking

1http://www.greentechmedia.com/research/report/the-soft-grid-2013

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

[EPRI 2013]. Thus, despite the increasing amounts of available data and the increas-
ing number of applications2, it is not clear how to build and evaluate a practical system
for smart meter analytics. This is exactly the problem we study in this paper.

1.1. Contributions
We begin with a benchmark for comparing the performance of smart meter analytics
systems. Based on a review of prior work (details in Section 2), we identified five com-
mon tasks: 1) understanding the variability of consumers (e.g., by building histograms
of their hourly consumption), 2) understanding the thermal sensitivity of buildings
and households (e.g., by building regression models of consumption as a function of
outdoor temperature), 3) understanding the typical daily habits of consumers (e.g., by
extracting consumption trends that occur at different times of the day regardless of
the outdoor temperature), 4) finding similar consumers (e.g., by running times series
similarity search), and 5) anomaly detection. These tasks involve aggregation, regres-
sion, time series analysis, and cross-checking new data against historical data; they
include a mix of operators (aggregation, time series analysis, machine learning) and
workloads (historical and on-line) that have been studied in isolation, but not in a sin-
gle benchmark. Our benchmark includes representative algorithms from each of these
sets, including an on-line anomaly detection framework that we propose.

Second, since obtaining smart meter data is difficult due to privacy concerns, we
present a data generator for creating large realistic smart meter datasets from a small
seed of real data. The generator includes several user-controlled parameters. For in-
stance, it can create new datasets corresponding to consumers who are less or more
“peaky” than those in the original sample. The real dataset we were able to obtain con-
sists of over a year of data from 27,000 consumers, but our generator can create much
larger data sets and allows us to stress-test the candidate systems.

Third, we implement the proposed benchmark using five state-of-the-art platforms
that represent recent data management trends, including in-database machine learn-
ing, main-memory column stores, and distributed analytics. The five platforms are:

(1) Matlab: a numeric computing platform with a high-level language;
(2) PostgreSQL: a traditional relational DBMS, plus MADlib [Hellerstein et al. 2012],

an in-database machine learning toolkit;
(3) “System C”: a main-memory column-store commercial system (the licensing agree-

ment does not allow us to reveal the name of this system);
(4) Spark/Spark Streaming [Zaharia et al. 2010; Zaharia et al. 2012]: a main-memory

distributed data processing platform;
(5) Hive [Thusoo et al. 2009]: a Hadoop-based distributed data warehouse system.

We report performance results on the real data set and larger realistic data sets
created by our data generator. Our main finding is that System C performs extremely
well on our benchmark at the cost of the highest programmer effort: System C does
not come with built-in statistical and machine learning operators, which we had to
implement from scratch in a non-standard language. On the other hand, MADlib and
Matlab make it easy to develop smart meter analytics applications, but they do not per-
form as well as System C. In cluster environments with very large data sizes, we found
that Hive was only slightly slower than Spark for off-line tasks; for on-line anomaly
detection, Spark was faster than Hive when all the data it needed had been cached
in memory and slower otherwise. Additionally, Spark and Hive are competitive with

2See, e.g., a recent competition sponsored by the United States Department of Energy to create new apps
for smart meter data: http://appsforenergy.challengepost.com.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:3

System C in terms of efficiency (throughput per server) for several of the workloads in
our benchmark.

To summarize, we make four novel contributions in this paper: 1) a benchmark for
smart meter analytics, 2) a technique for generating very large realistic smart meter
datasets, 3) a smart meter anomaly detection framework, 4) an experimental evalua-
tion of five data processing platforms using the proposed benchmark.

Our benchmark (i.e., the data generator and the tested algorithms) is freely avail-
able at https://github.com/xiufengliu. Due to privacy issues, we are unable to share the
real data set or the large synthetic data sets based upon it. However, a smart meter
data set has recently become available at the Irish Social Science Data Archive3 and
may be used along with our data generator to create large publicly available data sets
for benchmarking purposes.

1.2. Roadmap
The remainder of this paper is organized as follows. Section 2 summarizes the related
work; Section 3 presents the smart meter analytics benchmark; Section 4 discusses
the data generator; Section 5 presents experimental results; and Section 6 concludes
the paper with directions for future work.

2. RELATED WORK
An earlier version of this paper appeared at the EDBT 2015 conference [Liu et al.
2015a], where we proposed a benchmark for off-line smart meter data analytics. In
this submission, we added a new component of the benchmark to test on-line analytics.
In particular, we proposed a framework for on-line anomaly detection in smart meter
data, and implemented and tested the framework using three different platforms. This
new material is in the new section 3.5 (description of the proposed framework), section
5.2 (implementation details) and sections 5.5, 5.6 and 5.7 (new benchmarking results).
We also extended the data generator with the ability to control the “peakiness” of
the generated time series (section 4.1) and experimentally verified that it produces
realistic data (new section 4.2). Furthermore, a system that implements the algorithms
in the proposed benchmark was demonstrated at the ICDE 2015 conference [Liu et al.
2015b].

2.1. Smart Meter Data Analytics
Two types of smart meter data sets have been studied: whole-house consumption read-
ings collected by conventional smart meters (e.g., every hour) and high-frequency con-
sumption readings (e.g., one per second), coming from the whole house or an individual
circuit, obtained using specialized load-measuring hardware. We focus on the former,
as these are the data that are currently collected by utilities.

For whole-house smart meter data feeds, there are two classes of applications: con-
sumer and producer-oriented. Consumer-oriented applications provide feedback to
end-users about reducing electricity consumption and saving money (see, e.g., [Birt
et al. 2012; Mattern et al. 2010; Smith et al. 2012]). Producer-oriented applications
are geared towards utilities, system operators and governments, and provide informa-
tion about consumers such as their daily habits for the purposes of load forecasting
and clustering/segmentation (see, e.g., [Abreu et al. 2012; Albert et al. 2013; Albert
and Rajagopal 2013b; Ardakanian et al. 2014; Chicco et al. 2006; Espinoza et al. 2005;
Figueiredo et al. 2005; Ghofrani et al. 2011; Nezhad et al. 2014; Rasanen et al. 2010]).

From a technical standpoint, both of the above classes of applications perform two
types of operations: extracting representative features (see, e.g., [Ardakanian et al.

3http://www.ucd.ie/issda/data/commissionforenergyregulationcer/

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

2014; Birt et al. 2012; Espinoza et al. 2005; Figueiredo et al. 2005]) and finding similar
consumers based on the extracted features (see, e.g., [Abreu et al. 2012; Chicco et al.
2006; Rasanen et al. 2010; Smith et al. 2012; Tsekouras et al. 2007]). Household elec-
tricity consumption can be broadly decomposed into the temperature-sensitive com-
ponent (i.e., heating and air conditioning) and the temperature-insensitive component
(other loads and appliances). Thus, representative features include those which mea-
sure the effect of outdoor temperature on consumption [Albert and Rajagopal 2013a;
Birt et al. 2012; Rasanen et al. 2010] and those which identify consumers’ daily habits
regardless of temperature [Abreu et al. 2012; Ardakanian et al. 2014; Espinoza et al.
2005], as well as those which measure the overall variability (e.g., consumption his-
tograms) [Albert et al. 2013]. Our smart meter benchmark, which will be described in
Section 3, includes representative algorithms for characterizing consumption variabil-
ity, temperate sensitivity, daily activity and similarity to other consumers.

Furthermore, we distinguish between off-line and on-line analytics. The algorithms
described above build prediction models and extract useful features off-line. There are
also on-line algorithms for identifying anomalies in smart meter data [Chen and Cook
2011; Mashima and Cardenas 2012], which may run every hour as new data arrive or
perhaps once a day. Again, these algorithms can be divided into consumer and utility
oriented. Consumer-oriented anomaly detection includes daily alerts if a household’s
monthly bill is on track to be much higher than average. Utility-oriented anomaly
detection may include detecting electricity theft [Mashima and Cardenas 2012]. In
Section 3, we propose a distance-based outlier detection framework for smart meter
data that generalizes existing techniques and supports additional functionalities such
as explaining why a certain measurement was determined to be an outlier.

We also point out recent work on smart meter data quality (specifically, handling
missing data) [Jeng et al. 2013], symbolic representation of smart meter time series
[Eichinger et al. 2015; Wijaya et al. 2013], and smart meter data privacy (see, e.g., [Acs
and Castelluccia 2011; Buchmann et al. 2013; Kessler et al. 2015]). These important
issues are orthogonal to smart meter analytics, which is the focus of this paper.

2.2. Systems and Platforms for Smart Meter Data Analytics
Traditional options for implementing smart meter analytics include statistical and
numeric computing platforms such as R and Matlab. As for relational database sys-
tems, two important technologies are main-memory databases, such as “System C” in
our experiments, and in-database machine learning, e.g., PostgreSQL/MADlib [Heller-
stein et al. 2012]. Finally, a parallel data processing platform such as Hadoop or Spark
is an interesting option for cluster environments. We have implemented the proposed
benchmark in systems from each of the above classes (details in Section 5).

Smart meter analytics software is currently offered by several database vendors
including SAP4 and Oracle/Data Raker5, as well as startups such as Autogrid.com,
C3Energy.com and OPower.com. Additionally, SQLstream6 describes a solution for
real-time analytics and alerting. However, it is not clear what algorithms are imple-
mented by these systems and how.

There has also been some recent work on efficient retrieval of smart meter data
stored in Hive [Liu et al. 2014], but that work focuses on simple operational queries
rather than the deep analytics that we address in this paper.

4http://www.sap.com/pc/tech/in-memory-computing-hana/software/smart-meter-analytics/index.html
5http://www.oracle.com/us/products/applications/utilities/meter-data-analytics/index.html
6http://www.sqlstream.com/solutions/smart-grid

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:5

2.3. Benchmarking Data Analytics
There exist several database (e.g., TPC-C, TPC-H and TPC-DS) and big data7 bench-
marks, but they focus mainly on the performance of relational queries (and/or trans-
actions) and therefore are not suitable for smart meter data mining. Benchmarking
time series data mining was discussed in [Keogh and Kasetty 2003]. Different imple-
mentations of time series similarity search, clustering, classification and segmenta-
tion were evaluated. While some of these operations are relevant to smart meter an-
alytics, there are other important tasks such as extracting consumption profiles that
were not considered in [Keogh and Kasetty 2003]. Additionally, [Keogh and Kasetty
2003] evaluated standalone algorithms whereas we evaluate data analytics platforms.
Furthermore, [Anil et al. 2013] benchmarked data mining operations for power sys-
tem analysis. However, its focus was on analyzing voltage measurements from power
transmission lines, not smart meter data, and therefore the tested algorithms were
different from ours. Finally, Arlitt et al. [2015] propose a benchmark for smart meters
that focuses on routine computations such as finding top customers and calculating
monthly bills. In contrast our work aims to discover more complex patterns in energy
data. Their workload generator uses a Markov chain model that must be trained using
a real data set.

We also note that TPC benchmarks include the ability to generate very large syn-
thetic databases, and there has been research on synthetic database and data stream
generation (see, e.g., [Bruno and Chaudhuri 2005; Gu et al. 2015]), but we are not
aware of any previous work on generating realistic smart meter data.

3. THE BENCHMARK
In this section, we propose a performance benchmark for smart meter analytics. The
main goal of the benchmark is to measure the running time of a set of tasks that
will be defined shortly. We consider two types of tasks: off-line and on-line. For off-line
tasks, the input consists of n time series, each corresponding to one electricity con-
sumer, in one or n text files. We assume that each time series contains hourly electric-
ity consumption measurements (in kilowatt-hours, kWh) for a year, i.e., 365×24 = 8760
data points. For each consumption time series, we require an accompanying external
temperature time series, also with hourly measurements. For on-line tasks, the input
consists of a sequence of 30 files, each containing one day of data, i.e., 24 hourly con-
sumption measurements and 24 hourly external temperature measurements, for all n
consumers. Additionally, on-line tasks are assumed to have access to the off-line (his-
torical) data set as well as the models built by off-line tasks (we will explain shortly
why this is required).

For off-line tasks, we measure the running time on the input data set, both with
a cold start (data on disk) and a warm start (data loaded into physical memory). For
on-line tasks, we measure the time it takes to load new data and the running time of
the task itself.

Utility companies may have access to additional data about their customers, e.g.,
location, square footage of the home or family size. However, this information is usually
not available to third-party applications. Thus, the input to our benchmark is limited
to smart meter time series and publicly-available weather data.

We now discuss the five analysis tasks included in the proposed benchmark. The
first four are off-line: consumption histograms, thermal sensitivity, daily profiles and
similarity search. The last one, anomaly detection, is on-line.

7https://amplab.cs.berkeley.edu/benchmark

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

Consump(on	
 (kWh)	

Fr
eq

ue
nc
y	

Fig. 1. Example of a consumption histogram.

3.1. Consumption Histograms
The first task is to understand the variability of each consumer. To do this, we compute
the distribution of hourly consumption for each consumer via a histogram, an example
of which is shown in Figure 1. The x-axis in the histogram denotes various hourly
consumption ranges and the y-axis is the frequency, i.e., the number of hours in the
year whose electricity consumption falls in the given range. For concreteness, in the
proposed benchmark we specify the histograms to be equi-width (rather than equi-
depth) and we always use ten buckets.

3.2. Thermal Sensitivity
The second task is to understand the effect of outdoor temperature on the electricity
consumption of each household. The simplest approach is to fit a least-squares regres-
sion line to the consumption-temperature scatter plot. However, in climates with a
cold winter and warm summer, electricity consumption rises when the temperature
drops in the winter (due to heating) and also rises when the temperature rises in the
summer (due to air conditioning). Thus, a piecewise linear regression model is more
appropriate.

We selected a recent algorithm from [Birt et al. 2012] for the benchmark, to which
we refer as the 3-line algorithm. Consider a consumption-temperature scatter plot for
a single consumer shown in Figure 2. The actual data points are not shown, but a point
on this plot would correspond to a particular hourly consumption value and the outdoor
temperature at that hour. The upper three lines correspond to the piecewise regression
lines computed only for the points in the 90th percentile for each temperature value
and the lower three lines are computed from the points in the 10th percentile for each
temperature value. Thus, for each time series, the algorithm starts by computing the
10th and 90th percentiles for each temperature value and then computes the two sets
of regression lines. In the final step, the algorithm ensures that the three lines are not
discontinuous and therefore it may need to adjust the lines slightly.

As shown in Figure 2, the 3-line algorithm extracts useful information for customer
feedback. For instance, the slopes (gradients) of the left and right 90th percentile lines
correspond to heating and cooling sensitivity, respectively. A high cooling gradient
might indicate an inefficient air conditioning system or a low air conditioning set point.
Additionally, the height at the lowest point on the 10th percentile lines indicates base
load, which is the electricity consumption of appliances and devices that are always on
regardless of the temperature (e.g., a refrigerator, a dehumidifier, or a home security
system).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:7

Co
ns
um

p(
on

	
 (k
W
h)
	

External	
 temperature	
 (degrees	
 C)	

-­‐20	
 	
 	
 	
 	
 -­‐15	
 	
 	
 	
 	
 -­‐10	
 	
 	
 	
 	
 -­‐5	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 	
 	
 5	
 	
 	
 	
 	
 	
 10	
 	
 	
 	
 	
 15	
 	
 	
 	
 	
 20	
 	
 	
 	
 	
 25	
 	
 	
 	
 	
 30	
 	
 	
 	
 	
 35	

90th	
 percen(le	
 lines	

10th	
 percen(le	
 lines	

cooling	
 gradient	
 hea(ng	
 gradient	

base	
 load	

Fig. 2. Example of the 3-line regression model.

3.3. Daily Profiles
The third task is to extract daily consumption trends that occur regardless of the out-
door temperature. For this, we use the periodic autoregression (PAR) algorithm for
time series data from [Ardakanian et al. 2014; Espinoza et al. 2005]. The idea behind
this algorithm is illustrated in Figure 3. At the top, we show a fragment of the hourly
consumption time series for some consumer over a period of several days. We are only
given the total hourly consumption, but the goal of the algorithm is to determine, for
each hour, how much load is temperature-independent and how much additional load
is due to temperature (i.e., heating or cooling). Once this is determined, the algorithm
computes the average temperature-independent consumption at each hour of the day,
illustrated at the bottom of Figure 3. Thus, for each consumer, the daily profile consists
of a vector of 24 numbers, denoting the expected consumption at different hours of the
day due to the occupants’ daily habits and not affected by temperature.

Formally, let yhd and thd be the electricity consumption of a particular household and
external temperature, respectively, during hour h on day d. The PAR model assumes
that the electricity consumption of a household at a particular hour of the day is a
linear combination of its consumption at that hour over the previous p days (we use p =
3, as in [Ardakanian et al. 2014]) and the outdoor temperature. That is, for each h from
1 to 24, yhd = α1y

h
d−1+α2y

h
d−2+α3y

h
d−3+α4t

h
d , where the αi’s are coefficients determined

by the PAR algorithm8. The algorithm groups the input data set by household and
by hour of the day, and, for each household-hour group, computes the αi coefficients
using least-squares auto-regression. Thus, each household is associated with 24 sets
of αi coefficients, one set for each hour of the day. Finally, to compute the daily profile
for a given household, we scan its consumption and temperature time series again,
and, for each consumption data point, we subtract the α4t

h
d term from it to obtain the

temperature-independent consumption component (i.e., the blue curve at the top of
Figure 3). We then group the temperature-independent consumption numbers by hour
of the day and take the average, obtaining 24 data points that can be plotted as in
Figure 3.

8We have shown a simple form of this equation with only one temperature term. The model we use has three
temperature variables to model the piece-wise linear relationship between temperature and consumption
shown in Figure 2.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

Time	

Co
ns
um

p,
on

	
 (k
W
h)
	

Co
ns
um

p,
on

	
 (k
W
h)
	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 	

Total	
 consump,on	

Temperature-­‐independent	
 consump,on	

Daily	
 profile	

Fig. 3. Example of a daily profile.

We include both the PAR algorithm and the 3-line algorithm (see Section 3.2) in the
benchmark despite the fact that both algorithms compute, to some extent, a house-
hold’s thermal sensitivity. The primary rationale behind this decision is that PAR and
3-line achieve this at different levels of detail. PAR is designed to extract daily pro-
files, but it also captures a household’s thermal sensitivity through the α4 coefficient,
and, more generally, through the autoregression coefficients associated with exoge-
nous temperature variables. On the other hand, 3-line provides a finer level of detail
by computing suitable switching points between the individual regression lines, which
correspond to heating and cooling setpoints, and which PAR assumes to be part of the
input (recall Footnote 8). Furthermore, since the cooling and heating gradients in 3-
line (recall Figure 2) are only based on electricity consumption values above the 90th
percentile, they provide a better indication of the occupants thermal sensitivity: dat-
apoints with high consumption values correspond to times when the occupants are at
home and active. Another reason to include both PAR and 3-line in the benchmark is
that they represent different workloads, one using autoregression and the other using
ordinary linear regression.

3.4. Similarity Search
The next task is to find groups of similar consumers. Customer segmentation is im-
portant to utilities: for instance, they can determine how many distinct groups of cus-
tomers there are and design targeted energy-saving campaigns for each group. Rather
than choosing a specific clustering algorithm for the benchmark, we include a more
general task: for each of the n time series given as input, we compute the top-k most
similar time series (we use k = 10). The similarity metric we use is cosine similarity.
Let X and Y be two time series. The cosine similarity between them is defined as their
dot product divided by the product of their vector lengths, i.e, X·Y

||X||∗||Y || .

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:9

3.5. On-Line Anomaly Detection
The final algorithm, and the only on-line algorithm in our benchmark, performs
anomaly detection. The previous four algorithms build consumption models and ex-
tract consumption patterns from a historical data set. In contrast, anomaly detection
is performed on one day of data at a time. Below, we present an anomaly detection
framework for smart meter data and discuss how we implemented the framework in
the proposed benchmark.

3.5.1. Anomaly Detection Framework. We focus on two categories of anomalies. If the elec-
tricity consumption of a particular household today is significantly different from its
typical consumption in the past, we flag a self-anomaly. If the consumption today is
significantly different from the average consumption within the household’s group to-
day, we flag a group-anomaly. In this paper, we define a group in a spatial sense as
the neighbourhood of the given household. However, there are other reasonable defini-
tions, such as clustering the households based on their daily profiles, with each cluster
forming a group of households that have similar daily habits. From the point of view of
a performance benchmark, the precise definition of a group is not relevant: we assume
that we are given a data set containing each household ID and its group number.

The idea is illustrated in Algorithm 1, which runs at the end of each day. In line 2,
~y contains the 24 hourly consumption measurements for a particular household, call
it s, for the current day. In line 3, we compute 24 predicted consumption values for s,
one for each hour (we will discuss how to do this shortly). In line 4, we compute the
average consumption for each hour of the current day for all the households belonging
to the same group as s. Then, in lines 5 and 8, we check for self and group anomalies,
respectively, by computing the distance (i.e., the norm of the difference vector) between
the current day’s consumption vector ~y and the predicted consumption vector and cur-
rent day’s average group consumption, respectively. We will discuss how to compute
the anomaly thresholds τs and τ ′s shortly.

In this paper, we assume that anomaly detection runs every day over the last 24
hourly measurements. However, Algorithm 1 can easily be adjusted to run at higher
frequencies if higher-frequency data become available, or to use a sliding window of
the most recent values rather than running at the end of each hour or day. If using a
sliding window, it may help to pre-compute and store yi − ŷi and yi − gi for each time
point i within the current window. This will allow ‖~y−~̂y‖ and ‖~y−~g‖ to be re-computed
incrementally when the window slides.

3.5.2. Instantiation of Anomaly Detection Framework. We implemented line 3 of Algorithm 1
using the PAR model from Section 3.3. To predict the hourly electricity consumption
for a day for a given household, we need the following information: the αi coefficients of
the PAR model for this household, the most recent three days of consumption data for
this household (i.e., the yhd−j terms in the PAR model), and the temperature time series
during the 24 hours being predicted. For a particular hour h of day d, we simply plug
in the temperature and the consumption at that hour over the past three days into the
PAR equation. We get ŷhd = α1y

h
d−1+α2y

h
d−2+α3y

h
d−3+α4t

h
d . Repeating for each of the 24

hours of the day, we assemble the predicted consumption vector ~y =< ŷ1d, ŷ
2
d, . . . , ŷ

24
d >.

Figure 4 summarizes our anomaly detection algorithm. At the end of each day, new
consumption and temperature data arrive. For each household, we compare its actual
consumption over the current day with 1) its predicted consumption based on its PAR
model and today’s temperature, and 2) the average consumption in its group over the
current day.

We now explain how we obtain the thresholds τs and τ ′s for each household s. For
τs, i.e., the self-anomaly threshold, we go back to the historical consumption data set

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

Algorithm 1: Anomaly Detection Framework
1 foreach household s do
2 Let ~y =< y1, y2, . . . , y24 > be the actual hourly consumption of s for the current

day
3 Compute ~̂y =< ŷ1, ŷ2, . . . , ŷ24 >, the predicted hourly consumption of s for the

current day
4 Compute ~g =< g1, g2, . . . , g24 >, the average hourly consumption of s’s group for

the current day
5 if ‖~y − ~̂y‖ > τs then
6 Output “Self-anomaly for household s”
7 end
8 if ‖~y − ~g‖ > τ ′s then
9 Output “Group anomaly for household s”

10 end
11 end

PAR	
 model	

coefficients	

Training	
 data	

Consump7on	
 &	

temperature	
 data	

for	
 new	
 day	

Actual	
 consump7on	

Predicted	
 consump7on	

Self-­‐anomaly?	

Actual	
 group	
 consump7on	

Group-­‐anomaly?	

Fig. 4. Overview of anomaly detection.

that was used to train the PAR model, and, for each day in this data set, we compute
the predicted consumption as above. For each day in the historical data set, we then
compute the distance between the actual consumption and predicted consumption as
in line 5 of the algorithm. Finally, we set τs to be the mean plus three standard de-
viations of these differences. Thus, a self-anomaly is flagged only if the current day’s
predicted consumption deviates from the actual consumption by much more than the
natural variation in the training data set.

We use a similar methodology for τ ′s, but here we do not need to use the PAR model.
We go back to the historical consumption data set, and, for each day in this data set,
we compute the distance between the actual consumption of a given household s and
the average consumption of s’s group, as in line 8 of the algorithm. Then, we set τ ′s to be
the mean plus three standard deviations of these differences. Thus, a group anomaly
is flagged only if the current day’s actual consumption of s deviates from its group’s
average consumption much more than it did in the training data set.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:11

Different households may have different anomaly thresholds. For instance, a house-
hold s with regular daily habits can have its consumption easily predicted by the PAR
model and therefore τs will be small. On the other hand, a household s without regular
habits will have large differences between actual and predicted consumption in the
training data and therefore a larger τs. Similarly, if a particular household s has sim-
ilar habits to the others within its group/neighbourhood, its τ ′s will be low. However, if
the occupants of s work nightly shifts but those in the other households in this group
work regular hours, then we will likely see large differences between s’s consumption
and its group’s average consumption in the training data set, leading to a larger value
of τ ′s. In fact, if the value of τ ′s ends up being very large, we may turn off group anoma-
lies for this household to avoid false alarms: this household is naturally different to
the others in its group.

It is important to note that we will not measure the time it takes to determine the
anomaly thresholds. We assume that the PAR models and the thresholds have already
been computed and are stored in a file or a table. We will only measure the loading
time of new data, one day at a time, and the running time of the anomaly detection
algorithm.

Finally, we note that the proposed anomaly detection framework provides a way to
impute missing data. If a particular time series is missing a consumption value for a
particular hour of the day, we can estimate this value from the average consumption
at that hour of the day over the past three days (and the corresponding temperature
time series to account for changes in temperature).

3.5.3. Explanations of Anomalies. In addition to returning binary decisions in lines 6 and
9, our framework can be extended to provide explanations of the detected anomalies. In
the benchmark, we implemented the following simple explanation algorithm for each
detected anomaly. First, we divide a day into three 8-hour periods: night (midnight till
8am), day (8am till 4pm) and evening (4pm till midnight). Then, we check whether
the actual consumption of a given household was lower or higher than predicted con-
sumption (for self-anomalies) or average group consumption (for group anomalies) by
at least ten percent during each of the three periods. Based on this, we report explana-
tions of the form “higher than normal consumption throughout the day”, “higher than
normal consumption in the evening”, “higher than normal consumption at night but
lower than normal consumption during the day”, etc.

3.5.4. Examples of Anomalies. In Figure 5, we show three examples of self-anomalies
that our algorithm found in the real data set. Dotted lines correspond to actual con-
sumption throughout a particular day and solid lines correspond to predicted consump-
tion for that household and that day. In the first example, nightly consumption is nor-
mal, but day and evening consumption is higher. In the second example, night and day
consumption is higher but evening consumption is not. The last example is interest-
ing: only the 6am consumption is much higher than predicted. Since the focus of this
paper is on performance benchmarking rather than anomaly detection itself, we leave
a further investigation of anomaly/outlier detection and explanation in smart meter
data for future work.

3.5.5. Comparison to Existing Approaches. We now compare our anomaly detection
framework to a clustering-based approach for outlier detection in energy consumption
from [Chen and Cook 2011]. In their approach, the first training step is to cluster all
the input vectors ~y provided in the training dataset, each corresponding to 24 hourly
consumption values of a particular household for a particular day. Next, for each clus-
ter, the algorithm computes the mean and the standard deviation of the distances
between the cluster centroid and each vector belonging to this cluster. Assuming that

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

Fig. 5. Three examples of anomalies detected by our self-anomaly algorithm.

Fig. 6. Anomalies flagged by our algorithm (Prediction-based) and the Clustering-based algorithm in the
month of July.

the distances are normally distributed, anomaly detection proceeds as follows. When
the data for a new day arrive, the closest cluster centroid to the new day’s consumption
vector is identified. Then, the algorithm computes the distance to this centroid, and,
using the probability density function for a normal distribution, it computes the prob-
ability that this distance value comes from the distribution empirically obtained from
the training dataset. If this probability is below some threshold, then an anomaly is
flagged.

A labeled dataset containing true anomalies is required to evaluate the accuracy of
any anomaly detection technique. In the absence of such a data set, we trained our
algorithm and the clustering-based algorithm from [Chen and Cook 2011] on our real
data set, from January till June, and used both algorithms to identify self-anomalies in
July. Figure 6 plots the number of anomalies found by both algorithms (ours is labeled
“Prediction-based”) and shows that the clustering-based algorithm labels many more
consumption vectors as anomalous. For this experiment, the threshold value for the
clustering algorithm was extremely small: 10−20 compared to 1.5 × 10−3 for our algo-
rithm which corresponds to three standard deviations for a normal distribution, and
larger threshold values produced orders of magnitude more anomalies for the cluster-
ing algorithm. Upon further inspection, we found that several days in July had very
high temperature, and the clustering algorithm considered many household during
those days as anomalies. On the other hand, our algorithm, which is based on the
PAR model which focuses on daily habits independently of temperature, did not. Thus,
we believe that many anomalies found by the clustering algorithms were false alarms
indicating anomalous weather patterns rather than anomalous customer behaviour.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:13

3.6. Discussion
The proposed benchmark consists of 1) consumption histograms, 2) the 3-line algo-
rithm for understanding the effect of external temperature on consumption, 3) the
periodic auto-regression (PAR) algorithm to extract typical daily profiles, 4) time se-
ries similarity search to find similar consumers, and 5) anomaly detection. The first
three algorithms analyze the electricity consumption of each household in terms of its
distribution, its temperature sensitivity and its daily patterns. The fourth algorithm
finds similarities among different consumers. The fifth algorithm examines one day
of data at a time and compares each household’s consumption patterns from that day
to those in the past and to those of its group/neigbourhood. While many more smart
meter analytics algorithms have been proposed, we believe the five tasks we have cho-
sen accurately represent a variety of fundamental computations that might be used to
extract insight from smart meter data, both off-line and on-line.

In terms of computational complexity, the first three algorithms perform the same
task for each consumption time series and therefore can be parallelized easily, while
similarity search has quadratic complexity with respect to the number of time series.
Computing histograms requires grouping the time series according to consumption
values. The 3-line algorithm additionally requires grouping the data by temperature,
and requires statistical operators such as quantiles and least-squares regression lines.
The PAR and similarity algorithms require time series operations. Finally, anomaly
detection requires vector and matrix operations, and lookups of historical data and
model parameters. Thus, the proposed benchmark tests the ability to sequentially scan
the data or extract different subsets of the data, and run various statistical and time
series operations.

4. THE DATA GENERATOR
4.1. Algorithm Description
Recall from Section 3 that the proposed benchmark requires n time series as input,
each corresponding to an electricity consumer. Testing the scalability of a system there-
fore requires running the benchmark with increasing values of n. Since it is difficult
to obtain large amounts of smart meter data due to privacy issues, and since using
randomly-generated time series may not give accurate results, we propose a data gen-
erator for realistic smart meter data.

The intuition behind the data generator is as follows. Since electricity consumption
mainly depends on external temperature and daily activity, we start with a small seed
of real data and we generate the daily activity profiles (recall Figure 3) and temper-
ature regression lines (recall Figure 2) for each consumer therein. To generate a new
time series, we take the daily activity pattern from a randomly-selected consumer in
the real data set, the temperature dependency from another randomly-selected con-
sumer, and we add some white noise. Thus, we first disaggregate the consumption
time series of existing consumers in the seed data set, and we then re-aggregate the
different pieces in a new way to create a new consumer. This gives us a realistic new
consumer whose electricity usage combines the characteristics of multiple existing con-
sumers.

Figure 7 illustrates the proposed data generator. As a pre-processing step, we use the
PAR algorithm from [Espinoza et al. 2005] to generate daily profiles for each consumer
in the seed data set. We then run the k-means clustering algorithm (for some specified
value of k, the number of clusters) to group consumers with similar daily profiles. This
gives us k cluster centroids, one for each type of daily profile. We also run the 3-line
algorithm and record the heating and cooling gradients for each consumer. The pre-
processing step only needs to run once.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

…	

Clusters	
 of	
 	

ac.vity	
 profiles	

Select	
 a	
 cluster	
 Select	
 cooling	

&	
 hea.ng	
 gradients	

Temperature	

.me	
 series	

	
 	
 	
 ac.vity	
 load	

+	
 temperature	

	
 	
 	
 dependent	
 load	

+	
 white	
 noise	

Corresponding	
 cooling	
 	

and	
 hea.ng	
 gradients	

Return	
 new	

synthe.c	

.me	
 series	
 …	

Fig. 7. Illustration of the proposed data generator.

Now, creating a new time series based on the clusters computed in the pre-processing
step proceeds as follows. We randomly select an activity profile cluster and use the
cluster centroid to obtain the hourly consumption values corresponding to daily activ-
ity load. Next, we randomly select an individual consumer from the chosen cluster and
we obtain its cooling and heating gradients. We then need to input a temperature time
series for the new consumer and we have all the information we need to create a new
consumption time series9. Each hourly consumption measurement of the new time se-
ries is generated by adding together 1) the daily activity load for the given hour, 2) the
temperature-dependent load computed by multiplying the heating or cooling gradient
by the given temperature value at that hour, and 3) a Gaussian white noise component
with some specified standard deviation σ.

The data generator also includes a user-controlled peak factor parameter that de-
termines the sharpness of the peaks in the generated consumption time series. Given
a generated time series, we identify each peak, defined as at least three consecutive
consumption values that are higher than the consumption immediately before and im-
mediately after. Then, for each such peak, we increase the peak-to-average ratio by the
peak factor. Thus, a peak factor of one does not change anything, whereas a peak factor
of, say, five, creates significantly more pronounced peaks, as shown in Figure 8 (with
hour of the day on the x-axis). The user can also specify a peak factor range, and the
data generator will randomly select a peak factor from this range for each generated
time series. This allows us to produce new datasets in which customers have simi-
lar habits to those in the underlying real dataset, but some have significantly higher
activity load during peak times.

We implemented the data generator in Spark. The pre-processing step runs first, and
its results are written to HDFS and replicated to each node in the cluster. Afterwards,
data generation proceeds in parallel without any communication among nodes. For

9In our experiments, we used the temperature time series corresponding to the southern-Ontario city from
which we obtained the real data set.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:15

Fig. 8. Effect of setting the peak factor to five.

(a) Real

(b) Generated

Fig. 9. Daily and weekly consumption patterns in the real (a) and generated (b) datasets.

load balancing, we configure the Spark job that generates new data such that each
processing node produces the same number of new time series.

4.2. Validation and Efficiency
We now show that the generator produces realistic data and comment on its perfor-
mance. We use k = 4 as the number of clusters of activity profiles, and we use a ran-
domly selected sample of 10 percent of our real dataset, or about 2700 customers. We
also generate the same number, or about 2700, synthetic customers. First, Figure 9
(a) shows the aggregate consumption within our real dataset as a function of day of
the week, and Figure 9 (b) shows the same for a dataset produced by our generator.
Consumption patterns, such as morning and afternoon peaks occurring every day, are
preserved.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

(a) Real (b) Generated

Fig. 10. Distribution of hourly consumption of real customers (a) and a corresponding synthetically-
generated customer (b).

Next, we randomly select a new time series produced using our generator, record
the activity profile that was used to generate it (recall Figure 7), and compare its
consumption histogram to that of the average consumption of (real) customers from
this activity profile cluster. Figure 10 shows the results, with real consumption on the
left and generated consumption on the right. Hourly consumption ranges are shown
on the x-axis and frequency on the y-axis. The distributions are very similar.

In the final experiment demonstrating that our generator produces realistic data, we
compare the centroids of activity clusters in the real dataset (which we have computed
in the pre-processing step of data generation) with those in the generated dataset
(which we have computed by re-running k-means clustering on the generated time
series). Figure 11 (a) shows the four activity profile centroids in the real data, with hour
of the day on the x-axis. The clusters are numbered zero through 3, with the legend
showing how many customers belong to each cluster. The corresponding centroids in
the generated dataset, along with the number of customers per cluster, are shown in
Figure 11 (b). We conclude that the generated dataset contains similar activity profile
clusters to the real dataset.

Finally, we demonstrate linear scalability of our Spark implementation of the data
generator. We use a 16-node cluster (full details in Section 5.1) to generate datasets
sized between 50 and 300GB. Figure 12(a) shows that execution time increases lin-
early as we increase the size of the dataset to be generated (using all 16 nodes),
and that it takes roughly 10 minutes to generate 100GB of data. Figure 12(b) shows
that throughput increases linearly as we increase the number of nodes (to generate a
300GB dataset).

5. BENCHMARKING RESULTS
This section presents our benchmarking results. We start with a description of the ex-
perimental environment (Section 5.1) and an overview of the five platforms in which
we implemented the proposed benchmark (Section 5.2). We then evaluate the off-line
algorithms. Section 5.3 discusses our findings using a single multi-core server, includ-
ing the effect of data layout and partitioning (Section 5.3.1), the relative cost of data
loading versus query execution (Section 5.3.2), and the performance of single-threaded
and multi-threaded execution (Section 5.3.3 and 5.3.4, respectively). In Section 5.4, we
investigate the performance of Spark and Hive on a cluster of 16 worker nodes. Next,
we experiment with on-line anomaly detection, with data loading times presented in
Section 5.5, single-server results in Section 5.6 and cluster results in Section 5.7. We
conclude with a summary of lessons learned in Section 5.8.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:17

(a) Real

(b) Generated

Fig. 11. Cluster centroids of daily activity load profiles in the real (a) and generated (b) datasets.

(a) Using all 16 nodes to generate
datasets with various sizes

(b) Generating a 300GB dataset using
4 to 16 nodes

Fig. 12. Scalability of the data generator.

5.1. Experimental Environment
We use the following two testing environments.

— Our server has an Intel Core i7-4770 processor (3.40GHz, 4 Cores, hyper-threading
is enabled, two hyper-threads per core), 16GB RAM, and a Seagate hard drive (1TB,
6 GB/s, 32 MB Cache and 7200 RPM), running Ubuntu 12.04 LTS with 64bit Linux
3.11.0 kernel.

— We also use a dedicated cluster with one administration node and 16 worker nodes.
The administration node is the master node of Hadoop and HDFS, and clients sub-
mit jobs there. All the nodes have the same configuration: dual-socket Intel(R)

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

Table I. Statistical functions built into the five tested platforms

Function Matlab MADlib System C Spark Hive
Histogram yes yes no no yes
Quantiles yes yes no no no
Regression yes yes no third third

and party party
PAR library library

Cosine no no no no no
Similarity

Matrix/ yes no no third third
Vector party party

Operations library library

Xeon(R) CPU E5-2620 (2.10GHz, 6 cores per socket, and two hyper-threads per
core), 60GB RAM, running 64bit Linux with kernel version 2.6.32. The nodes are
connected via gigabit Ethernet, and a working directory is NFS-mounted on all the
nodes.

Our real data set consists of n = 27, 300 electricity consumption time series, each
with hourly readings for over a year. We will use the terms consumption time series,
consumers and businesses interchangeably. We also obtained the corresponding tem-
perature time series. The total data size is roughly 10 GB.

We also use the proposed data generator to create larger synthetic data sets of size
up to one Terabyte (which corresponds to over two million time series), and experiment
with them in Sections 5.4 and 5.7. For anomaly detection, we use the first six months of
data for training (i.e., to build the PAR models and obtain the anomaly thresholds), and
the next 30 days of data for detecting anomalies. In anomaly detection, the algorithm
receives one day of data (hourly consumption and temperature) at a time and must
process that day before moving to the next one.

5.2. Benchmark Implementation and Evaluation Methodology
We now introduce the five platforms in which we implemented the proposed bench-
mark. Whenever possible, we use native statistical functions or third-party libraries.
Table I shows which functions were included in each platform and which we had to
implement ourselves.

The baseline system is Matlab, a traditional numeric and statistical computing plat-
form that reads data directly from files. We use the built-in histogram, quantile, re-
gression, PAR and matrix/vector manipulation functions. For similarity search, we im-
plemented our own cosine similarity function by looping through each time series,
computing its similarity to every other time series, and, for each time series, returning
the top 10 most similar matches.

We also evaluate PostgreSQL 9.1 and MADlib version 1.4 [Hellerstein et al. 2012],
which is an open-source platform for in-database machine learning. As we will ex-
plain later in this section, we test two ways of storing the data: one measurement
per row with a clustered index on consumer ID, and one customer per row with all
the measurements for this customer stored in a Postgres array. Everything we need
except cosine similarity and vector distance is built-in. We implemented the bench-
mark in PL/PG/SQL with embedded SQL, and we call the statistical functions directly
from within SQL queries. We set “shared buffers=3072MB, temp buffers=256MB, work
mem=1024MB, checkpoint segments=64” and we use default values for other configu-
ration parameters10.

10We also experimented with turning off concurrency control and write-ahead-logging which are not needed
in our application, but the performance improvement was not significant.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:19

Next, we use System C as an example of a state-of-the-art commercial system. It is
a main-memory column store geared towards time series data. System C maps tables
to main memory to improve I/O efficiency. In particular, at loading time, all the files
are memory mapped to speed up subsequent data access. However, System C does not
include a machine learning toolkit, and therefore we implemented all the required
statistical operators as user-defined functions in the procedural language supported
by it.

We also use Spark 1.5.2 [Zaharia et al. 2010] and Spark Streaming [Zaharia et al.
2012] as examples of open-source distributed data processing platforms. Spark reports
improved performance on machine learning tasks over standard Hadoop/MapReduce
due to better use of main memory [Zaharia et al. 2010]. We use the Apache Math li-
brary for regression, but we had to implement our own histogram, quantile and cosine
similarity functions. We use the Hadoop Distributed File System (HDFS) as the un-
derlying file system for Spark, and we experiment with several different file formats.

Finally, we test another distributed platform, Hive 1.2.1 [Thusoo et al. 2009], which
is built on top of Hadoop and includes a declarative SQL-like interface. We use
Hadoop/Yarn 2.6.2 in this paper. Hive has a built-in histogram function, and we use
Apache Math for regression. We implemented the remaining functions (quantiles and
cosine similarity) in Java as user-defined functions (UDFs). The data are stored in
Hive external tables.

In the remainder of this section, we will refer to the five tested platforms as Matlab,
MADlib, C (or System C), Spark and Hive.

For the four off-line algorithms, we measure running time and memory consumption
using different data set sizes (i.e., different number of households). For anomaly de-
tection, we first compute the PAR model coefficients and anomaly thresholds for each
consumer but do not include the time it took to do this. The coefficients and thresh-
olds are then stored in files (Matlab, C, Spark, Hive) or tables indexed by consumer ID
(MADlib). Recall that anomaly detection requires the last three days of consumption
data to compute predictions (Section 3.5.2). Thus, to speed up the process, each plat-
form stores a sliding window of the last three days plus the current day as a separate
table or as separate files before adding new data to the table storing the entire history.
To compute predictions, it suffices to access these smaller tables/files rather than the
entire history. We then process the next 30 days of data, one day at a time, and mea-
sure the time it takes to load the data and run anomaly detection. Loading new data
means different things in different platforms:

— In Matlab, we copy one day of data at a time from disk to memory as a single file.
The file is then loaded into two n-by-24 matrices, with each row corresponding to the
24 hourly consumption or temperature measurements for a particular household.
We use Matlab’s find operator to retrieve data from the matrix when computing
predictions and distances between vectors.

— In MADlib, new data are loaded into the sliding window table, which stores one
measurement per row.

— In C, we copy new data into memory and maintain the sliding window there.
— In Spark/Spark Streaming, we copy new data from the local file system into HDFS

and then into memory. We use the Spark Streaming API to consume batches of
new data one day at a time and to maintain a sliding window of recent data. Fur-
thermore, we define the model parameters and thresholds as broadcast variables
(accessible via hashing) so that each processing node can compute predictions and
detect anomalies at the map side.

— In Hive, we also copy new data from the local file system into HDFS, and the sliding
window of recent data is accessible as a Hive external table.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

Note that the on-line part of our benchmark does not take into account lagged re-
porting and delayed data (e.g., due to data feed outages); instead, it “replays” 30 days
of data, one day at a time. This means that each batch of new data has the same size
and takes roughly the same amount of time to process. In practice, some batches may
contain more data than others, meaning that the system must be over-provisioned to
process all the data that can possibly arrive in one batch before the next batch arrives.

In terms of programming time to implement our benchmark, PostgreSQL/MADlib
required the least effort, followed by Matlab and Hive, while Spark and especially
System C required by far the most effort. In particular, we found Hive UDFs easier to
write than Spark programs11. However, since we did not conduct a user study, these
programmer effort observations should be treated as anecdotal.

5.3. Off-Line Algorithms: Single-Server Results
We begin by comparing Matlab, MADlib and System C running on a single multi-core
server, using the real 10GB dataset. Again, we start with off-line tasks only.

5.3.1. Data Loading and File Partitioning. First, we investigate the effect of loading and
processing one large file containing all the data versus one file per consumer. Figure 13
shows the time it took to load our 10-GB real data set into the three systems tested in
this section, both in a partitioned (one file per consumer, abbreviated “part.”) and non-
partitioned (one big file, abbreviated “un-part.”) format. The partitioned data load also
includes the cost of splitting the data into small files. The loading time into PostgreSQL
is the slowest of the three systems, but it is more efficient to bulk-load one large CSV
file than many smaller files. In terms of data loading time, System C is not significantly
affected by the number of files. Matlab does not actually load any data and instead
reads from files directly. The single bar reported for Matlab, of roughly 4.5 minutes,
simply corresponds to the time it took to split the data set into small files.

Since Matlab reads data directly from files, so the goal of our next experiment is to
investigate the performance of analytics in Matlab given the two partitioning strate-
gies discussed above. Figure 14 shows the running time of the 3-line algorithm using
Matlab on (partitioned and non-partitioned) subsets of our real data sets sized from
0.5 to 2 GB. (We observed similar trends when running the other algorithms in the
benchmark). The impact on Matlab is significant: it operates much more efficiently
if each consumer’s data are in a separate file. Upon further investigation, we noticed
that Matlab reads the entire large file into an index which is then used to extract indi-
vidual consumers’ data; this is slower than reading small files one-by-one and running
the 3-line algorithm on each file directly.

Based on the results of this experiment, in the remainder of this section, we always
run Matlab with one file per consumer.

5.3.2. Cold Start vs. Warm Start. Next, we measure the time it takes each system to
load data into main memory before executing the 3-line algorithm (we saw similar
trends when testing other algorithms from the benchmark, so we omit those results
for brevity). In cold-start, we record the time to read the data from the underlying
database or filesystem and run the algorithm. In warm-start, we first read the data into
memory (e.g., into a Matlab array, or in PostgreSQL, we first run SELECT queries to
extract the data we need) and then we run the algorithm. Thus, the difference between
the cold-start and warm-start running times corresponds to the time it takes to load
the data into memory.

11However, had we used the recently-proposed SparkSQL rather than writing Spark programs directly, the
programming effort would likely be on par with that of Hive.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:21

Matlab MADlib C
0

5

10

15

20

25

30

35

E
la

p
s
e
d

 t
im

e
,
m

in
.

Part.

un-part.

Fig. 13. Data loading times,10GB real dataset.

0.0 0.5 1.0 1.5 2.0

Size of dataset, GB

0.0

2.0

4.0

6.0

8.0

10.0

E
la

p
s
e
d

 t
im

e
,
m

in

Matlab (unpart.)

Matlab (part.)

Fig. 14. Impact of data partitioning on analytics, 3-
line algorithm.

Matlab MADlib C
0

5

10

15

20

25

30

35

E
la

p
s
e
d

 t
im

e
,

m
in

.

T
1

T
2

T
3

Cold-start

Warm-start

Fig. 15. Cold-start vs. warm-start, 3-line algorithm, 10GB real dataset.

Figure 15 shows the results on the real data set. The left bars indicate cold-start
running times, whereas the right bars represent warm-start running times and are di-
vided into three parts: T1 is the time to compute the 10th and 90th quantiles, T2 is the
time to compute the regression lines and T3 is the time to adjust the lines in case of any
discontinuities in the piecewise regression model. Cold-start times are higher for all
platforms, but Matlab and MADlib spend the most time loading data into their respec-
tive data structures, followed by System C. Overall, System C is easily the fastest and
the most efficient at data loading—most likely due to efficient memory-mapped I/O.
Also note that for each system, T2, i.e., the time to run least-squares linear regression,
is the most costly component of the 3-line algorithm.

Figure 15 suggests that System C is noticeably more efficient than Matlab even
in the case of warm start, when Matlab has all the data it needs in memory. There
are at least two possible explanations for this: Matlab’s data structures are not as
efficient as System C’s, especially at the data sizes we are dealing with, or Matlab’s
implementation of linear regression and other statistical operators is not as efficient
as our hand-crafted implementations within System C. We suspect it is the former. To

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

investigate this further, we measured the running time of multiplying two randomly-
generated 4000x4000 floating-point matrices in Matlab and System C. Indeed, Matlab
took under a second, while System C took over 5 seconds.

5.3.3. Single-Threaded Results. We now measure the cold-start running times of each
off-line algorithm in single-threaded mode (i.e., no parallelism). System C has a con-
figuration parameter that governs the level of parallelism (the number of cores to use),
while for Matlab, we start a single instance, and for MADlib, we establish a single
database connection. We use subsets of our real data sets with sizes between 2 and
10 GB for this experiment. The running time results are shown in Figure 16 for 3-
line, PAR, histogram construction and similarity search, from left to right. Note that
the Y-axis of the rightmost plot is different: similarity search is slower than the other
three tasks, and the Matlab and MADlib curves end at 4GB because the running time
on larger data sets was prohibitively high. System C is the clear winner: it is a com-
mercial system that is fast at data loading thanks to memory-mapped I/O, and fast
at query execution since we implemented the required statistical operators in a low-
level language. Matlab is the runner-up in most cases except histogram construction,
which is simpler than the other tasks and can be done efficiently in a database system
without optimized vector and matrix operations. MADlib has the worst performance
for 3-line, PAR and similarity search.

Figure 17 shows the corresponding memory consumption of each algorithm for each
platform; the plots correspond to running the “free -m” command every five seconds
throughout the runtime of the algorithms and taking the average. Matlab and Sys-
tem C have the lowest memory consumption; recall that for Matlab, we use separate
files for different consumers’ data and therefore the number of files that need to be in
memory at any given time is limited.

In terms of the tested algorithms, 3-line has the lowest memory usage since it only
requires the 10th and 90th percentile data points to compute the regression lines, not
the whole time series. The memory footprint of PAR and histogram construction is
higher because they both require the whole time series. The memory usage of similar-
ity search is higher still, especially for Matlab and MADlib, both of which keep all the
data in memory for this task. On the other hand, since System C employs memory-
mapped files, it only loads what is required.

The relatively poor performance of MADlib may be related to its internal storage
format. In the next experiment, we check if using the PostgreSQL array data type im-
proves performance. Table 1 in Figure 18 shows the conventional row-oriented schema
for smart meter data which we have used in all the experiments so far, with a house-
hold ID, the outdoor temperature, and the electricity consumption reading (plus the
timestamp, which is not shown). That is, each data point of the time series is stored as
a separate row, and a clustered B-tree index is built on the household ID to speed up
the extraction of all the data for a given consumer (household). Table 2 in Figure 18
stores one row for each consumer and uses arrays to store all the temperature and
consumption readings for the given consumer using the same positional encoding. Us-
ing arrays, the running time of 3-line on the whole 10 GB data set went down from
19.6 minutes to 11.3 minutes, which is faster than Matlab but still much slower than
System C (recall the leftmost plot in Figure 16). The other algorithms also ran slightly
faster but not nearly as fast as in System C: the PAR running time went down from
34.9 to 30 minutes, the histogram running time went down from 7.8 to 6.8 minutes,
and the running time of similarity search (using 6400 households, which works out to
about 2 GB) went down from 58.3 to 40.5 minutes. However, the performance gains
of the array data type come with the overhead of converting raw data, containing one
measurement per line, to an array-based layout. In our experiments, it took 28 minutes

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:23

(a) 3-line (b) PAR

(c) Histogram (d) Similarity

Fig. 16. Single-threaded execution times of each algorithm using each system.

to transform the 10GB real-world data set. In addition, a PostgreSQL array cannot ex-
ceed 1GB.We also experimented with a table layout in between those in Table 1 and
Table 2, namely one row per consumer per day, which resulted in running times in
between those obtained from Table 1 and Table 2.

5.3.4. Multi-Threaded Results. We now evaluate the ability of the tested platforms to
take advantage of parallelism. Our server has four cores with two hyper-threads per
core, but we cannot control the use of these resources directly in all of the systems
tested. As a result, we define the parallelism level differently for each system: for Sys-
tem C we run one process and vary the number of threads; for Matlab we vary the
number of separate processes, which we run manually; and for MADlib we vary the
number of database connections.

In general, the histogram, 3-line and PAR algorithms are easy to parallelize as each
thread can run on a subset of the consumers without communicating with the other
threads. Similarity search is harder to parallelize because for each time series, we
need to compute the cosine similarity to every other time series. We do this by running
parallel tasks in which each task is allocated a fraction of the time series and computes
the similarity of its time series with every other time series. The results are then
merged and the top ten results are returned for each consumer.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

(a) 3-line (b) PAR

(c) Histogram (d) Similarity

Fig. 17. Memory consumption of each algorithm using each system.

Fig. 18. Two table layouts for storing smart meter data in PostgreSQL.

Figures 19(a)–19(d) show the speedup obtained by increasing the parallelism level
from 1 to 8 for each algorithm. Again, we continue to use the 10-GB real data set. Each
plot includes a diagonal line indicating ideal speedup (i.e., using two connections or
cores would be twice as fast as using one). The results show that Matlab and System
C can obtain nearly-linear speedup when the degree of parallelism is no greater than
four. This makes sense since our server has four physical cores, and increasing the
level of parallelism beyond four brings diminishing returns due to increasing resource
contention (e.g., for floating point units) among hyper-threads. Matlab and C appear to
scale better than MADlib, but this may be an artifact of how we simulate parallelism:
Matlab instances run in a shared-nothing fashion because each consumer’s data are in

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:25

(a) 3-line (b) PAR

(c) Histogram (d) Similarity

Fig. 19. Speedup of execution time on a single multi-core server using the 10GB real dataset.

a separate file, while MADlib uses multiple connections to the same database server,
with each connection reading data from the same table.

5.4. Off-Line Algorithms: Cluster Results
We now focus on the performance of off-line analytics in Spark and Hive on a cluster
using large synthetic data sets. We set the number of parallel executors for Spark and
the number of MapReduce tasks for Hive to be up to 12 per node, which is the number
of physical cores12.

5.4.1. System C vs. Spark and Hive. In the previous batch of experiments, System C was
the clear performance winner in a single-server scenario. We now compare System C
against the two distributed platforms, Spark and Hive, on large synthetic data sets
of up to 100GB (for similarity search, we use 6,000 up to 32,000 time series). This
experiment is unfair in the sense that we run System C on the server (with maximum
parallelism level of eight hyper-threads) but we run Spark and Hive on the cluster.
Nevertheless, the results are interesting.

Figure 20 shows the running time of each algorithm. Up to 40GB data size, System
C is keeping up with Spark and Hive despite running on a single server. Similarity
search performance of System C is also very good.

12We experimented with different values of these parameters and found that Spark was not sensitive to the
number of parallel executors while Hive generally performed better with more MapReduce tasks up to a
certain point.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

(a) 3-line algorithm (b) PAR algorithm

(c) Histogram construction (d) Similarity search

Fig. 20. Execution times using large synthetic data sets.

Figure 21 illustrates another way of comparing the three systems that is more fair.
Part (a) shows the throughput, for 3-Line, PAR and histogram construction, in terms
of how many households can be handled per second per server when using the 100GB
synthetic data set. That is, we divide the total throughput of Spark and Hive by 16,
the number of worker nodes in the cluster. Using this metric, even at 100GB, System
C is competitive with Spark and Hive on 3-Line and PAR, and better on the simple
algorithm of histogram construction. Similarly, part (b) shows that the throughput per
server for similarity search is higher for System C at 32k households.

5.4.2. Spark vs. Hive using Different Data Formats. In this experiment, we take a closer
look at the relative performance of Spark and Hive and the impact of the file format,
using synthetic data sets up to a Terabyte. We use the default HDFS text file format,
with default serialization, and without compression. The three options we test are: 1)
one file (that may be partitioned arbitrarily by HDFS) with one smart meter reading
per line, 2) one file with one household per line (i.e., all the readings from a single
household on a single line), and 3) many files, with one or more households per file
(but no household scattered among many files), and one smart meter reading per line.
Note that while the first format is the most flexible in terms of storage, it may require
a reduce step for the tested algorithms since we cannot guarantee that all the data

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:27

(a) 3-Line, PAR and Histogram construction;
100GB data set

(b) Similarity search, 32k households

Fig. 21. A comparison of throughput per server of System C, Spark and Hive.

for a given household will be on the same server. The second and third options do not
require a reduce step.

In Hive, we use three types of user-defined functions with the three file formats:
generic UDF (user defined function), UDAF (user defined aggregation function) and
UDTF (user defined table function). UDF and UDTF typically run at the map side for
the scalar operations on a row, while UDAF runs at the reduce side for an aggregation
operations on many rows. We use a UDAF for the first format since we need to collate
the numbers for each household to compute the tested algorithms. We use a generic
UDF for the second format, for which map-only jobs suffice. We use a UDTF for the
third format since UDTFs can process a single row and do the aggregation at the map
side, which functions as a combiner. For the third format, we also need to customize
the file input format, which takes a single file as an input split. We overwrite the
isSplitable() method in the TextInputFormat class by returning a false value, which
ensures that any given time series is processed in a self-contained manner by a single
mapper.

First data format. Figure 22 shows the execution time of the four tested algo-
rithms on various data set sizes up to a Terabyte. Spark is noticeably faster for sim-
ilarity search (in Hive, we implemented this as a self-join, which resulted in a query
plan that did not exploit map-side joins, whereas in Spark we directly implemented
similarity search as a MapReduce job with broadcast variables and map-side joins),
slightly faster for PAR and histogram construction, and slower for 3-Line construction
as the data size grows. Figure 23 shows the speedup relative to using only 4 out of
16 worker nodes for the Terabyte data set, with the number of worker nodes on the
X-axis. Hive appears to scale slightly better as we increase the number of nodes in
the cluster. Finally, Figure 24 shows the memory usage as a function of the data set
size, computed the same way as in Figure 17. Spark uses more memory than Hive,
especially as the data size increases. As for the different algorithms, 3-Line is the most
memory-intensive because it requires temperature data in addition to smart meter
data.

Second data format. Figure 25 and 26 show the execution times and the speedup,
respectively, with one time series per line. For 3-Line, PAR and histogram construc-
tion, we do not require a reduce step. Therefore the running times are lower than for
the first data format, in which a single time series may be scattered among nodes in
the cluster. Spark and Hive are very close in terms of running time because they per-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

(a) 3-Line (b) PAR

(c) Histogram (d) Similarity

Fig. 22. Execution times using the first data format in Spark and Hive.

form the same HDFS I/O. We also see a higher speedup than with the first data format
thanks to map-only jobs, which avoid an I/O-intensive data shuffle among servers com-
pared to jobs that include both map and reduce phases. Similarity search is slightly
faster than with the first data format; most of the time is spent on computing the pair-
wise similarities, and the only time savings in the second data format are due to not
having to group together the readings from the same households. Note that similarity
search still requires a reduce step to sort the similarity scores for each household and
find the top-k most similar consumers.

Third data format. Here, we only use the 100GB data set with a total of 260,000
households and we vary the number of files from 10 to 10,000; recall that in the third
data format, the readings from a given time series are guaranteed to be in the same file.
We test two options in Hive: a UDTF with the customized file input format described
earlier, and a UDAF in which a reduce step is required. We do not test similarity search
since the distance calculations between pairs of time series cannot be done in one
UDTF operation. Figure 27 and Figure 28 show the execution times and the speedup,
respectively. Hive with UDTF wins in this format since it does not have to perform a
reduce step. Furthermore, while Hive does not seem to be affected by the number of
files, at least between 10 and 10,000, Spark’s performance deteriorates as the number
of files increases. In fact, we also experimented with more files, up to 100,000, and
found that Spark was not even runnable due to “too many files open” exceptions.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:29

(a) 3-Line (b) PAR

(c) Histogram (d) Similarity, 64k households

Fig. 23. Speedup obtained using the first data format in Spark and Hive.

5.5. On-Line Algorithms: Data Loading
We now turn to anomaly detection, starting with how long it takes, on average (over the
30 tested days of data), to load one day of data in each platform. Figure 29 summarizes
the results. The plot on the left compares Matlab, MADlib and C using our server and
using subsets of our real data set, from 5,000 to 25,000 time series (X-axis). System C
loads data (i.e., performs the memory mapping) quickly, whereas MADlib is the slowest
due to the overhead of inserting data into tables and building indices. The middle plot
shows the data loading time into HDFS for Hive/Spark using our 16-machine cluster
and the larger synthetic data sets, with 500,000 up to 2.5 million time series. The
loading time scales roughly linearly, and notice that it is similar to that in the left plot
despite the data size (X-axis) being two orders of magnitude larger. The plot on the
right compares the data loading throughput per second, in thousands of time series,
for each platform. Parallel data loading, using the copy utility from the local file system
to HDFS, clearly gives much higher throughput. However, even Matlab and MADlib
can load several thousand time series (one day, i.e., 24 measurements each) per second.

5.6. On-Line Algorithms: Single-Server Results
We now investigate the running time of our anomaly detection algorithms, starting
with a single-server comparison of Matlab, MADlib and C.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30

(a) 3-Line (b) PAR

(c) Histogram (d) Similarity

Fig. 24. Memory consumption of each algorithm in Spark and Hive.

5.6.1. Single-Threaded Results. Figures 30 and 31 illustrate the single-threaded run-
ning time and memory consumption, respectively, of our self-anomaly (left) and group-
anomaly (right) algorithm. We use subsets of the real data set between 5,000 and
25,000 households. We run the anomaly detection algorithms right after loading the
data, one day at a time, so the running times reported here correspond to warm starts.
The reported runtimes correspond to processing one day of data, averaged over 30
days.

For all platforms, the anomaly detection time increases as the data size increases. As
with the off-line algorithms, System C is the fastest: it can run anomaly detection on
one day’s data for the full 25,000 time series in 8 seconds (4 seconds each for self and
group anomalies). However, in contrast to our experiments with off-line algorithms,
System C is not the most memory-efficient platform for self-anomaly detection. Upon
further investigation, we noticed spikes in memory consumption during the processing
of self anomalies, which suggests that System C required more memory for intermedi-
ate results of this task.

Another interesting result is that MADlib scales better than Matlab, whereas the
opposite was true for some of the off-line algorithms (recall Figure 16). One reason for
this is that anomaly detection requires lookup of model parameters, which is more ef-
ficiently done as a query against an indexed table rather than a Matlab matrix lookup
via the find operator. On the other hand, the off-line algorithms sequentially scanned

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:31

(a) 3-Line (b) PAR

(c) Histogram (d) Similarity

Fig. 25. Execution times using the second data format in Spark and Hive.

the entire data set, making indices less relevant. In particular, note that Matlab be-
comes slower than MADlib at self-anomalies beyond 20,000 time series, and at the
same time, its memory consumption also becomes greater than that of MADlib. This
suggests another reason why MADlib scales better: rather than loading all the data
into matrices, it suffices to select the relevant historical data, model parameters and
temperature data for one household at a time.

Finally, note that MADlib’s memory usage was noticeably higher than the other
platforms’ memory usage in group anomaly detection. This is because we were able to
write a single SQL query to compute all the group anomalies, which required data for
all households. On the other hand, in Matlab and System C we implemented group
anomaly detection one household at a time.

5.6.2. Multi-Threaded Results. We now measure the effect of parallelism using the same
methodology as in Section 5.3.4. That is, we directly specify the number of threads
in System C, we set up multiple database connections in MADlib and we run multi-
ple instances of Matlab. As with off-line tasks, each PostgreSQL database connection
accesses the same table and is responsible for an equal fraction of the time series.
However, in contrast to Section 5.3.4, in which Matlab was working with separate files
per household, here we use a single file to store recent data for all households. Rather
than copying this file to each Matlab instance, we manually partition the file so that

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32

(a) 3-Line (b) PAR

(c) Histogram (d) Similarity, 64k households

Fig. 26. Speedup obtained using the second data format in Spark and Hive.

(a) 3-Line (b) PAR (c) Histogram

Fig. 27. Execution times using the third data format in Spark and Hive.

each instance receives an equal number of time series, and we pass each partition to a
single instance.

Figure 32 shows the speedup for self (left) and group (right) anomalies, along with
a diagonal line indicating ideal speedup. We use the full real data set (25,000 time

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:33

(a) 3-Line (b) PAR (c) Histogram

Fig. 28. Speedup obtained using the third data format in Spark and Hive, 100 files, 1GB per file.

Fig. 29. Average data loading time per day for single server (left) and cluster (middle), and loading through-
put comparison (right).

Fig. 30. Running time of self (left) and group (right) anomaly detection, 30 days of real data.

series) and we vary the level of parallelism on the X-axis. In general, the results are
similar to those in Figures 19(a)–19(d) for off-line tasks: speedup decreases beyond
parallelism level four because our server only has four physical cores, and MADlib
appears to scale the worst, likely due to our way of simulating parallelism which incurs
the overhead of setting up multiple database connections. Additionally, group anomaly

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34

Fig. 31. Memory usage of self (left) and group (right) anomaly detection, 30 days of real data.

Fig. 32. Speedup of execution time on a single multi-core server using the real data set for self (left) and
group (right) anomalies.

detection in System C appears easier to parallelize than self anomaly detection. A
possible explanation is that, as we saw in Figure 31, memory consumption during
intermediate stages of processing self anomalies is higher in this platform.

5.7. On-Line Algorithms: Cluster Results
In the final set of experiments, we compare the running time and memory consumption
of anomaly detection in Hive and Spark Streaming. We generate synthetic data sets
with 500,000 up to 2.5 million time series. The largest data set contains over 2.5GB
of data per day, and is the largest data set whose history (needed for computing the
model parameters) fit in the main memory of the cluster.

Recall from Section 5.4.2 that we tested off-line tasks in the cluster using three
data formats: one large file for the entire data set with one measurement per line, one
large file with one household’s time series per line, and one file per household with one
measurement per line. The first format was the slowest for off-line tasks because data
for one household may be distributed among multiple servers. The second format was
the fastest, and therefore we use it again in the context of anomaly detection.

Figure 33 plots the running time of self and group anomaly detection as a func-
tion of the number of time series. For group anomaly detection, both systems scale
well in the sense that processing time does not vary much with the size of the input.
Given the relatively small size of the input data (the entire history is very large, but

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:35

Fig. 33. Execution times in Spark and Hive for self (left) and group (right) anomalies.

Fig. 34. Memory consumption of Spark and Hive for self (left) and group (right) anomalies.

one day’s worth of data, which is the processing unit for anomaly detection, is not),
the performance difference is likely due to overheads associated with task distribu-
tion; by default Hive launches a separate Java Virtual Machine (JVM) for each task
whereas Spark reuses task executors more intelligently. In fact, even running a “SE-
LECT *” Hive query from a one-row table took nearly 30 seconds in our cluster. For
self anomaly detection, Spark performs substantially worse due to the overhead of ac-
cessing data from the past 3 days versus accessing the latest neighborhood data in
group anomaly detection. Specifically, we noticed that Spark Streaming checkpoints
the sliding window of the past 3 days to HDFS whenever new data are added.

Combining the data loading results from Figure 29 and algorithm runtime results
from Figure 33, we conclude that using our cluster, Hive and Spark Streaming can
detect self and group anomalies in 2.5 million time series (24 measurements each) in
roughly 6 to 7 minutes.

The corresponding memory consumption numbers are shown in Figure 34. As was
the case with off-line algorithms, Spark uses more memory.

In the final two experiments, we use the largest synthetic data set (2.5 million time
series) and we vary the number of nodes in the cluster from 4 to 16. Figure 35 illus-
trates the throughput, in thousands of time series per second, of the self (left) and
group (right) anomaly detection algorithms. In Figure 36, we show the speedup, rela-
tive to the running time using four nodes, obtained by increasing the number of nodes.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36

Fig. 35. Throughput of Spark and Hive for self (left) and group (right) anomalies.

Fig. 36. Speedup of Spark and Hive for self (left) and group (right) anomalies.

The throughput of self anomaly detection is much lower in Spark (recall Figure 33)
but does increase as we increase the number of nodes. Spark also shows some speedup
as we increase the number of compute nodes. On the other hand, the throughput and
speedup of Hive increase very slowly with the number of nodes. Again, this is likely
related to the overheads associated with task distribution, as discussed in connection
with Figure 33, which dominate the running time in our experiments.

5.8. Lessons Learned
Our main finding is that out of the tested platforms, System C, which is a commercial
main-memory column store, is the best choice for offline and online smart meter ana-
lytics in terms of performance, provided that the resources of a single machine are suf-
ficient. However, System C lacks a built-in machine learning toolkit and therefore we
had to invest significant programming effort to build efficient analytics applications.
On the other hand, Matlab and MADlib are likely to be more programmer-friendly but
slower. Furthermore, for off-line tasks, we found that Matlab works better if each cus-
tomer’s time series is stored in a separate file and that PostgreSQL/MADlib works well
when the smart meter data are stored using a hybrid row/column oriented format. For
on-line tasks that require access to new data as well as some historical or off-line data,
MADlib can be more efficient due to the ability to index the data.

As for the two distributed solutions, for off-line tasks Spark was slightly faster but
Hive scaled slightly better as we increased the number of worker nodes. We showed

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:37

that the choice of data format matters; we obtained best performance when each time
series was on a separate line, which eliminated the need to group data explicitly by
household ID and thus avoided an I/O-intensive data shuffle among servers. This fea-
ture allows our implementations to remain competitive in terms of efficiency with
respect to System C for 3-line and PAR, whereas cluster computing frameworks in
general are known to suffer from poor efficiency compared to centralized systems [An-
derson and Tucek 2010]. For on-line anomaly detection, we found that Spark/Spark
Streaming is faster than Hive only if it predominantly accesses new data. We found
that historical data required for anomaly detection (i.e., the past three days) are not
guaranteed to be in memory, in which case Spark loses its performance advantage over
Hive.

6. CONCLUSIONS AND FUTURE WORK
Smart meter data analytics is an important new area of research and practice. In this
paper, we studied smart meter analytics from a software performance perspective. We
proposed a performance benchmark for smart meter analytics consisting of five com-
mon tasks, and presented a data generator for creating very large smart meter data
sets. We implemented the proposed benchmark using five state-of-the-art data process-
ing platforms and found that a commercial main-memory column-store system offers
the best performance on a single machine, but systems such as MADlib/PostgreSQL
and Matlab are more programmer-friendly due to built-in statistical and machine
learning operators. In cluster environments, we found Hive easier to use than Spark
and Spark Streaming, and not much slower or even faster for some tasks. Compared
to centralized solutions, we found Hive and Spark competitive in terms of efficiency for
CPU-intensive data-parallel workloads (3-line and PAR).

In future work, we plan to improve the efficiency and effectiveness of smart meter
data mining algorithms using recent data management trends such as parallel pro-
cessing and column storage. We are particularly interested in extending our study of
smart meter anomaly detection and classification, including issues such as how to de-
fine an anomaly, how to find a proper threshold for when to flag an anomaly, and how
to explain an anomaly in an interpretable and actionable way. Furthermore, as high-
frequency meters become available in the future, it will be important to investigate
streaming algorithms and real-time analytics for smart meter data. Finally, we are
interested in developing a general time series analytics benchmark for a wider range
of applications.

ACKNOWLEDGMENTS

This research was supported by the IBM Southern Ontario Smart Computing Innovation Platform (SOSCIP)
and the CITIES project funded by the Innovation Fund Denmark (1035-00027B). We are grateful to Matt
Cheah for developing a preliminary implementation of the 3-line algorithm using Apache Spark and evalu-
ating its performance on a multi-core server.

REFERENCES

J. M. Abreu, F. P. Camara, and P. Ferrao, Using pattern recognition to identify habitual behavior
in residential electricity consumption, Energy and Buildings, 49:479-487, 2012.

G. Acs and C. Castelluccia, I have a DREAM (DiffeRentially privatE smArt Metering), in Conf.
on Information Hiding, 118-132, 2011.

A. Albert, T. Gebru, J. Ku, J. Kwac, J. Leskovec, and R. Rajagopal, Drivers of variability in energy
consumption, in ECML-PKDD DARE Workshop on Energy Analytics, 2013.

A. Albert and R. Rajagopal, Building dynamic thermal profiles of energy consumption for indi-
viduals and neighborhoods, in IEEE Big Data Conf., 723-728, 2013.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38

A. Albert and R. Rajagopal, Smart meter driven segmentation: what your consumption says
about you. IEEE Transactions on Power Systems, 4(28), 2013.

E. Anderson and J. Tucek, Efficiency Matters!, SIGOPS Operating Systems Review, 44(1):40-45,
2010.

C. Anil, Benchmarking of Data Mining Techniques as Applied to Power System Analysis, Mas-
ter’s Thesis, Uppsala University, 2013.

O. Ardakanian, N. Koochakzadeh, R. P. Singh, L. Golab, and S.Keshav, Computing Electricity
Consumption Profiles from Household Smart Meter Data, in EnDM Workshop on Energy
Data Management, 140-147, 2014.

M. Arlitt, M. Marwah, G. Bellala, A. Shah, J. Healey, B. Vandiver, IoTA bench: an Internet of
Things Analytics benchmark, in ICPE, 133-144, 2015.

B. J. Birt, G. R. Newsham, I. Beausoleil-Morrison, M. M. Armstrong, N. Saldanha, and I. H. Row-
lands, Disaggregating Categories of Electrical Energy End-use from Whole-house Hourly
Data, Energy and Buildings, 50:93-102, 2012.

N. Bruno and S. Chaudhuri, Flexible database generators, in VLDB, 1097-1107, 2005
E. Buchmann, K. Bohm, T. Burghardt and S. Kessler, Re-identification of smart meter data,

Pers. Ubiqit. Comput. 17(4):653-662, 2013
C. Chen and D. Cook, Energy Outlier Detection in Smart Environments, in AAAI Workshop on

Artificial Intelligence and Smarter Living: The Conquest of Complexity, 2011.
G. Chicco, R. Napoli, and F. Piglione, Comparisons among Clustering Techniques for Electricity

Customer Classification, IEEE Trans. on Power Systems, 21(2):933-940, 2006.
F. Eichinger, P. Efros, S. Karnouskos and K. Bohm, A time-series compression technique and its

application to the smart grid, the VLDB Journal 24(2):193-218, 2015.
Electric Power Research Institute (EPRI), Big Data Survey Summary Report, technical report

3002002275, 2013.
M. Espinoza, C. Joye, R. Belmans, and B. DeMoor, Short-term Load Forecasting, Profile Identi-

fication, and Customer Segmentation: A Methodology Based on Periodic Time Series, IEEE
Trans. on Power Systems, 20(3):1622-1630, 2005.

V. Figueiredo, F. Rodrigues, Z. Vale, and J. Gouveia, An electric energy consumer characteriza-
tion framework based on data mining techniques, IEEE Trans. on Power Systems, 20(2):596-
602, 2005.

M. Ghofrani, M. Hassanzadeh, M. Etezadi-Amoli and M. Fadali, Smart Meter Based Short-Term
Load Forecasting for Residential Customers, North American Power Symposium (NAPS),
2011.

L. Gu, M. Zhou, Z. Zhang, M.-C. Shan, A. Zhou, M. Winslett, Chronos: An Elastic Parallel Frame-
work for Stream Benchmark Generation and Simulation, in ICDE, 101-112, 2015.

J. M. Hellerstein, C. Re, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, and A. Kumar, The
MADlib Analytics Library: or MAD Skills, the SQL, PVLDB, 5(12):1700-1711, 2012.

R.-S. Jeng, C.-Y. Kuo, Y.-H. Ho, M.-F. Lee, L.-W. Tseng, C.-L. Fu, P.-F. Liang, L.-J. Chen, Missing
Data Handling for Meter Data Management System, in e-Energy Conf., 275-276, 2013.

E. Keogh, and S. Kasetty, On the Need for Time Series Data Mining Benchmarks: A Survey and
Empirical Demonstration, Data Mining and Know. Disc. (DMKD), 7(4):349-371, 2003.

S. Kessler, E. Buchmann and K. Bohm, Deploying and evaluating pufferfish privacy for smart
meter data, Proc. Int. Conf. on Ubiquitous Intelligence and Computing (UIC), 2015

X. Liu, L. Golab, W. Golab, I. Ilyas, Benchmarking Smart Meter Data Analytics, EDBT, 285-396,
2015.

X. Liu, L. Golab, I. Ilyas, SMAS: A Smart Meter Data Analytics System, ICDE, 1476-1479, 2015.
Y. Liu, S. Hu, T. Rabl, W. Liu, H.-A. Jacobsen, K. Wu, J. Chen, J. Li, DGFIndex for Smart Grid:

Enhancing Hive with a Cost-Effective Multidimensional Range Index, PVLDB 7(13): 1496-
1507, 2014.

D. Mashima and A. Cardenas, Evaluating electricity theft detectors in smart grid networks, in
Int. Conf. on Research in Attacks, Intrusions and Defenses (RAID), 210-229, 2012.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Smart Meter Data Analytics: Systems, Algorithms and Benchmarking A:39

F. Mattern, T. Staake, and M. Weiss, ICT for green - How computers can help us to conserve
energy, in e-Energy Conf., 1-10, 2010.

A. J. Nezhad, T. K. Wijaya, M. Vasirani, K. Aberer, SmartD: smart meter data analytics dash-
board, in e-Energy Conf., 213-214, 2014.

T. Rasanen, D. Voukantsis, H. Niska, K. Karatzas and M. Kolehmainen, Data-based method for
creating electricity use load profiles using large amount of customer-specific hourly mea-
sured electricity use data, Applied Energy, 87(11):3538-3545, 2010.

B. A. Smith, J. Wong, and R. Rajagopal, A Simple Way to Use Interval Data to Segment Residen-
tial Customers for Energy Efficiency and Demand Response Program Targeting, in ACEEE
Summer Study on Energy Efficiency in Buildings, 2012.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, R. Murthy,
Hive - A Warehousing Solution Over a Map-Reduce Framework, PVLDB 2(2): 1626-1629,
2009.

G. Tsekouras, N. Hatziargyriou, and E. Dialynas, Two-stage Pattern Recognition of Load Curves
for Classification of Electricity Customers, IEEE Trans. on Power Systems, 22(3):1120-1128,
2007.

T. K. Wijaya, J. Eberle and K. Aberer, Symbolic representation of smart meter data, in EDBT
Workshop on Energy Data Management (EnDM), 242-248, 2013.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, Spark: Cluster Computing
with Working Sets, in USENIX Conf., 10, 2010.

M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, Discretized Streams: An Efficient and Fault-
Tolerant Model for Stream Processing on Large Clusters, in HotCloud, 10, 2012.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

