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Dr. Jan Huissoon 

Mechanical & Mechatronics Engineering 

University of Waterloo 

200 University Ave. West 

Waterloo, Ontario 

N2L 3G1 

 

 

Dec 4, 2009 

 

Dear Dr. Huissoon, 

 

Please accept the accompanying report, entitled “Autonomous Tennis Ball Collector” as our final design 

report for ME 481. Our project is an autonomous robot that collects tennis balls from a tennis court. The 

robot is designed to reduce the down time a player faces when having to collect balls after practicing with a 

ball lobber.  

 

The report outlines the design and decision procedures carried out by Group 27 throughout the Fall 2009 

Term. It discusses possible means of meeting the need of extending solo tennis training time. It then 

presents the optimal solution with supporting reasons for its selection. The remainder of the report 

explains the in detail the components of the solution including the systems utilized for positioning, ball-

pickup and vision. 

 

The report commences with a summary of the project thus far and a series of appendices that include CAD 

drawings, images, sketches and calculations that help to give more insight into the physical manifestation 

of the solution. 

 

 

Sincerely, 

Ryan Collier 

Mohammed Adham 

Perry Haldenby 

Kevin Smith 
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1 Executive Summary 
 

The purpose of this report is to give insight into the decisions made and procedures carried out by Group 

27 in the ME481 Design Project course. The report explains the need that must be met, the potential means 

of meeting that need, the solution selection including justification and a detailed explanation of the 

components that make up this solution. 

 

Ball sport training generally requires a partner of the same skill level. Automatic ball launching machines 

have been designed to allow for solo practice, but these systems do not emulate the endurance aspect of 

training against a partner, specifically in the case of tennis. Section 2 outlines the introduction to the 

problem. It is determined that 35% of all time spent with an automatic tennis ball launcher will be downtime 

caused by having to re-collect balls and refill the launching machine. Sections 3 to 5 outline the problem, and 

define criteria, constraints and goals for any solution. It is determined that a solution needs to be effective, 

portable, fast, scalable, durable and cheap. Section 5.4 investigates solutions that have been derived in the 

past, and determined that all patents relating to this problem are expired, and that none fulfill the 

constraints, as they are not portable. 

Section 6 outlines the decision process in deciding on an optimal solution. Four different possibilities are 

considered, and after weighted analysis, it is decided that an autonomous ball-seeking robot would be the 

optimal solution to the problem. Section 4 outlines the chassis selection and design. After considering a 

number of platforms, the KODIAK platform designed by the UW Robotics team is selected. Section 5 outlines 

the specifics of the components of this platform.  

Section 6 outlines the general collection strategy of the robot, and the overall flow chart for decision 

making. This will be composed of five processes: analysis, ball drop off, ball finding, ball selection and ball 

pick-up. Section 9 outlines the method that will be used to position the robot in its environment. This will be 

composed of a mix of wheel encoders and LIDAR/SONAR based on testing. Section 10 details the mechanism 

that will be used to pick up the tennis balls. This will be a rotating wheel with bristles, which pushes the balls 

into on-board storage. This system will also be used to eject the balls when the storage bin is inclined by a 

pulley mechanism. Section 11 outlines how the vision system will work, and its components. The two main 

components are the blob detection tool, and the color segmentation tool. 

Finally, Section 12 outlines a brief schedule of the project, which leads into Section 13, the budget. 

Conclusions and Recommendations are presented in Section 14 and 15, where it is determined that the 

autonomous mobile robot will fulfill all constraints and requirements, and meet the needs assessment. It is 

recommended that the project go forward. It is also recommended that further testing be performed on the 

positioning system to determine the optimal solution for this application. 
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2 Introduction  
Professional tennis matches can last upwards of 3 hours, often with little more than 10 minutes of rest in-

between sets. The need to train for such endurance matches becomes difficult without a partner of 

adequate skill. For decades, tennis players have been using automatic tennis ball launching machines to 

train without the need of a partner.  

Testing has concluded that in general, an automatic ball machine that holds 100 tennis balls will launch at 

an average rate of 10 balls every 29 seconds. Therefore, the total amount of time an average tennis ball 

machine can last without needing to be refilled is as shown in (1). 

��� 

����		�
 
 100
���� � 290 �    (1) 

Therefore, the maximum time that a tennis player can play with an automatic ball machine is in the area of 

4 minutes and 50 seconds. After which, the player must stop all play and collect all the balls around the 

tennis court using a bottom-loading basket, as is standard procedure in tennis. This is a physically straining 

procedure, which is generally despised by avid tennis players. From additional experimentation it would 

take in the area of 2:15 to manually pick up 85 balls. From (2), it can be determined that it will take the 

player two minutes to pick up all the balls after using the capacity of the tennis ball machine. 

���� 

����		�
 
 100
���� � 158 � � 2: 38���    (2) 

Therefore, it is determined that using current technology, a player will spend ~35% of the total time 

collecting tennis balls, and not training. This is a large proportion of the time, and needs to be reduced to 

truly emulate a tennis match. 

There are certain methods of automatically collecting tennis balls, as will be investigated in section 3 - 

Proposed Solutions, but these are not portable, and require extensive modifications to the tennis court. 

3 Needs Assessment 
There is a need to improve upon the experience of the solo practice sessions of ball sport athletes by 

extending the duration of consecutive shots, kicks, or swings of the soloist through the conception of a ball-

gathering system that operates while the solo athlete is in practice. Current practice session durations are 

limited by the number of balls initially loaded into the automatic ball launchers. At the end of practice 

sessions, or during intermissions, the balls must be manually picked up. Existing automatic ball return 

systems are not portable and cannot be used in conventional courts. 

4 Goal Statement 
The solution shall serve as a tool to improve the solo practice experience by gathering stray balls in 

conventional practice environments and returning them to the user, or a more desirable location. The 

system shall also be relatively portable, and address the need of requiring manual collection of stray balls 

following each practice session.  
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5 Problem Formulation 

5.1 Objectives 

The following objectives are adapted from the project goal statement. These objectives represent the 

goals that the final design will ideally achieve: 

• Decrease training downtime by 75% 

• The solution will be adequately portable 

• 1 hour without requiring external power 

• 80% ball retrieval rate 

• Durability – Can be struck by a tennis ball 

5.2 Constraints  

The following constraints demonstrate strict requirements that any potential solution must achieve: 

• The solution must reduce downtime in solo tennis training 

• The solution must be able to run on internal power (on-board battery) 

• The solution must be able to return stationary tennis balls to the launching device 

• The solution must not be destroyed when struck by returned tennis balls 

5.3 Criteria  

The following criteria were used to judge potential solutions: 

• Duration of continuous operation (Duration) 

o Weighting of 6 

• Rate of ball collection and transport (Speed) 

o Weighting of 7 

• Collection success rate (Reliability) 

o Weighting of 4 

• System portability (Portability) 

o Weighting of 5 

• Compatibility with conventional court environments (Court Compatibility) 

o Weighting of 5 

• Compatibility with conventional ball launching machines (Launcher Compatibility) 

o Weighting of 5 

• *Development cost (Cost) 

o Weighting of 4 

*A higher cost results in a lower score for these criteria 

 

A description of five potential solutions, along with how those solutions scored with respect to the above 

criteria can be found in the Proposed Solutions section of the report. 
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5.4 Patents   

Numerous patents where found that relate to tennis ball collection mechanisms.  Due to the fact that 

tennis as a sport has been around for a while, many patents relating to collection mechanisms have since 

expired.   Patents found could be grouped into 2 categories:  those that utilized an augmented tennis court 

and those that required human locomotion to move a device around the tennis court that would then 

simplify ball collection.  The basic idea behind the augmented tennis court is that the court would be 

slanted either towards a centre point or away to the walls for the balls to roll to a desired area.  While 

effective, this approach requires a special tennis court that is expensive to create and would prevent actual 

play on the court which would waste space.  There existed many cleaver manual ball collection 

mechanisms, but all required human intervention to provide the device with locomotion around the tennis 

court.  A few patents of interest can be seen in Table 1: Tennis Ball Collection Patents. 

 

US Patent 

Number 

  Title 

4046131 Tennis ball collection, pick-up and propelling 

system 

5125654 Tennis ball retrieving system 

5407242 Tennis ball retriever 

6079930 Apparatus for tennis ball retrieval 

4116192 Tennis ball retriever 

4606543 Practice tennis court 

4456252 Tennis service practice court with recovering 

collecting means 
Table 1: Tennis Ball Collection Patents 

6 Proposed Solutions 

6.1 Abstraction  

Five potential solutions were examined in order to determine the best means of meeting the Needs 

Assessment: 

1. Human Controlled Manual Pickup 

2. Augmented Tennis Court 

3. Vacuum and Conveyor 

4. Path-Driven Autonomous Robot 

5. Autonomous Ball-Seeking Robot 

 

6.2 Human Controlled Manual Pickup 

Human controlled manual pickup involves the use of a tool such as those seen in Figure 1: Manual Tennis 

Ball Collection Mechanism. This type of solution requires the user to stop his/her training session in order 

to both collect the ball and load them back into the launching device. This solution will score well in the 

areas of cost and portability, but will obviously rank very low in terms of speed.  
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Figure 1: Manual Tennis Ball Collection Mechanism 

6.3 Augmented Tennis Court 

The augmented tennis court works by adjusting the elevations of the court such that the balls pool to a 

single common point.  This can be seen in figure 2.   From the collection point, balls are automatically 

transported back to the launching device, typically by means of a conveyor system.  This solution will score 

well in terms of speed as the balls are steadily brought back to the launcher. It will do poorly in areas 

portability and court compatibility as it must be built into the court and is obviously not immediately 

transferable to other courts. 

 

 

Figure 2: Augmented Tennis Court 

6.4 Vacuum and Conveyor 

The vacuum and conveyor system can be thought of as a more portable version of the augmented court. 

A fan is used to blow all balls on the court to a single corner. Once in the corner they roll onto a short 

conveyor that transports them back into the hopper of the launching device. 

6.5 Path Driven Autonomous Robot 

The path driven autonomous robot is a hard-coded machine that sweeps the court in a preset pattern. At 

the end of the sweep cycle, the robot dumps the balls into the launcher’s hopper and repeats the sweep. 

This solution would score well in terms of portability and court compatibility.  
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6.6 Autonomous Ball-Seeking Robot 

The autonomous ball seeking robot is very similar to the path driven robot outlined above. This robot 

however is able to seek out the balls in order to pick up more balls in less time. It ranks highly in the areas 

of speed and portability, but is undoubtedly one of the most expensive potential solutions 

6.7 Final Selection  

Table 2: Method Decision Matrix shows a decision matrix that rates each solution in its ability to adhere to 

the seven criteria. Each criterion is weighted as outlined in the Criteria section. The sum of the products of 

each weight multiplied by the potential solution’s ability to meet the given criteria represents the potential 

solutions overall score. 

  

Human 

Controlled 

Manual 

Pickup 

Augmented 

Tennis Court 

Vacuum and 

Conveyor 

Path-Driven 

Autonomous 

Robot 

Autonomous 

Ball-Seeking 

Robot 

Duration  (6) 8 8 8 5 5 

Speed (7) 1 9 8 5 7 

Reliability (4) 8 8 5 6 6 

Portability (5) 8 1 4 7 7 

Court 

Compatibility (5) 
9 1 4 8 8 

Launcher 

Compatibility (5) 
3 7 6 6 6 

Cost (4) 7 2 4 5 3 

Total 215 196 210 214 220 

Table 2: Method Decision Matrix 

 

The optimal solution, as determined by the decision making matrix is the Autonomous Ball-Seeking 

Robot. This solution is the most likely to adhere to the meet the criteria and achieve the objectives defined 

above. 

The Autonomous Ball Seeking Robot utilizes a ball pickup mechanism to bring the balls form the tennis 

court floor into its onboard storage area. A decision matrix comparing the possible mechanisms for picking 

up the balls is located in the appendices of the report. A description of the selected mechanism is located in 

section 10. 

The robot is location aware. It utilizes a positioning system in order to determine its location relative to 

objects on the court. These objecting include walls, balls, the net and the ball dumping station. The means 

by which the balls are transported from the dumping station to the hopper of the ball launcher are not 

within the scope of this report.  The robot has a dumping mechanism that allows it to unload its stored balls 

into the dumping station. 
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The robot will utilize an onboard camera to actively seek balls on the court. A description of the 

implementation of the camera and vision system is located in section 11 of the report. 

7 Design 
To reduce cost and development time, numerous platforms were explored for the locomotion of the 

robot.  RC cars and simple robot kits found online offered stable platforms for locomotion starting at $120.  

RC cars, at the lower end of the price spectrum, are the least practical due to their Ackerman steering.   

While manageable, Ackerman steering severely limits a robot’s maneuverability in tight corners.  Also, RC 

cars do not come with motor encoders for feedback, which would add cost to an RC car platform.  Robot 

platforms that did include encoders were exceedingly more expensive.  For prototyping purposes, a sturdy 

base utilizing a stripped down version of an existing robot form the UW robotics club at no cost was 

selected.  The robot, named ‘Kodiak’, was originally designed for landmine detection in rough terrain.   It 

provides a large frame to build off of for the collection and storage of balls.  The drive train also offers 

ample torque. To prepare the robot for use, group 27 stripped down the robot to its bare frame and 

repaired the drive train.   For future work, a similar robot base can be designed with lower torque 

requirements. 

7.1 Chassis 

The chassis consist of an aluminum frame held together by 2 sheets of thick aluminum, that run along the 

side of the robot, welded to 2 pieces of square tubing at the front and back of the robot.  All components of 

the robot are mounted to the 2 thick sheets of side aluminum.  A sheet of aluminum is attached to the 

bottom of the frame for rigidity and additional mounting if needed. A CAD model of the chassis can be seen 

in Figure 3: Exploded Chassis View. 

 

 

Figure 3: Exploded Chassis View  
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7.2 Drivetrain 

The drivetrain consists of six 8.5” in diameter foam wheels meant for lift trucks.  They are chain driven 

and receive power from a custom gear box and CIM motors, the same motors used by FIRST robotics. The 

centre wheel is mounted slightly lower than the outer wheels for easy maneuverability of the robot.  This 

reduces friction for pin-point turning that would normally occur if all 6 wheels lied on the same plane.  The 

center wheels contain keyed hubs and are driven by the motors directly from the gear box.  The outer 

wheels contain bearings in their hub and are attached to a fixed axle.  They are driven via chain and 

sprocket from the centre wheels.  The motors have a stall torque of 19.65 in-lb at a stall current of 107 

amps with a maximum power output of 321 watts.  The custom gear box is geared for torque, which 

produces more than enough torque for the required application at a reasonable speed.  Figure 4: Drivetrain 

shows a picture of the assembled  chain and sprocket drive train. 

 

 

Figure 4: Drivetrain 

 

7.3 Battery Power 

The drivetrain is powered by a custom lithium ion battery pack constructed from lexan and copper plate.  

The battery pack consists of 3x3.6V lithium ion cells in serial for a nominal voltage of 10.3V.  It then packs 

10 of these sub-units in parallel, each having 2.4A max discharge, for a total max discharge (~30 seconds 

operation) of 24A.  This generates a maximum output of 247.2 watts, providing a generous supply for the 

motor’s maximum power rating of 321 watts.  Each lithium ion cell contains its own over-voltage, under-

voltage and temperature protection circuitry for safety.  The battery pack contains a solid state switch for 

powering the supply on and off.  It also contains an RF receiver and relay for remote enabling and disabling 

of the power supply. 



12 

 

7.4 Motor Control 

The motors are independently controlled by their own Parallax motor controllers.  They operate at 25A 

continuous (greater than the 24A peak discharge from the battery pack) and operate between 6 and 16 

VDC.  They are controlled by a PWM signal.  1.0ms full reverse, 1.5ms neutral and 2.0ms full forward.  The 

motors are each coupled to an optical quadrature encoder via the custom gear box.  The encoders are 

managed by an Olimex MCU header board that runs FreeRTOS on a 32-bit ARM7TDMI RISC core.  Motor 

speeds are set via a serial interface to the MCU, which then uses PID control to drive the PWM signal to the 

motor controllers.  The quadrature encoder gives feedback to the PID controller.  The Mars Rover project 

on the UW robotics team is currently fabricating a PCB break-out board for the MCU header board that will 

allow us to easily connect power, encoders and a serial port to the MCU.  

Communication with the MCU will take place via serial UART data transfer. In order to facilitate 

communication between the tablet PC and the Serial (RS 232) interface of the MCU, a serial to USB adapter 

will be adapter will be used. Adapters cost approximates $12 and include a driver. Once installed, the driver 

allows communication to the serial output via the Windows COM ports. In order to write communication 

algorithms that will be correctly interpreted by and received form the MCU, a few basic parameters of the 

MCU are required. These include (but are not limited to) baud rate and parity. 

Pseudo code for the MotorControlUnit class and a listing of basic motor control functions is located below: 

MCU = new MotorControllerUnit(parameters inherited from serial class - include Baud rate, 

Parity settings, etc. as well as callback pointer/delegate (for c#)); 

MCU.MoveForward(duration/distance); 

 MCU.MoveBackward(duration/distance); 

 MCU.TurnLeft(degree); 

 MCU.TurnRight(degree); 

 

NOTE:  It will likely be decided that the above functions should not accept parameters and that these 

variables will simply be controlled by programming on the laptop (in C#). For example, 

MCU.MoveForward() causes the robot to move forward a very small distance, but in the main program 

will exist as a command within a loop.  

7.5 Sensors 

Motor speed is managed with quadrature optical encoders by the MCU.  A serial interface is present to 

send and receive motion commands to the MCU.  This serial interface will be connected to a serial-USB 

dongle.  All sensor I/O will run on a Universal Serial Bus to a tablet PC computer.   The only sensor that is 

real time sensitive is the quadrature optical encoder which is handled on the MCU.  All other sensors do not 

require strict real time performance and can be handled on a PC. A Hokuyo LIDAR sensor will be used for 

obstacle detection, mapping and localization.  Blobs will be detected via a webcam with signal processing 

on the PC. 
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7.6 Software 

Microsoft Robotics Studio (MSRS) on Windows XP will be used for the software development 

environment on a tablet PC.  C# will be used for its extensive library support and high level capabilities.  

MSRS offers a robust framework for development by offering simulation, remote control and a graphical 

programming environment.  Individual windows services manage all peripheral communication that is then 

managed by a master controller.  Each service will be responsible for 1 USB peripheral.  One service will 

manage imaging, one service will manage LIDAR, one service will manage the motor control and one 

optional service will manage voice communication.  The master controller passes messages to all the 

services and orchestrates the entire control of the robot.  Each service will log vital information (such as 

raw sensor data) to a SQL database for offline analysis.  The services work by addressing their respective 

USB peripheral by its unique device address.  In the case of the serial-USB dongle used for controlling the 

motor via serial commands, the USB dongle driver will make a windows COM port available for 

programming against the serial port.  

8 Collection Strategy 
The overall goal of the collection system is to be somewhat intelligent about where to pick up tennis balls. 

The goal is not to simply seek blobs in a loop, but to scan the environment and make decisions based on the 

characteristics. 

8.1 Environment and Ball distribution 

The environment for this system is narrowed to ensure ease of preliminary design. Through a partnership 

with the Northfield tennis club, a fixed environment of operation is chosen to be an indoor tennis court 

with artificial lighting. The lighting in the court is uniform. The tennis court also includes an automatic 

tennis ball machine. The exact model is a “silent partner”, as shown in Figure 5: Silent Partner. 
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Tests are carried out using the silent partner and an average skilled player. After a number of tests, a 

general distribution of the location of the balls is calculated. It is determined that roughly 85% of the tennis 

balls will be found behind the tennis court’s base line, with the remaining tennis balls in front of the tennis 

net. The distribution is generally proportional against the back wall, as shown in Figure 6: On Court Ball 

Distribution. 

 

Figure 6: On Court Ball Distribution 

  

Figure 5: Silent Partner 

0.355m 

0.85m 

0.45m 



 

After this analysis, the area of operation of the robot is defined. Appendix 

operation in which the robot will generally operate, an area of around 2 meters squared.

8.2 Collection Strategy Flow Chart

Appendix 16.3 shows a flow chart of the overall strategy of the robot. It consists of five main processes: 

analysis, ball drop-off, ball seeking, ball selection and ball pick

these sections is laid out in the overall flow chart. Each section of these processes will be detailed further as 

the report proceeds. It should be noted that while in this flow chart, the robot is to always be analyzing its 

surroundings to avoid key problems. It will always use sensory output to detect if a collision is imminent, as 

well as if it is leaving its area of operation.

9 Positioning  
When developing the location system for the robot, the initial intention was to implement a triangulation 

positioning system. The system relied on 

diagram below. 

With further research into commonly used forms of robot positioning, it was determined that the 

difficulty involved with fully implementing a position triangulation system wou

of the marginally increased position accuracy. 

The final positioning system relies heavily on wheel encoders to keep track of the robot’s position. The 

dropped axel of the robot chassis/drivetrain

distort the encoder data of a wheeled robot.

court) will be sectioned into an x,y coordinate plane. The robot will keep track of 

x,y coordinates. So long as the robot has not run into an obstacle, high resolution of position is not a strict 

requirement. The working environment will be a grid of one foot squares and the centre of the robot will 

be tracked with respect to which square it is currently above. It is expected that experimentation will show 

that higher resolution is possible, and if necessary, will likely be implemented. 

Starting from a known position, the encoders initially highly provide accurate loca

travels further away from the starting point, however, distortions in the encoder data cause the 

knowledge of its position to become increasingly inaccurate. In order to overcome this, the robot will rely 

on either sonar or LIDAR to perform object detection. (Whether sonar or LIDAR is implemented will depend 
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the signal (near the speed of sound,) the distance form each 

beacon could be determined. Knowing the three distances, the 

robot’s relative position could easily be determined.
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difficulty involved with fully implementing a position triangulation system would not be worth the benefit 

of the marginally increased position accuracy.  

The final positioning system relies heavily on wheel encoders to keep track of the robot’s position. The 
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distort the encoder data of a wheeled robot. The working environment of the robot (one half of a tennis 
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tion data. As the robot 

travels further away from the starting point, however, distortions in the encoder data cause the robot’s 

knowledge of its position to become increasingly inaccurate. In order to overcome this, the robot will rely 

LIDAR to perform object detection. (Whether sonar or LIDAR is implemented will depend 
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on group 27’s access to the UW Robotics Team’s LIDAR module as well as the accuracy of each system with 

respect to detecting mesh object such as a tennis net.) Obstacle detection allows for the accurate “re-sync” 

of the robot’s x,y position. For example, when the LIDAR or sonar sensor detects an object in front of it, the 

robot can use its semi-accurate position information to determine what the object is (i.e. It is in the bottom 

left region of the court, traveling left, it sees an object 4 feet away, the object is likely the left wall.) Once 

the robot has determined what the object is and how far away it is, it can update the information about its 

position (i.e. the left wall is 3 feet away, therefore the x position gets set to 3 – the y position remains 

unchanged.) Additionally, a tennis court is painted with a set of lines of known position. If necessary, a form 

of line detection will be used to further increase the accuracy of position data. Line detection is possible 

with the webcam (currently being used for ball detection,) but may be done with an independent 

light/colour sensor to improve accuracy and avoid potential complications.  

10 Pick-Up Mechanism  
The system to be used in picking the balls up off the court consists of a single rotating shaft mounted on the 

front of the robot with 4 or 5 rows of stiff, plastic bristles that shall push balls up a curved ramp and into an 

onboard storage bin area in the chassis. The storage area is designed such that the bottom plate of the bin can be 

raised by use of a motorized pulley system to unload balls over top of the bristle wheel. The bristle wheel is in 

constant rotation when the solution is in operation. The figure below describes various details of the system in 

collection mode. 

 



17 

 

The build consists of aluminum frame that shall be tack welded and riveted to the existing Kodiak chassis. The 

side panels consists of the support framework for the system components, and make use of the existing mounting 

holes in the Kodiak chassis body. 

The rotary wheel is to be chain driven from a spur gear that is pre-mounted on the Kodiak chassis. All 

measurements for the existing Kodiak structure are available in the Kodiak database provided by the UW Robotics 

Team. Further torque analysis shall be done to determine the minimum required torque to rotate the bristle wheel 

and lift the maximum amount possible load (geometrics allows for a maximum of 4 balls to be lifted in any given 90 

degree rotation of the bristle wheel).  

 

A force analysis will be required to determine the optimal height of the pulley rod, and the motor torque 

required to lift the bin platform from a horizontal position to nearly vertical position, while considering the weight 

of the platform and ball load. The motor for the pulley system is to be mounted underneath the storage bin 

platform in front of the drive wheel motors (not viewable in the diagrams). The pulley support links are to made 

adjustable to accommodate some adjustability. The system gives unloaded balls a potential energy of 0.109 N at a 

height of 18.5 cm from ground level. This should allow enough feasible potential energy to displace the balls to a 

desired orientation in the drop-off bay to reload into the ball machine. 
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11 Vision System  
A major aspect of the control of the robot is the vision system. Major strategic decisions will be made 

based on the feedback from the vision system. The system will be composed of an off-the-shelf web-

camera, in tandem with the image processing capabilities of the Microsoft Robotics Studio software. The 

system will be composed of three main parts, blob detection, color segmentation, and overall analysis. 

11.1 Blob Detection 

The first job of the vision system is blob detection. From the flow chart in Appendix 16.3, blob detection 

will be the main sensory input for the “Look for Balls” process. Blob detection inside of Microsoft robots 

studios is quite advanced, and does not require extensive image processing knowledge to be used. The first 

step in blob detection is calibration. 

Calibration of the blob detection system is key to overall performance, and is done very well by Microsoft 

robotics studio. In Microsoft robotics studio, there is a built in tool named “Blob Tracker Calibration”, which 

allows the user to select the color of the blob from a live video feed. This effectively makes the color 

selection field programmable, and will allow for calibration on-site, to avoid issues with lighting and other 

chaotic environmental conditions. The goal is to have the user program the blob detection color when the 

robot is initialized, as to always ensure optimal tracking conditions. This, along with the fact that the testing 

environment has uniform lighting conditions indoors, ensures stability in blob detection. Testing is carried 

out on site using the built in blob detection and is proven to be very accurate. 

The blob detection algorithm is based speed. The system uses a live feed from a webcam to perform 

image analysis. The speed of image analysis is based on the speed of the system running the software. 

Testing proves an approximate rate of 20fps using the hardware selected for this project. The algorithm 

focuses on analyzing the colors in the image, and creating a convex hull around the colors that are to be 

tracked. Figure 7 shows an example of the system tracking tennis ball color. 



 

It is important to note from this image that single balls are not selected, but the group is selected. This is 

important for the overall control of the robot. This process will be used to detect whether there are any 

balls in front of the robot. Once a blo

centroid of the blob. This the robot will then centre x position of the blob in the vision of the robot, and 

move onto color segmentation. 

Blob detection will also be used to detect th
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Figure 7: Blob Tracker Example 

It is important to note from this image that single balls are not selected, but the group is selected. This is 

important for the overall control of the robot. This process will be used to detect whether there are any 

balls in front of the robot. Once a blob of balls is detected, the system returns an X and Y coordinate of the 

centroid of the blob. This the robot will then centre x position of the blob in the vision of the robot, and 

Blob detection will also be used to detect the drop off station for the balls.  

 

It is important to note from this image that single balls are not selected, but the group is selected. This is 

important for the overall control of the robot. This process will be used to detect whether there are any 

b of balls is detected, the system returns an X and Y coordinate of the 

centroid of the blob. This the robot will then centre x position of the blob in the vision of the robot, and 
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11.2 Color Segmentation 

The final stage of the vision system is to decide which blob or single ball to pick up. This is the “Blob 

selection” stage of Appendix 16.3. Color segmentation is the process of segmenting an image into different 

clusters of the same color. This is important to the vision system, as it allows the robot to get a general idea 

of where the balls are distributed, and decide how to proceed based on analysis of this information. 

Color segmentation will be done through Microsoft Robotics Studio’s built in functions. Much like blob 

tracking, Microsoft Robotics Studio provides a calibration tool for color segmentation, that is also field 

programmable. The actual color segmentation tool in Microsoft Robotics studio then runs on the live 

webcam feed. It should be noted that color segmentation is far more computationally intensive that blob 

tracking, will therefore only be run once a blob of balls is found. This will prevent unnecessary stress on the 

system. 

The color segmentation tool returns an array of segments in the screen. This array contains the x and y 

coordinates of the centroid of each segment found. Based on this array, analysis can be performed to 

determine the best plan of attack to pick up the largest amount of balls. The first process in this decision is 

distance. Appendix 16.4 outlines the basic geometry of the vision system. Based on the two fixed variables 

y (distance from the ground to the camera) and Φ (angle of camera from ground), analysis can be done on 

the Y position on the image to determine the distance from the ball. Initial calibration will be needed to 

determine the exact distance of the ball based on the placement of the ball in the camera view.  It should 

be noted that due to the nature of an angled camera, the higher the value of h1 (from diagram), the farther 

the ball from the robot. This increases on an exponential scale, as the camera can see far into the horizon.  

Once the distance to each ball segment is determined, the algorithm will then analyze the optimal 

decision on where to proceed. While distance is important, the distance of one ball to the next ball is also 

important, and will be weighed into the algorithm. Testing will be carried out to determine which weighting 

of distance to ball versus distance to next ball is optimal. 

Finally, the segmentation algorithm will also be used to determine the approximate number of balls 

stored on the robot. Based on the fact that the robot will be aware when it is approaching and picking up a 

ball, a count will be maintained to allow the robot do determine when the maximum 15 balls are reached 

and that it should proceed to ball drop off. 
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12 Schedule  
The following Gantt chart displays the schedule of group 27. It begins form the start of classes on 

September 14th and extends to the approximate date of project completion in mid March. 

 

13 Budget 
The initial budget for the project is defined by the department of Mechanical and Mechatronics Engineering. It 

is set to a total of $350 for the duration of the project. The majority of the costs is $0 due to donations by team 

members, as well as sponsorships from the Northfield Tennis Club and the University of Waterloo Robotics Club. 

These are budgeted costs, and have not all been sourced at this point. 

Item Quantity Cost 

Kodiak Platform 1 $0 (donated) 

Tablet PC 1 $0 (donated) 

Court Time at Indoor Club 

(1 hour) 

20 $0 (donated) 

Webcam 1 $10.00 (purchased) 

Aluminum 6063 (5mm) 2m2 $80.00 (scrap cost 

estimate) 

Motor for pulley system 1 $0 (dontated) 

Steel Cable (1m) 1 $5.00 

Tennis Balls 100 $0 (donated) 

Plastic Bristles 4 x 15 $30.00 

Chain, Gears, Bearings 1 $70.00 

Limit Switches 2 $20.00 

LIDAR 1 $0 (donated) 

TOTAL (approximated):  $215.00 

Excess for Incidentals  $135.00 
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14 Conclusions 
Based on thorough analysis, a number of conclusions can be made. There is a need for a portable 

system that can automatically collect and deliver tennis balls to automatic ball launcher. The optimal method 

to perform this task has been determined to be an autonomous mobile robot that actively seeks tennis balls 

on the court. The optimal chassis for this application is a KODIAK platform provided by the University of 

Waterloo Robotics team.  

 The proposed solution meets all defined constraints and requirements. Based on experimental analysis, it 

will be able to collect 85% of the balls inside its area of operation. The system is portable, and can be brought 

to any tennis court and calibrated to the given environment on the fly. The solution is able to function off of 

battery power for a significant duration of time, and is durable enough to withstand the impact of a tennis 

ball.  

 The project’s scope can be completed within the allotted time, and has a loose schedule. The budget is 

generally within the scope of the project, but cost over-runs are expected. 

15 Recommendations 
The autonomous ball seeking robot project should proceed onto the build and test phase as soon as 

possible  

After thorough analysis, a final design has been proposed to achieve all constraints and objectives. It is 

recommended that this design be implemented and taken forward as soon as possible to meet the 

prospective schedule timeline. 

Further testing should be carried out on the color segmentation algorithm to determine optimal 

decision weightings 

The design of the exact decision algorithm for determining which cluster of balls to approach and pick 

up first can only be done through testing and optimization. It is recommended that the decision algorithm be 

optimized after chassis construction and control mechanisms are completed. 

Testing should be carried to determine the feasibility of LIDAR versus SONAR for positioning control 

While both systems are useful for positioning control, only one is necessary, and testing of the optimal 

solution can only be completed once the chassis and control mechanisms are completed. It is recommended 

that these two systems be implemented after this stage and the optimal one selected. 
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16 Appendices  

16.1 Potential Platforms  

 

The Traxter 2 robot platform is a study, stainless-steel, tank-driven robot base. It’s 

retail price is $200 including two 7.2V DC motors and it’s are 9 inches by 8 inches. 

 

 

 

The Stinger robot platform is a highly maneuverable two-wheeled (plus third ball-type 

support). Its retail price is $135 (Including motors) and it measures 11.6 inches by 10.3 

inches. 

 

 

The Marauder was created by the UW Robotics Team and therefore has a cost 

of $0. Its dimensions are 18 inches by 36 inches. Its treads provide good 

maneuverability. It requires substantial maintenance to return to working 

condition. 

 

 

The Kodiak was created by the UW Robotics Team – its cost is $0. Each set of three 

wheels turn independently from the opposite side allowing for excellent maneuverability. 

It is constructed of aluminum and is 18 inches by 36 inches. 
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16.2 Area of Operation 

 

3.2m 

.8m 
.8m 
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16.3 Collection Strategy Flow Chart 
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16.4 Vision System Geometry 
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16.5 Pickup Mechanism Decision Matrix 

The following criteria were used to judge the three potential ball pick-up methods: 

 

• *Complexity (Duration) 

o Weighting of 6 

• Effectiveness 

o Weighting of 7 

• Speed 

o Weighting of 4 

• Durability 

o Weighting of 5 

• *Cost 

o Weighting of 5 

 

*A higher complexity and cost result in a lower score for this criterion 

 

 

 Method #1 Method #2 Method #3 

(Spinning Disc) (Paddle Wheel) (Bristle 

Wheel) 

Complexity(6) 2 7 8 

Effectiveness (8) 7 8 5 

Speed (7) 6 7 6 

Durability (5) 5 6 7 

Cost (6) 2 6 5 

Total 147 221 195 

 

The optimal ball pick-up mechanism, as determined by the decision making matrix, is Method #2 - The 

Paddle Wheel. 
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16.6 Chassis Decision Matrix 

The Following criteria were used to judge four potential robot chassis and their associated acquisition 

and/or construction. 

• Time to Implement 

o Weighting of 4 

• Size 

o Weighting of 7 

• Strength 

o Weighting of 8 

• Power 

o Weighting of 7 

• *Cost 

o Weighting of 3 

*A higher results in a lower score for this criterion 

 

  Traxter2 Stinger Marauder Kodiak 

Time  (4) 9 9 4 7 

Size (7) 2 2 8 8 

Strength 

(8) 

6 6 7 7 

Power (7) 4 4 7 7 

Cost (3) 2 4 10 10 

Mobility 

(5) 

6 7 5 4 

Total 162 173 232 239 

 

The optimal robot chassis, as determined by the above decision making matrix, is the Kodiak. 
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16.7 Pickup Mechanism Components 

 

  

  



30 

 

 

 

 


