Fuzzy Membership Function Design Using Information Theory Measures and Genetic Algorithms

Outlines

- Introduction
- Problem Statement
- Proposed Approach
- Results
- Conclusion

Introduction

Fuzzy systems
- Perfect operation with fuzzy data
- Precise data from measurement and interfaces
- Need to have fuzzy data from precise data
- Conversion from precise to fuzzy (fuzzification)
• Fuzzification
 - A gateway to any fuzzy system applications
introduction . fuzzy membership function

- Normalization

- Different types of fuzzy membership functions
introduction. fuzzy membership function

trapezoidal

Support
Core
Boundary

UD

triangular

Prototype
Boundary
Support

UD

sigmoidal

Support
Core
Boundary

UD

bell-shaped

Prototype
Boundary
Support

UD
• Support or fuzzy partition
 - An essential part of any fuzzy membership function

Three parts of FMF
- Support: \(\forall x_i \in X: \mu_{x_i} > 0 \)
- Boundary: \(\forall x_i \in X: 0 < \mu_{x_i} < 1 \)
- Core/Prototype: \(\forall x_i \in X: \mu_{x_i} = 1 \)
Introduction. Fuzzy Membership Function

- **FMF design factors**
 - **Support**: the domain in which the FMF is defined - domain of FMF or "a partition of desired information and our interest in which fuzzy information is defined"
 - **Shape**: determining the boundaries and core/prototype and fuzzy behavior of FMF
• FMF design factors
 - Number: number of fuzzy partitions assigned to a Linguistic Variable, influencing the size of fuzzy rule base,

Outlines
• Introduction
• Problem Statement
• Proposed Approach
• Results
• Conclusion

Problem statement
• How can IT measures help in designing FMF? Which parameters can be optimized by IT measures?

• Number
 - Estimating number of fuzzy partitions is a trade off with fuzzy rules, we can not estimate it independently
 - It can be finalized during optimization of fuzzy rules
 - The number of fuzzy rules is the bottleneck, not the number of fuzzy partitions
• Shape
 - Shape of FMF is still a heuristic issue
 - There is no proven relation between information domain and degree of fuzziness in that domain, completely related to intuition, expertise, and expert knowledge
 - Learning from examples can be a solution

• Support
 - we can just estimate informational parameters of FMF, not fuzzy issues
 - Support is a part of our information in which an uncertainty is happening
 - IT measures is suitable for estimating support of FMF, or fuzzy partitions

• Finding an optimum set of fuzzy partitions related to a given linguistic variable
• Optimum fuzzy partitions
• Optimization problem

Outlines
• Introduction
• Problem Statement
• Proposed Approach
• Results
• Conclusion
proposed approach . requirements

• Solution requirements
 – Set of data (simulation or real) for partitioning
 – Fuzzy partitions modeling and Optimization technique
 – FMF design
 – Evaluation procedure

proposed approach . data

• Data
 – Real data preferred
 – U of Toronto-Mississauga Meteorological Station
 – Temperature information for year 2000 and 2001

proposed approach . modeling & optimization

• Optimization
 – To search UD for the best set of support values
 – Genetic Algorithms (GA)

proposed approach . modeling & optimization

• Performance indices
 – Fitness function in GA optimization procedure
 • Shannon entropy
 • Mutual information
• How we relate FMF to information measure?
 - Mapping the FMF on the histogram of given data
 - Probability-statistics
 - PDF-histogram
 - Maximizing the entropy of partitioned histogram based on given number of partitions (n)

• overlaps
 - In a n-fuzzy-partitioned information, allowed overlaps just between two adjacent partitions, we have n-1 overlaps
 - How to model the overlaps between partitions?
• Two strategy:
 - Overlaps as independent partitions: maximize entropy of independent partitions
 - Overlaps as conjunction of two joint partitions: maximize entropy of joint partitions (considering mutual information)

• First: Overlaps as independent partitions – \((2n-1)\) partitions
Algorithm
- Do optimization for given number of partitions
 - Change width of partitions
 - Until maximum H

$$H = \sum_{i=1}^{2n-1} H_i$$

- Increased and enhanced overlaps
- A conservative strategy
 - In fuzzy control applications,
 - Longer rise time
 - Less overshoot
 - Smooth convergence

- Second: Overlaps as conjunction of two joint partitions
Algorithm

- Do optimization for given number of partitions
 - Change width of partitions
 - Until maximum H

$$H = \sum_{i=1}^{n} H_i - \sum_{i=1}^{n-1} I_{(i,i+1)}$$

- Decreased overlaps
 - In fuzzy control applications
 - Shorter rise time
 - More overshoot

- Ready to design FMFs
 - We have partitions
 - We need values of boundaries to have complete define of FMF
 - A criteria to choose right value for boundary is necessary
- Importance of boundary
 - Defining a range instead of an exact value

In two partitions A and B, if:

\[X_{A1} < X_{B1} < X_{A3} < X_{B3} \]

Well-defined boundary, \(W_B \):

\[W_B \leq (X_{A3} - X_{B1}) \]

\[A \quad x_{A1} \quad x_{A3} \quad B \]

\[A \quad x_{B1} \quad x_{B3} \]

Proposed Approach: Design

- Importance of boundary
 - Defining a range instead of an exact value

\[W_B = X_{A3} - X_{A2} \]

\[W_B > X_{A3} - X_{B1} \]
Outlines

- Introduction
- Problem Statement
- Proposed Approach
- Results
- Conclusion

proposed approach . design

\[W_B = X_{A1} - X_{A2} \]
\[W_B = X_{A3} - X_{A2} \]

proposed approach . evaluation

- Evaluation procedure
 - Testing membership function in a complete fuzzy system reacting to a process, compare the output with heuristic-defined membership function
 - Applying the algorithm on other set of data and study the behavior of membership function

results

- Conditions
 - Normalized data
 - Five partitions
 - Algorithm test in both two modes
• GA optimization parameters
 – Search space: 35,184,372,088,832
 – Population size: 400
 – Chromosome/string length: 45
 – P_{cross-over}: 0.3
 – P_{mutation}: 0.01
 – Minimum generation: 200

• First data set:
 – Hourly temperature of city of Toronto during year 2000
 • Max: 36.88
 • Min: -20.67
 • Mean: 8.90
 • STD: 10.30

• Temperature vs. time – year 2000
• Normalized temperature
Results

- Temperature vs. time - year 2000
- Normalized temperature
- Histogram

Mode 1: Overlaps as independent partitions

- Best strings over generations
- Mean of strings during convergence
- Resulted fuzzy memberships
Mode 2: Overlaps as conjunction of two joint partitions

- Best strings over generations
- Resulted fuzzy memberships

• Second data set:
 - Hourly temperature of city of Toronto during year 2001
 - Max: 32.23
 - Min: -23.34
 - Mean: 9.60
 - STD: 10.20
results

Mode 1: Overlaps as independent partitions

- Best strings over generations
Mode 1: Overlaps as independent partitions

- Best strings over generations
- Mean of strings during convergence
- Resulted fuzzy memberships

Mode 2: Overlaps as conjunction of two joint partitions

- Best strings over generations
- Mean of strings during convergence
Mode 2: Overlaps as conjunction of two joint partitions

- Best strings over generations
- Mean of strings during convergence
- Resulted fuzzy memberships

Mode 1: Overlaps as independent partitions

- Data set 2000
- Data set 2001

Outlines

- Introduction
- Problem Statement
- Proposed Approach
- Results
- Conclusion
A solution for designing fuzzy membership function

Besides fuzzy rules generation, a solution for designing fuzzy system by learning from example

The idea: having generic membership function for generic data