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Abstract— This paper addresses the problem of maintaining
persistence in coordinated tasks performed by a team of
autonomous robots. We introduce a dedicated team of charging
robots to service a team of primary working robots. Given
that the trajectories of the working robots are known within
a planning interval, the objective is to plan routes for the
charging robots such that they rendezvous with and recharge
all working robots to guarantee their continuous operation.
To this end, the working robot trajectories are discretized to
form a finite set of recharging points at which rendezvous
can occur. The problem is formulated as a directed acyclic
graph with vertex partitions containing sets of charging points
for each working robot. Solutions consist of paths through
the graph for each of the charging robots. The problem is
shown to be NP-hard and a mixed integer linear program
formulation is presented and solved for small problem instances.
Finally, it is shown that while the optimal solution is not
computationally feasible for large problem sizes, it is possible
to graphically transform the single charging robot problem to a
Traveling Salesman Problem, for which existing heuristic and
approximation algorithms can be applied. Simulation results
are presented for both single and multiple charging robot
scenarios.

I. INTRODUCTION

Teams of autonomous robots are often proposed as a
means to continually monitor changing environments in
applications such as oceanographic sampling, forest fire or
oil spill monitoring and border security. These surveillance
tasks generally require the robot to consistently traverse
the environment in trajectories designed to optimize certain
performance criteria such as quality or frequency of sensor
measurements taken in the region [1], [2], [3]. The challenge
with employing autonomous robots in persistent tasks is
that mission durations generally exceed the run time of the
robots, and in order to maintain functionality they need to
be periodically recharged or refueled. As illustrated in Figure
1, this paper presents a recharging1 strategy for a team of
working robots performing a surveillance task, using one
or more dedicated mobile charging robots to keep them
operational over extended periods of time.

It is advantageous to use mobile charging robots be-
cause of the ease of deployment in unknown environments
and a greater flexibility that comes with dynamic charging
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Fig. 1. A persistent monitoring scenario with multiple coordinated UAVs
and charging robots. Assuming planar UAV paths, we consider a 2D
projection of the environment at ground level.

locations. The charging process could be performed, for
example, by automated docking and battery swap systems,
as demonstrated in [4] and [5]. The charging robots carry
a payload of batteries than can be swapped into docked
working robots to replenish their charge.

The problem of persistent coverage and surveillance with
mobile robots has been previously investigated in a variety
of contexts. Cortes et al. [1] employ Lloyd’s algorithm to
develop a centroidal Voronoi tessellation-based controller
that optimally covers a convex area with a team of mobile
robots. Smith et al. [2] design optimal velocity controllers
along precomputed paths to persistently cover a set of dis-
crete points with varying desired frequencies of observation,
taking advantage of the ability of mobile robots to sense
while in motion. While both these works present persistent
surveillance scenarios, neither tackle the problem of limited
energy resources in the robotic agents.

Derenick et al. [6] propose a modification to [1] which in-
troduces a combined coverage and energy dependent control
law to drive each robot toward a fixed docking station as their
energy levels become critical. Their work considers only the
static coverage case without any notion of charge scheduling
as each agent is assigned a dedicated static charging station.
In the worst case scenario all agents will move towards their
charging locations simultaneously leaving the environment
unmonitored.

Litus et al. [7], [8] find a set of meeting points for a team
worker robots and a single charging robot, given static robot



locations and a predetermined charging order. Obermeyer
et al. [9] use a sampling-based roadmap method to design
trajectories for a UAV conducting visual reconnaissance.
They introduce a number of graph-based formulations for
robotic path planning and we will extend these techniques
to design charging robot rendezvous paths.

In this work, we present three main contributions. First, we
formulate the problem of multi-robot recharging in persistent
surveillance tasks. Second, we convert the problem into a
one-in-a-set path planning problem on a directed acyclic
graph (DAG) with vertex partitions, and prove that the
problem is NP-hard. Finally, we formulate the problem
as a mixed integer linear program (MILP), and for the
single-charging robot case, we present a transformation to
the standard traveling salesman problem (TSP), for which
efficient algorithms are available.

The organization of this paper is as follows. In Section II,
we formulate the continuous time rendezvous problem and
in Section III, we convert the problem into a discrete
formulation that results in a DAG. In Section IV, we prove
that our DAG formulation is an NP-hard problem. Section
V describes the MILP formulation of the problem and
Section VI proposes an algorithm from literature to solve
this problem for the single robot case.

II. MOTION PLANNING FOR CHARGING ROBOTS

Given a set of working robots performing a task and
a set of charging robots, the recharging problem is to
find a path for each charging robot such that the team of
chargers meets every worker exactly once while minimizing
a certain objective function. The working robots are not
allowed to divert from their trajectories in order to minimize
hindrances to the persistent mission caused by the recharging
process. The assumption is made that charging robots possess
sufficient energy resources and need not be refueled or
restocked within the planning horizon. The problem can now
be formally stated.

A. Problem Formulation

Consider an environment E ⊂ R2 which contains a team
of R working robots, performing a persistent task. Each
working robot, indexed by r ∈ {1, . . . , R}, is described by
its motion along a known trajectory, pr(t) ∈ E within a
planning horizon t ∈ [0, Tr], and a charging time window
[T r, T r] ⊆ [0, Tr].

The environment also contains a set of M charging robots
that are free to move arbitrarily. Each charging robot, indexed
by m ∈ {1, . . . ,M}, is described by its initial position
pm(0) and its speed, υ. We assume that all charging robots
have equal and constant velocities in this formulation. The
problem is to find optimal paths for the charging robots,
pm(t) ∈ E (where |ṗm(t)| ≤ υ) such that for each r ∈
{1, . . . , R}, there exists a ground robot m ∈ {1, . . . ,M}
and a time tr ∈ [T r, T r] for which pm(tr) = pr(tr).

This constraint states that the team of charging robots must
rendezvous at least once with each working robot at a point
along its respective path before it runs out of charge. Figure 2

illustrates the problem statement with a team of four working
robots and two charging robots following a single path.
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Fig. 2. Four working robots (blue and red triangles) traveling along one
path. For each working robot r, [0, Tr] is denoted by a bold black line and
[T r, T r], by a bold green line. The two grey charging robots must meet all
working robots on their paths within their charging windows to guarantee
persistent operation.

III. DISCRETE PROBLEM FORMULATION

The continuous-time problem, as stated, requires an op-
timization over the space of all charging robot trajectories.
In this section we present a graph-based formulation of the
discretized problem.

A. Transformation from Continuous-Time

For each working robot, given that pr(t) is known over
the planning horizon, we can discretize its charging time
window to generate a set of Kr charging times τr =
{tr,1, . . . , tr,Kr

} ⊆ [T r, T r] at which it can be reached
along its trajectory. The set of charging points that result
are defined as,

Cr = {(pr(t), t) | t ∈ τr}. (1)

Each charging point (pr(tr,i), tr,i) is described by its time
of occurrence, tr,i, and its position along the robot path
pr(tr,i).

A charging robot, subject to its speed constraints, will
attempt to charge a working robot by arriving at one of its
charging points (pr(tr,i), tr,i) ∈ Cr at a time t ≤ tr,i and
remaining there until time tr,i such that pm(tr,i) = pr(tr,i).
This expanded definition satisfies the previously stated def-
inition of a rendezvous in continuous time. Note that for
the sake of simplicity, the formulation assumes instantaneous
charge, but it can be extended directly to the case of nonzero
charging durations, as discussed in Remark III.1.

B. Graph-Based Representation

A weighted directed graph G = (V,E, c) is built, where V
is the set of vertices, E is the set of directed edges between
them, and c : E → R is the set of costs for each edge in E.
The elements of the graph are defined as follows.



Vertices: The vertices, are defined by R+1 disjoint vertex
sets, V0, V1, . . . , VR. The set V0 is the set of initial locations
of the charging robots. The set Vr, for r ∈ {1, . . . , R} is
given by Cr, the set of all charging points for robot r. The
complete vertex set is then V = V0 ∪ V1 ∪ · · · ∪ VR.

Edges: We add an edge (vi, vj), where i ∈ Vr1 and j ∈
Vr2 for some r1, r2 ∈ {1, . . . , R} with r1 6= r2, to E if
there exists a feasible traversable path from charging point
(pr1(tr1,i), tr1,i) to (pr2(tr2,j), tr2,j). That is, if

‖pr2(tr2,j)− pr1(tr1,i)‖
υ

≤ tr2,j − tr1,i. (2)

Edge Costs: Each edge e = (vi, vj) ∈ E is associated
with a non-negative cost c(e) that can be chosen based on the
objective of the optimization. As an example, one objective
is the following. For an edge (vi, vj) ∈ E, where i ∈ Vr1
and j ∈ Vr2 for some r1, r2 ∈ {1, . . . , R} with r1 6= r2, we
have the corresponding charging points (pr1(tr1,i), tr1,i) to
(pr2(tr2,j), tr2,j) and can define the cost as the time between
charges,

c(e) = tr2,j − tr1,i.

Remark III.1 (Nonzero Charging Durations). For simplicity
of presentation we have assumed that charging occurs in-
stantaneously. Thus, if a charging robot rendezvous’ with
a working robot at charging point (pr(tr,i), tr,i), then it
can leave that charging point at time tr,i. We can extend
this formulation to charging points described as triples
(pr(tr,i), tr,i,∆tr,i), where ∆tr,i is the time required to
charge robot r at the ith charging point. In this case the
charging robot can leave the charging point at time tr,i +
∆tr,i. The condition to add an edge in equation 2 then
changes slightly to

‖pr2(tr2,j)− pr1(tr1,i)‖
υ

≤ tr2,j − (tr1,i + ∆tr1,i).

•
As a simple illustrative example, Figure 3(a) shows two

working robots r1 (blue) and r2 (red) following arbitrary
trajectories and one charging robot m1 in an environment
E ⊂ R2. Each robot path is discretized into three charging
points and graph G is constructed through them based on
the feasibility conditions.

We can define the constructed graph G := (V,E, c) based
on its observed attributes as a Partitioned DAG.
Definition III.2 (Partitioned DAG). A partitioned DAG is
a graph G = (V,E, c) that consists of directed edges with
no directed cycles and has its set of vertices partitioned into
R exhaustive and mutually exclusive sets (V1, . . . , VR) such
that (i) Vi ∈ V for all i, (ii) ∪iVi = V , and (iii) Vi ∩Vj = ∅
for all i 6= j.

C. Problem Formulation on a Partitioned Directed Acyclic
Graph

To characterize the complexity of our problem, it will be
helpful to state it as a graph optimization. To begin, let
us define some notation. For a set V we let |V | denote
its cardinality. Similarly, for a path P in a graph, we let
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(a) Full traversal graph for the charging robot
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Fig. 3. Building a traversal Graph for two working robots and one charging
robot. The resulting graph is a directed acyclic graph with vertex partitions

|P | denote the number of vertices on the path. For a graph
G = (V,E), a path P in G, and a subset of vertices A ⊆ V ,
we let |P ∩A| denote the number of vertices in A on the path
P . Similarly, for a set of paths P = {P1, . . . , PM}, we let
|P ∩A| denote the number of vertices in A on that lie on a
path Pm ∈ P for some m ∈ {1, . . . ,M}. Given a partitioned
DAG, the goal is to find an optimal set of paths that visits
each set in the partition once, as shown in Figure 3(b).

It will be helpful for what follows to begin by defining
the Multiple One-in-a-set DAG decision problem.

Problem III.3 (The Multiple One-in-a-set DAG Decision
Problem). Consider a DAG G = (V,E) and a partition
(V0, V1, . . . , VR) of V where V0 = {v01, . . . , v0M}. Does
there exist a set of paths P = {P1, . . . , PM} in G, where
Pm starts at v0m ∈ V0, such that

|Vi ∩ P | = 1 for all i ∈ {0, 1, . . . , R}?

We will say that the DAG G, with partition (V0, . . . , VR)
contains One-in-a-set path(s) if and only if the answer to the
corresponding decision problem is yes.

The One-in-a-set path problem has been proved to be NP-
hard for the case of undirected, complete, or general directed
graphs, because they are direct special cases of the Traveling
Salesman Problem (TSP). Unlike these TSP problems, the
One-in-a-set DAG problem consists of a path through a
directed acyclic graph, which is not trivially provable as
NP-hard given that the longest path problem for directed
acyclic graphs is solvable in polynomial time using dynamic
programming [10]. However, in the following section we



prove that the One-in-a-set DAG is in fact an NP-hard
Problem.

IV. PROOF OF NP-HARDNESS

We will prove NP-hardness of the One-in-a-set DAG
problem by using a reduction from the well known NP-
Complete Hamiltonian path problem [11].

Problem IV.1 (The Hamiltonian Path Problem). Given an
undirected graph G = (V,E) with |V | = n, does there exist
a path P in G such that

|V ∩ P | = n?

Theorem IV.2 (NP-Completeness of One-in-a-set DAG de-
cision problem). The One-in-a-set DAG decision problem is
NP-Complete.

Proof. Suppose we have an instance G = (V,E) of the
Hamiltonian path problem. We will give a polynomial trans-
formation of G into an input G for the One-in-a-set path in
a DAG decision problem.

Given the undirected graph G = (V,E), we need to
create a DAG G = (V ,E) along with the vertex partition
(V 0, V 1, . . . , V R). Our approach will be to encode every
possible Hamiltonian path order in G. The One-in-a-set DAG
decision problem will then have a yes answer if and only if
the graph G contains a Hamiltonian path.

Let V = (v1, . . . , vR) and for each r ∈ {1, . . . , R}, let V R

be given by R copies of vr, which we will denote by V r :=
(vr,1, . . . , vr,R). The jth copy of vr will correspond to all
paths in G that have vr as their jth vertex. Finally, we create
a (dummy) vertex V 0 and define V = V 0 ∪ V 1 ∪ · · · ∪ V R.

Now, we define the edges E as follows. We begin by
adding an the edge (V 0, vr,1) to E for each r ∈ {1, . . . , R}.
Then for any two sets V i and V j and for k ∈ {1, . . . , R−1}
we add the edge (vi,k, vj,k+1) if and only if (vi, vj) ∈ E.
Figure 4 illustrates this reduction and shows that a feasible
path is found in the DAG. It is clear that a feasible solution
to the described One-in-a-set DAG problem yields a feasible
solution to the Hamiltonian path problem.
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Fig. 4. A reduction of the Hamiltonian Path Problem to the One-in-a-set
DAG Problem. Each color in graph G represents an individual vertex. Each
vertex color in graph G corresponds to a unique vertex set in graph G

This defines the input G to the One-in-a-set DAG decision
problem. It is easy to see that G is acyclic since it has a
topological sort: Define the partial ordering as vi,k ≤ vj,` if
and only if k ≤ ` and note that there is an edge from vi,k to
vj,` only if ` = k+1. Also, note that G has R2 +1 vertices.

Finally, we just need to show that G contains a Hamil-
tonian path if and only if G contains a One-in-a-set path.
Suppose G contains a Hamiltonian path P = vr1vr2 · · · vrR ,
where (vij , vij+1) ∈ E for each j ∈ {1, . . . , R − 1}. Then,
the path P = V 0, vr1,1vr2,2 · · · vrR,R is a One-in-a-set path
in G since each edge (vrj ,j , vrj+1,j+1) is in E.

Conversely, suppose that G contains a One-in-a-set path P .
By the definition of the edges E, the path must be of the form
V 0, vr1,1vr2,2 · · · vrR,R. This implies that (vrj , vrj+1) ∈ E
for each j ∈ {1, . . . , R − 1} and thus P = vr1 · · · vrR is
Hamiltonian path in G.

NP-Completeness of the One-in-a-set DAG decision prob-
lem proves that the problem of finding optimal charging
robot routes through sets of charging points is NP-hard.
Since the single charger route problem is a special case
of the multiple charging robot problem, the multi-robot
decision problem is also NP-Complete. We approach the
solution by first formulating a MILP to solve small cases
and then present the application of an existing TSP heuristic
algorithm [12], [13] to generate a solution for the single
charging robot case.

V. MIXED INTEGER LINEAR PROGRAM FORMULATION

Given the graph G = (V,E, c) and a partition of V into
vertex sets (V0, V1, . . . , VR), the One-in-a-set DAG decision
problem can be stated as a MILP as follows.

Each charging robot is represented by an independent
route pm. Thus, a binary decision variable is defined as
xijm ∈ {0, 1} with xijm = 1 if, in route pm, the vertex
vj is visited after vertex vi, where i ∈ Vr1 , j ∈ Vr2 , r1 6=
r2 and r1, r2 ∈ {1, . . . , R}. The edge-traversal cost, denoted
by cij , is defined as follows. For the edge e = (vi, vj) (with
associated decision variable xijm we define

cij =

{
c(e), if e ∈ E,
∞, if e /∈ E.

(3)

For each charging robot m, index 0 represents the initial
position of the charging robot, pm(0). The solution paths
must end at the dummy vertex denoted by index d.

min

M∑
m=1

∑
i∈V

∑
j∈V

cijxijm (4)



subject to ∑
j∈V \V0

x0jm = 1 ∀m ∈ {1, . . . ,M} (5)

∑
i∈V \V0

xidm = 1 ∀m ∈ {1, . . . ,M} (6)

M∑
m=1

∑
j∈Vr

∑
i∈V

xijm = 1 ∀r ∈ {1, . . . , R} (7)

M∑
m=1

∑
i∈Vr

∑
j∈V

xijm = 1 ∀r ∈ {1, . . . , R} (8)∑
i,j∈V

xikm − xkjm = 0 ∀m ∈ {1, . . . ,M},

∀k ∈ V \ V0 (9)
xijm ∈ {0, 1} ∀i, j ∈ V,

∀m ∈ {1, . . . ,K} (10)

The objective function (4) seeks to minimize the total
cost of the recharge. Constraint (5) and (6) ensure that each
charging robot route starts and ends at the initial charging
robot location. Constraints (7) and (8) guarantee that each
vertex set is visited just once over the combined set of
charger routes. Constraint (9) checks that in each route the
in-degree is equal to the out-degree for every vertex. The total
number of constraints in this formulation is (2R + M |V |).
If n = |V \ V0| is the total number of charging points, then
the total number of binary variables is upper bounded by
Mn(n+ 2).

Note that unlike a standard TSP solution on a complete
graph, the One-in-a-set TSP introduces a smaller constraint
set due to sparse edges in a graph with vertex partitions.
Further, the lack of sub-tours within a directed acylic graph
removes the need for sub-tour elimination constraints and
enables faster MILP solutions. For larger problem sizes,
however, the optimal MILP solution is not computationally
feasible and Section VI describes the algorithmic approach
used to obtain a solution.

VI. ALGORITHMIC APPROACH

We now present an algorithmic approach to solve the
single charging robot problem based on a transformation of
the One-in-a-set DAG path problem into a standard TSP
for which various heuristic and approximation algorithms
exist. One of the best TSP heuristic algorithms currently in
use is the Lin-Kernighan heuristic [12], further extended by
Helsgaun in [13].

It is observed that the One-in-a-set path in this formulation
resembles a Generalized Traveling Salesman Path (GTSP)
referred to in [14]. The approach employed to solve the
GTSP in this work is a transformation into an Asymmetric
TSP (ATSP) using the Noon-Bean Transformation [14]. The
ATSP can then be solved using the LKH solver which
is a freely available implementation of the Lin-Kernighan-
Helsgaun heuristic.

A. Noon-Bean Transformation of GTSP to ATSP
The following is a brief description of the graph transfor-

mation procedure used. Given a weighted directed graph G =
(V,E, c) with a partition of the vertices into R exhaustive
and mutually exclusive sets V = (V1, . . . , VR), a new graph
G′ = (V ′, E′) can be constructed such that an ATSP solution
on G′ yields the GTSP solution on G.

(i) Transforming GTSP to ATSP.
(a) Create an arbitrary ordering of vertices within

each vertex set Vr and add zero-cost directed
edges E′ to create a zero-cost cycle that traverses
all vertices in the set.

(b) Shift inter-cluster edges in E so that tail-end of
each edge originates from the preceding intra-set
vertex in its respective zero-cost cycle. Add these
edges to E′.

(c) Add a large penalty β >
∑

i,j∈V cij to the inter-
set edges to ensure that any TSP path entering
a vertex set will traverse through all its vertices
before moving on to the next set.

(ii) Obtain GTSP solution from ATSP solution. The
ATSP can be solved using the LKH solver to obtain a
near-optimal ordering of vertices. Due to the previous
edge manipulations, the One-in-a-set path can be ex-
tracted by picking the first vertex from each cluster in
the ATSP solution.

VII. SIMULATIONS

The optimization framework for this paper was imple-
mented in MATLAB R© and the mixed integer linear programs
were solved using the IBM CPLEX R© solver. The solutions
were computed on a laptop computer running a 32 bit Ubuntu
12.04 operating system with a 2.53 GHz Intel Core2 Duo
processor and 4GB of RAM. In this section, we solve the
MILP optimization for a multiple charging robot scenario,
compare optimal and heuristic solutions for a reasonably
small sized single charging robot scenario and demonstrate
a large scale single charging robot simulation solved using
the LKH TSP Solver.
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Fig. 5. A MILP solution to the multiple charging robot problem with
ten working robots (triangles) distributed over one path and three charging
robots (circles).

Figure 5 shows an optimal CPLEX solution for ten work-
ing robots (black triangles) distributed along a single path



and three charging robots (red dots) placed at random within
the environment. The path is discretized into one hundred
charging locations (blue dots) and a set of charging points
is generated within a charging window of 50% to 75%
voltage depletion for each working robot. The objective of
the optimization is chosen to be an equally weighted sum
of total path distance and recharge time. The graph built for
this problem contained 385 vertices in 10 vertex sets, and the
optimization took 1.9 minutes to solve. A simulation for a
similar problem instance is illustrated in the video attachment
accompanying this paper.
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Fig. 6. Comparison of the optimal CPLEX solution (green path) against
the heuristic LKH solution (red path). The problem consists of 8 working
robots (triangles) on 8 paths.

Figure 6 compares the heuristic LKH solution against
the optimal CPLEX MILP solution. The problem instance
consists of eight working robots on eight paths. The DAG
consists of 8 vertex partitions and 500 vertices. The optimal
solution for a single charging robot(green path) was com-
puted by CPLEX in 6.6 minutes. The heuristic solution (red
path) was computed by LKH in 0.16 minutes and resulted
in a path cost 12.8% higher than the optimal cost.

Since a MILP solution is not computationally feasible
for larger problems a realistic large scale problem has been
heuristically solved and illustrated in Figure 7. The environ-
ment consists of sixteen working robots, evenly distributed
among eight paths. The resulting graph for the TSP solution
contains 16 vertex sets and 5,761 vertices. The LKH solver
obtained a solution in 9.4 minutes.
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Fig. 7. The heuristic solution(computed using LKH) to the single charging
robot problem with sixteen working robots distributed among eight paths.

VIII. CONCLUSIONS

In this paper, we present the problem of maintaining
continuity in persistent tasks with coordinated teams of au-
tonomous robots. We construct a partitioned directed acyclic
graph using pair-wise rendezvous condition checks between
charging points generated for each of the working robots.
We prove that the One-in-a-set DAG problem is an NP-hard
problem and present the MILP formulation for a generalized
problem instance. Finally, we apply the Noon-Bean transfor-
mation and the LKH Solver on large instances of the single
charging robot problem to rapidly obtain reasonable solutions
with limited computational resources.

For future work, we are interested in exploring the trans-
formation of the multiple charging robot problem to a TSP.
We also plan to consider real environments with charging
robots traversing uneven obstacle ridden terrains, as well
as dockable aerial robots with time varying battery deple-
tion rates. As coordinated autonomous robots increasingly
progress from research to real applications, it is imperative
to consider energy-awareness in persistent tasks to overcome
the inherent limitations of mobile autonomous robots.
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