
1

Multi-robot Rendezvous Planning for
Recharging in Persistent Tasks

Neil Mathew Stephen L. Smith Steven L. Waslander

Abstract—This paper presents multi-robot path-planning
strategies for recharging autonomous robots performing a persis-
tent task. We consider the case of surveillance missions performed
by a team of UAVs. The proposal is to introduce a separate
team of dedicated charging robots that the UAVs can dock with
in order to recharge and ensure continued operation. The goal
is to plan minimum cost paths for charging robots such that
they rendezvous with and recharge all the UAVs as needed.
To this end, planar UAV trajectories are discretized into sets
of charging locations and a partitioned directed acyclic graph
subject to timing constraints is defined over them. Solutions
consist of paths through the graph for each of the charging
robots. The rendezvous planning problem for a single recharge
cycle is first formulated as a Mixed Integer Linear Program
(MILP), and an algorithmic approach, using a transformation to
the Travelling Salesman Problem (TSP), is presented as a scalable
heuristic alternative to the MILP. The solution is then extended
to longer planning horizons using both a receding horizon and
an optimal fixed horizon strategy. Simulation results demonstrate
and benchmark the performance of the presented algorithms.

Index Terms—Path Planning for Multiple Mobile Robot Sys-
tems, Surveillance Systems, Scheduling and Coordination.

I. INTRODUCTION

COORDINATED teams of autonomous robots are often
proposed as a means to continually monitor changing

environments in applications such as air quality sampling [2],
forest fire or oil spill monitoring [3], [4] and border security
[5]. These surveillance tasks generally require the robots to
continuously traverse the environment in trajectories designed
to optimize certain performance criteria such as quality or
frequency of sensor measurements taken in the region [6], [7],
[8].

The challenge with using autonomous robots in persistent
tasks is that mission durations generally exceed the run time of
the robots, and in order to maintain continuous operation they
need to be periodically recharged or refuelled. In accordance
with current persistent surveillance literature, we consider
the case of a team of UAVs monitoring an environment
as illustrated in Figure 1. This paper presents a recharging
or refuelling strategy for a team of working robots (UAVs)
performing a surveillance task, using one or more dedicated
charging robots (UGVs) to keep them operational over ex-
tended periods of time. The objective is to plan a set of paths

A preliminary version of this work appeared as [1].
This research is partially supported by the Natural Sciences and Engineering

Research Council of Canada (NSERC).
N. Mathew and S. L. Waslander are with the Department of Mechanical

and Mechatronics Engineering and S. L. Smith is with the Department of
Electrical and Computer Engineering, all at the University of Waterloo,
Waterloo ON, N2L 3G1 Canada (nmathew@uwaterloo.ca; stephen.smith@
uwaterloo.ca; stevenw@uwaterloo.ca)

Fig. 1: A sample scenario with coordinated UAVs performing a
persistent surveillance task in planar trajectories. We introduce
a team of four ground robots capable of docking with and
recharging the UAVs.

for the charging robots to rendezvous with the working robots
along their trajectories and recharge them as needed during
a surveillance operation. It is advantageous to use mobile
charging robots because of the ease of deployment in unknown
environments and a greater flexibility that comes with dynamic
charging locations. The charging process could be performed,
for example, by automated docking and battery swap systems,
as demonstrated in [9] and [10]. The charging robots carry a
payload of batteries than can be swapped into docked working
robots to replenish their charge.

A. Related Work

The problem of persistent coverage and surveillance with
mobile robots has been previously investigated in a variety
of contexts. Cortes et al. [6] employ Lloyd’s algorithm to
develop a centroidal Voronoi tessellation-based controller that
optimally covers a convex area with a team of mobile robots.
Smith et al. [7] design optimal velocity controllers along
precomputed paths to persistently cover a set of discrete
points with varying desired frequencies of observation, taking
advantage of the ability of mobile robots to sense while in
motion. While both these works present persistent surveil-
lance scenarios, neither tackle the problem of limited energy
resources in the robotic agents.

Persistent surveillance tasks by definition will exceed the
range capabilities of any inspection robot, and therefore nat-
urally require inclusion of recharging in their formulations.
Derenick et al. [11] propose a modification to [6] which

2

introduces a combined coverage and energy dependent control
law to drive each robot toward a fixed docking station as their
energy levels become critical. Their work considers only the
static coverage case with the assumption that the combined
sensor footprint of the agents is sufficient to cover the entire
environment. There is also no notion of charge scheduling as
each agent is assigned a dedicated static charging station. In
the worst case scenario all agents will move towards their
charging locations simultaneously, leaving the environment
unattended.

Contrary to [11], we introduce the notion of mobile charging
stations to minimize hindrances to the surveillance objective
and plan optimal paths for charging robots to rendezvous with
each working robot. Litus et al. [12], [13] consider the problem
of finding a set of meeting points for working robots and a
single charging robot, given a static set of locations for all
robots and a fixed order of working robots to charge. Since our
work addresses a dynamic surveillance scenario, we discretize
UAV trajectories into rendezvous locations using a sampling-
based roadmap method employed by Obermeyer et al. [14]
to plan paths for a UAV conducting visual reconnaissance.
Obermeyer et al. abstract the path planning problem onto a
roadmap graph, formulate it as a variant of the Travelling
Salesman Problem and develop approximation algorithms to
solve it. In this paper, we will extend these graph-based
techniques to design rendezvous paths for charging robots.

The work presented in [12], [13] and [14] only considers
optimal paths that visit desired targets once to fulfill mission
objectives. However, in persistent surveillance missions, work-
ing robots may require multiple periodic recharges to ensure
functionality over the lifetime of the mission. A common
approach, as investigated by Bellingham et al. [15] is to use
a receding horizon strategy to dynamically extend shorter tra-
jectories over a larger planning horizon. A challenge with this
approach is ensuring that each subsequent planning iteration
can provide a feasible solution path. Schouwenaars et al. [16]
present an iterative MILP path planning approach with implicit
safety guarantees that ensure feasibility of successive planning
iterations.

An alternative approach is to formulate an optimal path
planning problem over the entire planning horizon. Michael
et al. [17] investigate a persistent surveillance problem for a
team of UAVs to periodically visit a set of interest points with
varying frequencies. They formulate the problem as a Vehicle
Routing Problem with Time Windows (VRPTW), which is a
variant of the classical Vehicle Routing Problem (VRP) that
seeks to design routes for multiple vehicles to visit all vertices
in a graph. In this work we address an additional challenge
of planning optimal paths for a team of charging robots to
rendezvous with moving targets (UAVs).

B. Contributions
Our approach to the problem is to position multi-robot

persistent recharging in the space of graph-based optimal
path planning problems formulated using mixed integer linear
programs (MILP). Based on certain enabling assumptions we
formulate the problem as finding optimal paths for the charg-
ing robots to meet the working robots along their trajectories

and recharge them as needed. The main contributions of the
paper are the following.

(i) We formally introduce the idea of multi-robot recharging
in dynamic persistent tasks using dedicated teams of
mobile charging stations.

(ii) We present a graph-based abstraction of the problem
and establish it as a one-in-a-set path problem on a
partitioned directed acyclic graph (DAG). We prove the
problem is NP-hard even on a DAG.

(iii) We formulate the problem as a MILP and investigate
special properties of the problem that distinguish it from
Travelling Salesman Problem (TSP) and Generalized
Travelling Salesman Problem (GTSP) formulations.

(iv) We present an algorithmic solution using novel modi-
fications to existing methods developed for solving the
GTSP.

(v) Based on the developed path planning framework we ex-
tend the recharging problem to longer planning horizons
using receding horizon and fixed horizon strategies.

A preliminary version of this work appeared in [1]. Building
on previous work, we now present our algorithmic solution
to compute rendezvous paths for multiple charging robots,
address the periodic recharging problem over longer planning
horizons, and provide extensive simulation results for all
algorithms.

II. PRELIMINARIES

The following is a review of relevant graph-theory and
fundamental optimal path computation problems that comprise
the problem formulations and algorithms employed in this
work.

A graph G is represented by (V,E, c), where V is the set
of vertices, E is the set of edges and c : E → R is a function
that assigns a cost to each edge in E. The number of vertices
in G is given by the cardinality of the set V and is denoted
N = |V |. In an undirected graph, each edge e ∈ E is a set of
vertices {vi, vj}. In a directed graph each edge is an ordered
pair of vertices (vi, vj) and is assigned a direction from vi to
vj .

A partitioned graph is a graph G with a partition of
its vertex set into R exhaustive and mutually exclusive sets
(V1, . . . , VR) such that (i) Vi ⊆ V for all i, (ii) ∪iVi = V ,
and (iii) Vi ∩ Vj = ∅ for all i 6= j.

A path in a graph G, is a subgraph denoted by P =
({v1, . . . , vk+1}, {e1, . . . , ek}) such that vi 6= vj for all i 6= j,
and ei = (vi, vi+1) for each i ∈ {1, . . . , k}. The set VP
represents the set of vertices in P and by definition VP ⊆ V .
Similarly a tour or cycle T is a closed path in the graph such
that v1 = vk+1. Finally, a directed acyclic graph (DAG) is a
directed graph in which no subset of edges forms a directed
cycle. With this we can define the following key problems.
Definition II.1 (Hamiltonian Path/Tour). A Hamiltonian Path
in a graph G is a path P that visits every vertex in G exactly
once. Similarly, a Hamiltonian tour T is a closed Hamiltonian
Path.
Problem II.2 (The Hamiltonian Path Problem). Given a
complete, undirected graph G, does G contain a Hamiltonian

3

path?

Problem II.3 (Travelling Salesman Problem (TSP)). Given a
complete graph G, find a Hamiltonian tour T such that total
cost of

∑
e∈ET

c(e) is minimized, where ET is the set of edges
in T . A symmetric TSP is computed on an undirected graph.
Similarly, an asymmetric TSP is obtained on a directed graph.

The TSP can be formulated as a MILP and solved using
a variety of exact, approximate and heuristic solvers. In this
work we use the IBM CPLEX Optimization Studio to compute
exact solutions. Since the TSP is an NP-hard problem, it
is intractable to compute exact solutions for large problem
instances. In such cases, heuristic algorithms may be used to
obtain near-optimal solutions with significant reductions in run
time. One of the best known algorithms is the Lin-Kernighan
heuristic [18] implemented as the Concorde LinKern TSP
solver and an adaptation proposed by Helsgaun [19] imple-
mented as the Lin-Kernighan-Helsgaun (LKH) TSP solver.
While these heuristics do not have proven guarantees on sub-
optimality, they have been empirically shown to often produce
solutions within 2% of the optimal [20].

There are a number of TSP variants that extend the problem
by imposing additional constraints on the graph optimization.
The variant employed in this paper is the Generalized Travel-
ling Salesman Problem (GTSP). Let us first define a One-in-
a-set Path.

Definition II.4 (One-in-a-set Path/Tour). A One-in-a-set Path
in a partitioned graph G with a vertex partition (V1, . . . , VR),
is a path P that visits a single vertex in every vertex set Vi ⊂ G
exactly once. Similarly, a One-in-a-set tour T is a closed One-
in-a-set path.

Problem II.5 (Generalized Travelling Salesman Problem
(GTSP)). Given a partitioned complete graph G, find a One-
in-a-set tour T such that the total cost

∑
e∈ET

c(e) of T is
minimized, where ET is the set of edges in T .

The TSP can be seen as a special case of the GTSP where
all vertex sets have a cardinality of one [21]. There are a
number of approaches to solve GTSP instances developed in
literature. Exact algorithms using Lagrangian relaxation and
Branch and Cut methods have been proposed by Noon and
Bean [22] and Fischetti et al. [23]. Improvement heuristics
[24], and meta-heuristics like genetic algorithms [25] and ant
colony optimizations [26] have also been proposed.

Another approach, proposed by Noon and Bean [21], in-
volves transforming (or reducing) a GTSP instance into an
equivalent TSP instance through a graph transformation, such
that the optimal solution to the TSP can be used to construct
the optimal solution to the original GTSP. The benefit of such
a transformation is that it allows the vast body of existing
TSP approaches to be applied to the transformed problems.
While such an approach may not necessarily outperform a
specialized GTSP algorithm, it provides a platform to verify
optimality and compare results of complex routing problems
on the foundation of well-studied TSP approaches.

The GTSP can be extended to compute multiple One-in-a-
set tours originating at multiple depots as defined in Problem
II.6.

Problem II.6 (Multiple Generalized Traveling Salesman Prob-
lem (MGTSP)). Consider a complete partitioned graph G with
vertex partition (V0, V1, . . . , VR), where V0 consists of M
start-depots. Find a collection of M paths, one for each start
depot, which collectively visit each vertex set (V1, . . . , VR)
exactly once, with minimum total cost.

In an MGTSP, since all start-depots may not be used in the
solution, the decision of the number of routes chosen for the
optimal solution is implicit in the formulation. The objective
of the optimization can be chosen to minimize the total sum of
path costs (min-sum objective), or to minimize the maximum
individual path cost (min-max objective).

III. MOTION PLANNING FOR CHARGING ROBOTS

Given a team of robots performing a persistent task, the
problem in question is to compute paths for the team of
charging robots such that they optimally rendezvous with
every working robot exactly once. We extend our results to
multiple charging rendezvous’ over finite planning horizons
in Section VI-A. The working robots are not required to
divert from their trajectories. This minimizes hindrances to
the persistent mission caused by the recharging process. The
assumption is made that charging robots possess sufficient
energy resources and need not be refuelled or restocked within
the planning horizon. The problem can now be formally stated.

A. Continuous Problem Statement

Consider an environment, E ⊂ R2, which contains R
working robots, denoted by the set R = {1, . . . , R}, per-
forming a persistent task. Each working robot, indexed by
r ∈ R, is described by its motion along a known trajectory,
pr(t) ∈ E within a planning horizon t ∈ [0, Tr] determined by
its lifetime on a single charge, and a charging time window
[T r, T r] ⊆ [0, Tr].

The environment also contains M charging robots, denoted
by the set M = {1, . . . ,M}, that are free to move arbitrarily
within E . Each charging robot, indexed by m ∈ M, is
described by its initial position pm(0) and its maximum speed,
υ. We assume that all charging robots have the same maximum
speed. The problem is to find optimal paths for the charging
robots, pm(t) ∈ E (where |ṗm(t)| ≤ υ) such that for each
r ∈ R, there exists a charging robot m ∈ M and a time
tr ∈ [T r, T r] for which pm(tr) = pr(tr).

This constraint states that the team of charging robots must
rendezvous at least once with each working robot at a point
along its respective path before it runs out of charge. Figure 2
illustrates the problem statement with a team of four working
robots following a single path, along with two charging robots.

The continuous-time problem, as stated, requires an opti-
mization over the space of all charging robot trajectories [27].
Hence, discretizing the formulation converts the problem into a
more tractable form and allows the application of graph-based
linear program techniques to obtain a solution.

B. Problem Discretization

For each working robot r, given that the trajectory pr(·)
is known over the planning horizon, we can discretize its

4

charging robot

working robot

[0,Tr]

[Tr,Tr] 1

2

3

4

T
3

T
2

T
4

T
1

T
1T

1

T
2

T
2

T
3

T
3

T
4

T
4

1

2

Fig. 2: Four working robots (red triangles) traveling along
one path. For each working robot r, [0, Tr] is denoted by a
bold grey line and [T r, T r], by a bold black line. The two
blue charging robots must meet all working robots on their
paths within their charging windows to guarantee persistent
operation.

charging time window to generate a set of Kr charging times
τr = {tr,1, . . . , tr,Kr

} ⊆ [T r, T r] at which it can be reached
along its trajectory. The set of charging points that result are
defined as,

Cr = {(pr(t), t) | t ∈ τr}.

Each charging point (pr(tr,i), tr,i) is described by its time of
occurrence, tr,i, and its position along the robot path pr(tr,i).

A charging robot, subject to its speed constraints, will
attempt to charge a working robot by arriving at one of its
charging points (pr(tr,i), tr,i) ∈ Cr at a time t ≤ tr,i and
staying there until time tr,i such that pm(tr,i) = pr(tr,i).
This definition satisfies the previously stated condition for
a rendezvous in continuous time. Note that for the sake of
simplicity, the formulation assumes instantaneous charge, but
it can be extended directly to the case of nonzero charging
durations, as discussed in Remark III.1.

The discrete problem is one of finding paths for the charging
robots that visit one charging point in each set Cr. We can
encode every possible charging path in a partitioned directed
graph G, defined as follows.

a) Vertices: The vertices, are defined by R + 1 disjoint
vertex sets, V0, V1, . . . , VR. The set V0 is the set of initial
locations of the charging robots. Each vertex in set Vr, for
r ∈ R corresponds to a charging point in Cr, the set of all
charging points for robot r. The complete vertex set is then
V = V0 ∪ V1 ∪ · · · ∪ VR.

b) Edges: An edge (vi, vj) is added to E, where vi ∈ Vr1
and vj ∈ Vr2 for some r1, r2 ∈ R with r1 6= r2, to E if
there exists a feasible traversable path from charging point
(pr1(tr1,i), tr1,i) to (pr2(tr2,j), tr2,j). That is, if

‖pr2(tr2,j)− pr1(tr1,i)‖
υ

≤ tr2,j − tr1,i. (1)

c) Edge Costs: Each edge e = (vi, vj) ∈ E is associated
with a non-negative cost c(e) that can be chosen based on

1

(p1(t11),t11)
(p1(t12),t12)

(p1(t13),t13)
T1

T2

(p2(t23),t23)

(p2(t22),t22)(p2(t21),t21)

2

(a) Sampled UAV trajectories and roadmap graph for the
charging robot.

1

2

(p1(t11),t11)
(p1(t12),t12)

(p1(t13),t13)
T1

T2

(p2(t23),t23)

(p2(t22),t22)(p2(t21),t21)

(b) Optimal Recharge Path Solution

Fig. 3: Building a traversal graph for two working robots and
one charging robot. The resulting graph is a directed acyclic
graph with vertex partitions.

the objective of the optimization such as minimizing total
distance travelled by charging robots or total makespan of
the recharging process. Further, in order to avoid recharging
UAVs too early, a penalty proportional to the voltage level of
robot r at its charging point (pr(tr,i), tr,i) can be added to all
incoming edges at each vertex vi ∈ Vr.
Remark III.1 (Nonzero Charging Durations). For simplicity of
presentation we have assumed that charging occurs instanta-
neously. Thus, if a charging robot performs a rendezvous with
a working robot at charging point (pr(tr,i), tr,i), it can leave
that charging point at time tr,i. We can extend this formulation
to charging points described as triples (pr(tr,i), tr,i,∆tr,i),
where ∆tr,i is the time required to charge robot r at the ith

charging point. In this case the charging robot can leave the
charging point at time tr,i + ∆tr,i. The condition to add an
edge in equation 1 then changes slightly to

‖pr2(tr2,j)− pr1(tr1,i)‖
υ

≤ tr2,j − (tr1,i + ∆tr1,i). (2)

•
As a simple illustrative example, Figure 3(a) shows two

working robots r1 (blue) and r2 (red) following arbitrary
trajectories and one charging robot m1 in an environment
E ⊂ R2. Each robot path is discretized into three charging
points and graph G is constructed on them based on the
feasibility conditions.

In addition to the vertex partition, an interesting property
of the constructed graph G is that there are no edges between

5

vertices of the same vertex set. This property makes the graph
multipartite in nature. Further, since the edges represent ren-
dezvous conditions between pairs of time-stamped locations
and all edges are directed towards vertices increasing in time,
it is impossible for G to contain any directed cycles. Hence,
by definition G is a partitioned directed acyclic graph (DAG).

C. Optimization on a Partitioned Directed Acyclic Graph

Given a partitioned DAG G, the goal is to find an optimal
path or set of paths that collectively visit each set in the
partition once, as shown in Figure 3(b). To characterize the
complexity of our problem, it will be helpful to state it as a
graph optimization.

We begin by defining the stated problem of computing a
set of charging robot rendezvous paths as a decision problem
known as the One-in-a-set DAG Path Problem.

Problem III.2 (The One-in-a-set DAG Path Problem). Con-
sider a partitioned DAG G and a partition (V0, V1, . . . , VR) of
V where V0 = {vm|m ∈M}. Does there exist a set of paths
P = {P1, . . . , PM} in G, where Pm ∈ P starts at vm ∈ V0,
such that |Vi ∩ VP | = 1 for all i ∈ R ?

We will say that the partitioned DAG G contains One-in-
a-set path(s) if and only if the answer to the corresponding
decision problem is yes.

The One-in-a-set Path problem has been proved to be NP-
hard for the case of undirected, complete, or general directed
graphs, because they contain, as special cases, the undirected
and directed TSP problems, respectively, which are both NP-
hard. Unlike these TSP problems, the One-in-a-set DAG Path
problem consists of a path through a directed acyclic graph,
which is not trivially provable as NP-hard given that the
longest path problem for directed acyclic graphs is solvable in
polynomial time using dynamic programming [28]. However,
in the following section we prove that the One-in-a-set DAG
Path problem is in fact an NP-hard problem.

D. Hardness of Discrete Problem

We will prove NP-hardness of the One-in-a-set DAG Path
problem by using a reduction from the NP-Complete Hamil-
tonian path problem [29].

Theorem III.3 (NP-Completeness of Problem III.2). The One-
in-a-set DAG Path problem is NP-Complete.

Proof: Suppose we have an instance of the Hamiltonian
path problem defined on graph G. We will give a polynomial
transformation of G into an input G for the One-in-a-set DAG
Path decision problem.

Given the undirected graph G, we need to create a DAG
G = (V ,E) along with the vertex partition (V 0, V 1, . . . , V R).
Our approach will be to encode every possible Hamiltonian
path order in G. The One-in-a-set DAG decision problem will
then have a yes answer if and only if the graph G contains a
Hamiltonian path.

Let V = (v1, . . . , vR) and for each r ∈ {1, . . . , R}, let
V R be given by R copies of vr, which we will denote by
V r := (vr,1, . . . , vr,R). The jth copy of vr will correspond to

V1

V3

V2

(a) G = (V,E)

1

2

3

1 1

2 2

3 3

V1 V2 V3

V0

(b) G = (V ,E)

Fig. 4: A reduction of the Hamiltonian Path Problem to the
One-in-a-set DAG Problem. Each color in graph G represents
an individual vertex. Each vertex color in graph G corresponds
to a unique vertex set in graph G

all paths in G that have vr as their jth vertex. Finally, we create
a (dummy) vertex V 0 and define V = V 0 ∪ V 1 ∪ · · · ∪ V R.

Now, we define the edges E as follows. We begin by adding
an the edge (V 0, vr,1) to E for each r ∈ {1, . . . , R}. Then
for any two sets V i and V j and for k ∈ {1, . . . , R − 1} we
add the edge (vi,k, vj,k+1) if and only if (vi, vj) ∈ E. Figure
4 illustrates this reduction and shows that a feasible path is
found in the DAG. It is clear that a feasible solution to the
described One-in-a-set DAG Path problem yields a feasible
solution to the Hamiltonian path problem.

This defines the input G to the One-in-a-set DAG decision
problem. It is easy to see that G is acyclic since it has a
topological sort: Define the partial ordering as vi,k ≤ vj,` if
and only if k ≤ ` and note that there is an edge from vi,k to
vj,` only if ` = k + 1. Also, note that G has R2 + 1 vertices.

Finally, we just need to show that G contains a Hamiltonian
path if and only if G contains a One-in-a-set path. Suppose
G contains a Hamiltonian path P = vr1vr2 · · · vrR , where
(vij , vij+1

) ∈ E for each j ∈ {1, . . . , R − 1}. Then, the path
P = V 0, vr1,1vr2,2 · · · vrR,R is a One-in-a-set path in G since
each edge (vrj ,j , vrj+1,j+1) is in E.

Conversely, suppose that G contains a One-in-a-set path P .
By the definition of the edges E, the path must be of the
form V 0, vr1,1vr2,2 · · · vrR,R. This implies that (vrj , vrj+1

) ∈
E for each j ∈ {1, . . . , R − 1} and thus P = vr1 · · · vrR is
Hamiltonian path in G.

NP-Completeness of the One-in-a-set DAG decision prob-
lem implies that Problem III.2 is NP-Complete, and thus our
recharging optimization problem is NP-hard. In what follows
we present our approach to the problem from the bottom up.
We first formulate the MILP for the single charging robot case
and use it to characterize the structure of the optimization and
inform our solution methods. We then extend the problem to
include multiple charging robots and investigate algorithmic
alternatives to generate near optimal solutions.

6

IV. MIXED INTEGER LINEAR PROGRAM FORMULATION

The One-in-a-set DAG Path problem can be stated as
a MILP and optimally solved for smaller instances of the
problem. For ease of presentation we first formulate the MILP
for a single charging robot path in a partitioned DAG.

Given a partitioned graph G defined for the One-in-a-set
DAG Path problem, we make a small modification to apply
degree constraints. A dummy finish vertex, vf , is added to V0
and equal cost edges are assigned from every vertex back to
vf .

Given the partitioned graph G with vertex sets
(V0, V1, . . . , VR), we define a decision variable, xij ∈ {0, 1}
with xij = 1 if, in the resulting path, a visit to vertex vi
is followed by a visit to vertex vj , where i ∈ Vr1 , j ∈ Vr2
and r1 6= r2, r1, r2 ∈ R. The cost of the edge traversal xij
is denoted by cij , and is defined as follows. For the edge
e = (vi, vj) (with associated decision variable xij) we define.

cij =

{
c(e), if e ∈ E,

∞, if e /∈ E.
(3)

The start vertex is denoted by index d. The solution path
must end at the dummy vertex denoted with index f . The
single charging robot MILP is now defined as follows.

min
∑
i∈V

∑
j∈V

cijxij (4)

subject to ∑
j∈V \V0

xdj = 1 (5)

∑
i∈V \V0

xif = 1 (6)

∑
j∈Vr

∑
i∈V

xij = 1 ∀r ∈ R (7)∑
i∈Vr

∑
j∈V

xij = 1 ∀r ∈ R (8)∑
i,j∈V

(xik − xkj) = 0 ∀k ∈ V \ V0 (9)

xij ∈ {0, 1} ∀i, j ∈ V (10)

The objective function (4) seeks to minimize the total path
cost defined as the travel distance of the charging robot.
Constraint (5) and (6) guarantee that the tour starts at the start
vertex and ends at the finish vertex. Constraint (7) and (8)
ensure that each vertex set is visited only once. Constraint (9)
is a flow constraint to guarantee that the entering and exiting
edge for each vertex set are both incident on the same vertex in
the group. Finally Constraint (10) specifies binary constraints
on the decision variables xij . Given M = 1, the total number
of constraints in this formulation is (2M + 2R + N). The
maximum number of binary decision variables on the edges
of a complete graph is N(N − 1). However, owing to the
multipartite nature of the graph G, a decision variable xij is
only defined if vi and vj belong to different vertex sets.

The complexity of the MILP problem is influenced by the

number of binary variables and constraints, which grows with
the number of vertices in graph G. For a given environment
and configuration of working and charging robots, the size
of G is determined by the length of the charging window
[T r, T r] ⊆ [0, Tr], and the density of charging locations along
each robot path.

A. Special Problem Characteristics

The optimal solution to the MILP provides a minimum cost
path that passes through each vertex set of a DAG exactly
once. We observe from the formulation that the problem can
be modelled as the Generalized Travelling Salesman Problem
(GTSP) [21] as stated in Problem II.5.

Despite structural similarities to the GTSP, it is interesting
to note that the MILP formulated for the One-in-a-set DAG
Path problem introduces a significantly smaller constraint set
than TSP and GTSP routing problems. In addition to the
degree and flow constraints stated, routing problems require
subtour elimination constraints to ensure a continuous path and
avoid disjoint subtours in the solution. A sub-tour elimination
constraint in both classes of problems is formulated as∑

i,j∈S
xij ≤ |S| − 1, ∀S ⊂ V, 2 ≤ |S| ≤ N − 2,

where, for a graph G, N is the total number of vertices in V , S
is any subset of vertices in V that can form a sub-tour and xij
is the decision variable on edge (vi, vj) ∈ E. A TSP with N
vertices requires 2N −2N −2 subtour elimination constraints.
Likewise for a GTSP with N vertices and R vertex sets, the
linear program contains as many as 2R−1 − R − 1 subtour
elimination constraints [30].

In comparison, the lack of directed cycles in a DAG
eliminates any need for sub-tour elimination constraints in
our formulation. Further, the multipartite nature of the graph
removes the need for binary decision variables on intraset
edges. This significant reduction in the number of constraints
means that we can solve larger problems with relatively lesser
computational effort. In practice, we observed that problems
with an order of magnitude increase in the number of vertices
that could be solved in comparable time. Nevertheless, given
the NP-hardness of the problem, optimally solving the MILP
will not always be computationally tractable and Section V
describes the algorithmic approach we use to compute near-
optimal solutions.

B. Extending the MILP for Multiple Charging Robots

The linear program in Section IV can be easily extended
to the multiple charging robot problem, using a three-index
flow formulation. We highlight the differences here and refer
a reader to [1] for more details.

In the extended formulation each charging robot m is
represented by an independent route pm. Thus the binary
decision variables on edges are defined as xijm ∈ {0, 1} with
xijm = 1 if, in route pm, the vertex vj is visited after vertex
vi, where i ∈ Vr1 , j ∈ Vr2 , r1 6= r2 and r1, r2 ∈ R. The new

7

objective function is

min
M∑
m=1

∑
i∈V

∑
j∈V

cijxijm.

This expression represents a min-sum objective that seeks to
minimize the total path cost of all charging vehicles. The MILP
can be redefined to include a min-max objective that minimizes
the maximum path cost of any single charging robot, or, to
add constraints to bound each path cost, similar to the well-
known Capacitated Vehicle Routing Problem (CVRP) [31].
These extensions are applicable when we wish to set limits on
the maximum load capacities of the charging robots, balance
their work loads or include depots to restock their charging
payload.

Similar to the single charging robot problem, the multiple
charging robot problem can be modelled as an MGTSP (see
Definition II.6), where each of the M charging robots is
assigned a start-depot and, at most, M paths that optimally
visit each vertex set once must be computed.

V. ALGORITHMIC APPROACH: GRAPH TRANSFORMATIONS

As covered in Section VI-A1, there are a number of algo-
rithmic approaches for solving the GTSP. A common approach
is the Noon-Bean Transformation [14], which transforms any
GTSP instance into an equivalent TSP instance. The method
guarantees that the optimal TSP solution to the transformed
problem will always correspond to the optimal solution to the
original GTSP.

Section V-A presents an implementation to transform the
One-in-a-set DAG path problem, with a single charging robot,
into a TSP using the Noon-Bean Transformation. The Noon-
Bean method applies only to a problem modelled as a GTSP
and in order to solve the multiple charging robot route prob-
lem, a specialized solution approach for MGTSP instances is
required. Hence, in Section V-B, we propose a novel modi-
fication to the Noon-Bean method to allow a transformation
of any MGTSP instance into a TSP. The optimal solution to
the TSP can then be used to construct the optimal MGTSP
solution.

A. Path Computation for a Single Charging Robot

In what follows we define a sequence of problems, begin-
ning with the One-in-a-set DAG Path problem, and ending
with a TSP problem. To begin, we define Problem (P0) to
be an instance of the One-in-a-set DAG Path problem for a
single charging robot. Problem (P0) is a GTSP instance defined
on a Partitioned DAG G0 with a partition of vertices into
R+1 mutually exclusive sets V 0 = (V 0

0 , V
0
1 , . . . , V

0
R). Set V 0

0

contains the start-depot of the charging robot, vd. We seek the
shortest path starting at vd, and visiting each vertex set exactly
once. Figure 5(a) shows a sample instance of the problem.

As shown in [21], the Noon-Bean Transformation can now
be used to transform the graph instance in Problem (P0) to
new problem (P1), which is a TSP defined on a graph G1.
The vertices V 1, edges E1 and cost function c1 are defined
as follows.

V1
0

V2
0

V3
0

vd

v1

v1

v1

v3

v2

v2

v2

V0
0

(a) A sample instance of (P0) with vertex sets (V 0
1 , V 0

2 , V 0
3)

and set V 0
0 , which contains the charging robot depots.

V1
0

V2
0

V3
0

vd vf

v1

v1

v1

v3

v2

v2

v2

V0
0

(b) The problem instance (P1) generated using the Noon-Bean
Transformation. Transformed interset and instraset edges are
shown in red.

Fig. 5: The Noon-Bean transformation for GTSPs

(i) Define the set of vertices of G1, as V 1 = V 0. In set V 1
0 ,

add a depot vf , as the charging robot route finish-depot.
Add edges (vj , vf), where vj ∈ V 1 \ V 1

0 and assign a
cost based on the desired optimization objective.

(ii) For each vertex set V 1
r , create an arbitrary ordering of

its vertices (vi, vi+1, . . . , v|V 1
r |). Add zero-cost directed

edges that create a directed cycle through the vertices in
the chosen order. The dotted black edges in figure 5(b)
show these intraset edges in Problem (P1).

(iii) Shift the tail end of each interset edge (vi, vk) ∈ E0,
to (vi−1, vk), the vertex immediately preceding it in the
corresponding intraset cycle. Add these edges to E1.

(iv) A large penalty β >
∑
e∈E1 c1(e) is added to all the

interset edges to ensure that the lowest cost TSP tour
will never exit a vertex set without traversing the entire
intraset vertex cycle.

Problem (P1) is a TSP instance, which can be solved using a
variety of freely and commercially available TSP solvers. The
goal of the Noon-Bean method is to transform the GTSP into
a TSP instance, in which an optimal tour visits all vertices in
a vertex set in a clustered manner before moving on to other
sets. The penalty β added to interset edges ensures that the
shortest tour always contains a clustered solution.

8

V2
2

V1
2

V3
2

vd
1 vd

2V0
2

v1

v2

v1

v2

v3

v1

v2

Fig. 6: An sample instance of Problem (P2), with R = 3, and
M = 2

The TSP solution to Problem (P1), denoted by Υ1 can
be used to construct the GTSP solution, Υ0, to Problem
(P0), given that it satisfies

∑
e∈EΥ1

c1(e) ≤ (R + 2)β. This
condition ensures the clustered nature of the TSP tour and
stems from the fact that a feasible GTSP solution through
R + 1 vertex sets contains only R + 1 interset edges. Since
β >

∑
e∈E1 c1(e), has been added to every interset edge, we

know that the cost of a TSP tour that corresponds to a feasible
GTSP tour cannot be greater than (R+ 1)β + β = (R+ 2)β.

A feasible GTSP solution Υ0, to Problem (P0), can now be
constructed by sequentially extracting the entry vertex at every
cluster in the TSP tour Υ1. The total cost of the reconstructed
GTSP solution

∑
e∈EΥ0

c0(e) =
∑
e∈EΥ1

c1(e).

B. Path Computation For Multiple Charging Robots
In this section we propose a novel extension to the Noon-

Bean method to transform the MGTSP into a TSP. The
transformation ensures that the optimal solution to the TSP
can be used to construct the optimal solution to the MGTSP.
The algorithm is implemented to solve the One-in-a-set DAG
path problem for multiple charging robots.

We begin by stating the One-in-a-set DAG Path problem as
an MGTSP and call this Problem (P2). See Figure 6 as an
example. Problem (P2) is an instance of an MGTSP, defined
over a partitioned DAG, G2, with a partition of its vertices V 2

into R+1 sets, (V 2
0 , V

2
1 , . . . , V

2
R). The vertex set V 2

0 contains
M start-depots for charging robots. We seek a set of paths
starting at the depots vid, i ∈ M that visit all the vertex sets
V 2
1 , . . . , V

2
R exactly once.

1) Transformation Algorithm: The new transformation al-
gorithm converts the MGTSP problem instance (P2), into a
new problem instance (P3) on which a TSP solution may be
computed. Problem (P3) is a TSP defined over a graph G3.
The vertices, V 3, edges E3 and cost function c3 are defined
as follows.

(i) Define the set of vertices of G3, as V 3 = V 2. In set V 3
0 ,

add M vertices, vif , i ∈M, as the charging robot route
finish-depots. At each vertex vif , add edges (vj , v

i
f),

where vj ∈ V 2 \ V 2
0 and assign costs based on the

optimization objective.

V0
2

V1
2

V2
2

V3
2

vd
1 vd

2vf
1 vf

2

v1

v2

v1

v1

v2

v2

v3

Fig. 7: Problem instance (P3), generated using the modified
Noon-Bean algorithm. Red edges represent the Noon-Bean
transformation and blue edges represent new additions in the
modified algorithm.

(ii) In vertex set V 3
0 , arrange all start-finish depot pairs

(vid, v
i
f) in an arbitrary sequential ordering to obtain

V 3
0 = {v1d, v1f , v2d, v2f , . . . , vMd , vMf }. Create zero-cost

intraset edges forming a single directed cycle through
all vertices in V 3

0 , in the chosen order. Hence, create
edges (v1d, v

1
f), (v1f , v

2
d), . . . , (vMd , v

M
f), (vMf , v

1
d).

(iii) For the definition of all edges (vi, vj) where vi, vj ∈
V 3 \ V 3

0 and i 6= j, use the original Noon-Bean method
presented in Section V-A.

(iv) Add the penalty β >
∑
e∈E3 cij to all edges (vi, vj)

where vi, vj ∈ V 3 \ V 3
0 and i 6= j. Further, add penalty

β to all outgoing interset edges from start-depots vid in
set V 3

0 . Penalty β is not added to any edges incident on
finish-depot vertices in V 3

0 .
Figure 7 illustrates the transformed graph G3, for Problem

(P3). Before proving correctness of the modified Noon-Bean
theorem, we require some intermediate results.

Lemma V.1. In any TSP solution to Problem (P3), each start-
depot vertex vid ∈ V 3

0 will be immediately preceded by the
finish-depot vertex, vi−1f ∈ V 3

0 in the chosen cyclic ordering
of vertices in set V 3

0 .

Proof: Every start-depot vid ∈ V 3
0 has an in-degree of one.

Hence a path visiting a start-depot can do so only through the
preceding finish-depot vertex in the given cyclic ordering of
V 3
0 .
This simple result implies that the indices of the finish-depot

vertices will allow us to “cut” a single TSP tour into paths for
each working robot. Lemmas V.2 and V.3 define the method
and conditions under which the TSP solution to Problem (P3)
provides the MGTSP solution to Problem (P2).

Lemma V.2. The optimal TSP solution to Problem (P3) can
be used to construct the optimal MGTSP solution to Problem
(P2).

9

Proof: According to the modified Noon-Bean transforma-
tion, if an optimal MGTSP solution to Problem (P2), Υ2, is
defined by the set of M paths as,

{{v1d, vj , . . . , vk, v1f}, . . . , {vMd , va . . . , vb, vMf }},

then the corresponding optimal TSP solution Υ3 to the trans-
formed problem (P3) will be,

v1d, vj , vj+1, . . . , vj−1, . . . , vk, vk+1, . . . , vk−1, v
1
f ,

vMd , va, va+1, . . . , va−1 . . . , vb, vb+1, . . . , vb−1, v
M
f , v

1
d

The optimal TSP path visits all vertices in vertex sets
{V 3

1 , . . . , V
3
R} in a clustered manner as shown in the Noon-

Bean transformation. The vertices of set V 3
0 are visited in-

termittently between interset transitions in finish-depot, start-
depot pairs as specified in Lemma V.1. As stated in Lemma
V.1, the TSP tour can be cut into optimal paths for each of
the charging robots. Further, given that each interset edge of
Υ3 has a cost equal to the corresponding interset edge in Υ2,
we can determine that

∑
e∈EΥ3

c3(e) =
∑
e∈EΥ2

c2(e).

We know that an optimal solution (P3) always corresponds
to the optimal solution to (P2). Lemma V.3 extends this result
to define the condition under which a feasible TSP solution to
(P3) can provide a feasible solution to (P2)

Lemma V.3. A feasible TSP solution, Υ3, to Problem (P3)
provides a feasible MGTSP solution, Υ2, to Problem (P2)
given that

∑
e∈EΥ3

c3(e) < (R+ 2)β.

Proof: From Subsection V-A, we know that a feasible
GTSP solution through R+1 vertex sets contains R+1 interset
edges and the cost of a corresponding TSP solution cannot
exceed (R+ 2)β.

In the case of multiple charging robots, the number of inter-
set edges in the solution depends on the number of charging
robot routes. However, since the edges incident on finish-
depots in V 3

0 do not have the penalty, β, added to their cost,
the number of large-cost interset edges in the solution is R+1,
independent of the number of charging robot routes used.
Hence, a feasible solution to Problem (P2) can be constructed
from a solution to Problem (P3), if

∑
e∈EΥ3

c3(e) < (R+2)β.

In the case of both Lemma V.2 and V.3, the cost of the
constructed MGTSP solution is equal to the cost of the TSP
solution. Hence,

∑
e∈EΥ3

c3(e) =
∑
e∈EΥ2

c2(e).

C. Reconstructing the MGTSP Solution

The transformed graph G3 defined in Problem (P3) can now
be used to compute the TSP solution using a variety of freely
and commercially available TSP solvers. The experimental
simulations in this work use the LKH solver based on the
Lin-Kernighan Helsgaun heuristic to solve TSP instances. .

Given the optimal solution Υ3 to Problem (P3), we can
construct, Υ2, the optimal solution to Problem (P2) as follows.
Find the indices of all the finish-depot vertices used in Υ3. If
the indices are {l1, l2, . . . , lM}, pick the vertices immediately
following them in the tour as {l1 + 1, l2 + 1, . . . , lM + 1}.
These are the start-depots of each individual path. Between

every pair of start-depot and finish-depot indices (li+1, li+1),
use the Noon-Bean method to select vertices for each set
in {V 2

1 , . . . , V
2
R}, as described in Section V-A. The MGTSP

solution to (P2) can be constructed from the TSP solution to
(P3) only if Lemma V.3 is satisfied.

Combining the methods described by Noon and Bean and
the lemmas stated in this section, we can transform an MGTSP
to a TSP, solve it, and use the TSP solution to re-construct the
original MGTSP solution. Our final result can be formally
stated as the Modified Noon-Bean Theorem.

Theorem V.4 (Modified Noon-Bean Theorem). Given a
MGTSP in the form of Problem (P2) with R vertex sets and M
depots, we can transform the problem into a TSP in the form
of Problem (P3). Given a solution Υ3 to Problem (P3), we
can construct a corresponding solution Υ2 to Problem (P2) if∑
e∈EΥ3

c3(e) < (R+ 2)β.

VI. PERSISTENT RECHARGING IN EXTENDED PLANNING
HORIZONS

To this point, we have restricted our problem formulation to
a single recharge per working robot. For persistent surveillance
tasks, however, it is necessary to consider multiple recharging
events per working robot to maintain functionality over longer
planning horizons. One approach is to formulate the recharging
problem as a path optimization over the entire planning
horizon, known as a fixed horizon plan. Computing an optimal
fixed horizon path may be intractable for larger problem sizes
and an alternative approach to reduce computational effort is to
consider an iterative computation of the single recharge cycle
plan over a receding planning horizon. We first formulate the
fixed horizon plan as a MILP to generate an optimal recharge
schedule over a finite planning horizon and then present the
receding horizon planning approach as an extension of the
single recharge cycle problem.

A. Optimal Periodic Recharging

The fixed horizon approach to path planning involves com-
puting an optimal path over the entire planning horizon. This
approach, although significantly increasing the size of the
problem, guarantees optimality of rendezvous paths over the
lifetime of the mission. In this section, we formally state
the optimal periodic recharging problem and present a MILP
solution, which extends the approach in Section IV for a single
recharge cycle.

As in the single recharge cycle computation, in the periodic
recharging problem, working robot trajectories are known for
the entire planning range [0, T]. However, the objective is now
to compute charging robot paths that rendezvous with working
robots at a sequence of charging points such that no working
robot runs out of charge over the planning range. Our approach
to the problem is as follows.

1) Approach: Three main factors distinguish the periodic
charging problem from the single charge cycle problem:

(i) Arrival times of working robots at charging points
cannot be determined a-priori, since they depend on
previous rendezvous’ in their paths.

10

(ii) The time elapsed between consecutive recharges of each
robot must be constrained to ensure successful continued
operation.

(iii) The variability of arrival times at charging points implies
that the feasibility condition applied on a path between
them, as defined in Equation 2, cannot be predetermined.

Given these considerations, we formulate the periodic charg-
ing problem as an optimization on a partitioned graph, G, for
a set of working robots R and a set of charging robots M in
an environment E ⊂ R2. The graph G is defined as follows.

Vertices: Define a set of vertices V that is partitioned into
R + 1 disjoint vertex sets, V0, V1, . . . , VR. The set V0 is the
set of start-depots of the charging robots. The vertices in each
set Vr, r ∈ R, correspond to charging locations in Cr.

The charging point set for periodic charging, Cr =
{(pr(t)|t ∈ T} for robot r ∈ R is defined as the set of
locations pr(t) that a robot would visit along its trajectory,
given infinite charge and no recharge stops. The estimated
arrival times at the charging points will be updated as part of
the optimization.

Edges: Edge-feasibility is subject to change based on UAV
arrival times at charging points. Hence define all edges (vi, vj)
where vi ∈ Va, and vj ∈ Vb for a, b ∈ R and a 6= b as
valid edges in the periodic charging graph. The edge-feasibility
condition will be applied as a constraint in the optimization.

Costs: The cost on an edge can be defined based on the
optimization objective. In this formulation we consider the
distance between two charging locations.

In addition to the graph G, we introduce two sets of
variables, yr,i and tr,i. The variable, yr,i ∈ R+, stores the
value of the time elapsed since the last recharge of robot
r, at each charging point i in Cr. By placing a bound, τr,
on the maximum value of yr,i, we can ensure that robot r
will always rendezvous with a charging robot before it is
completely discharged. The variable, tr,i ∈ R+, computes the
time of arrival of a UAV r at its charging point i in set Cr.
The value of tr,i is computed at each point taking into account
the service times at charging points chosen for rendezvous’.

A sample instance of the discretized problem for optimal
periodic charging is shown in Figure 8.

We can now formally state the optimal periodic recharging
problem.

Problem VI.1 (Optimal Periodic Charging Problem). Con-
sider a partitioned DAG G with the partition (V0, V1, . . . , VR)
of V where V0 = {vm|m ∈ M}. Find a set of paths
P = {P1, . . . , PM} in G that minimize

∑M
i=1

∑
e∈EPi

c(e)
and satisfy the constraints (i) Pm ∈ P starts at vm ∈ V0, such
that |Vr ∩ VP | ≥ 1 for all r ∈ R and (ii) yr,i < τr for all
r ∈ R and all vi ∈ Vr.

2) Periodic MILP Formulation: Given the problem state-
ment, the periodic charging MILP can be defined as an
extension to the single charge cycle MILP defined in Section
IV. For ease of presentation, the MILP is formulated to
compute a single charging robot path through a team of UAVs
performing a persistent task. The extension to multiple robots
is straightforward as shown in Section IV-B.

The periodic charging MILP refers to a vertex vi with an

r1

r2

T

p1(t11)

p1(t12)

p1(t13)

p1(t14)

p2(t21)
p2(t22)

p2(t23)

p2(t24)

y11

y12

y13

y14

y21
y22

y23

y24

δ13,4

m1

Fig. 8: The periodic MILP representation: An sample problem
instance illustrating charging point discretization and key
variables. A path for charging robot m1 is computed to
visit charging point sets Vr1 and Vr2 , for robots r1 and r2,
periodically to ensure yr,i < τr.

index i in the context of the complete vertex list V , as well as
an index within each working robot vertex set Vr. Hence, to
avoid ambiguities in the indices, we define the set of vertex
indices of Vr as IVr

= {1, . . . , |Vr|}, and the set of vertex
indices of V as IV = {1, . . . , N}. Finally, we define the
index function σ : R × IVr → IV as a function that takes a
working robot index r ∈ R and the local index of the charging
vertex i ∈ IVr

and returns the global index of the vertex in
the complete vertex list IV .

The objective of the periodic charging problem, as inherited
from the single recharge cycle MILP, is to minimize the total
sum of path costs of the charging robots.

min
∑
i∈V

∑
j∈V

cijxij (11)

The constraints of the periodic optimization inherit degree
and flow constraints of the One-in-a-set DAG path problem
and extend the problem definition to fulfill periodic charging.
Constraints (5), (6) and (9) are inherited directly. Set degree
constraints (8) and (9) are modified to form Constraints (12)
and (13) to allow multiple recharge rendezvous’ within each
set Vr of a robot r:∑

j∈Vr

∑
i∈V

xij ≥ 1, ∀r ∈ R (12)

∑
i∈Vr

∑
j∈V

xij ≥ 1, ∀r ∈ R (13)

Constraint (14) computes the value of tr,i, the arrival time
at each charging point, as the sum of the arrival time at the
previous charging point, tr,i−1, the service time sr at the point
if a recharge has taken place, and the travel time, δri−1,i ,
between two consecutive charging points.

tr,i = tr,i−1 + sr
∑
j∈V

xjσ(r,i−1) + δri−1,i ,

∀r ∈ R ∀i ∈ IVr

(14)

11

Given the value for tr,i at each charging point, an edge
feasibility constraint for every edge in the graph can now be
defined. Constraint (15) is defined as a logical or implication
constraint which ensures that if the value of xσ(r1,i)σ(r2,j) = 1,
signifying an active edge in the solution, then the feasibility
constraint as shown in constraint (15) must be satisfied. Logic
constraints can be reformulated into MILP constraints using
linear relaxations and big-M formulations as shown in [32].

xσ(r1,i)σ(r2,j) = 1 =⇒ tr2,j − tr1,i >
dσ(r1,i)σ(r2,j)

υ
∀r1, r2 ∈ R; r1 6= r2 ∀i ∈ IVr1

∀j ∈ IVr2

(15)

Note that dσ(r1,i)σ(r2,j) is the distance between the two
charging points. The final three constraints (16), (17) and (18)
compute the value of yr,i and ensure that it is bounded by τr.
Constraint (16) computes the value of yr,i at every charging
point, where a rendezvous does not occur, as the sum of yr,i−1
and δri−1,i

.

∑
j∈V

xjσ(r,i) = 0 =⇒ yr,i − yr,i−1 = δri−1,i

∀r ∈ R ∀i ∈ IVr

(16)

Constraint (17) resets the value of yr,i to 0 at a charging
point chosen for rendezvous. Thus the value of yr,i increments
throughout the charging point set, occasionally resetting to 0
at points where recharge rendezvous’ occur.

∑
j∈V

xjσ(r,i) = 1 =⇒ yr,i = 0

∀r ∈ R ∀i ∈ IVr

(17)

Finally Constraint (18) limits the growth of yr,i to guarantee
that robot r is consistently charged through the mission.

0 ≤ yr,i ≤ τr, ∀r ∈ R ∀i ∈ IVr (18)

The total number of constraints in this formulation is 2M+
2R+N2 + 5N , of which N2 +N are implication constraints.
Similar to the single recharge cycle MILP defined in Section
IV, the complexity of the fixed horizon problem is influenced
by the number of vertices in the graph G. For a given scenario
of working and charging robots, the size of the G grows with
the length of the planning horizon [0, T] and the density of
charging locations on each robot path.

This formulation produces a significantly larger constraint
set than the single recharge cycle MILP and as a result, the
fixed horizon MILP quickly becomes intractable for larger
problem instances. An alternative approach to minimize com-
putational effort is a receding horizon strategy.

B. Receding Horizon Planning

Receding horizon methods have been extensively applied to
MILP based motion planning [15] to minimize computational
effort and enhance robustness of the computed path. In a gen-
eral receding horizon formulation, a path plan is computed and
implemented over a shorter time window and then iteratively

updated from the state reached at each planning event, for the
duration of the planning horizon.

In the persistent recharging scenario, we maintain a set of
R working robots waiting to be charged. At each planning
iteration, a time horizon [0, Tr] is defined using the current
state of the robots as their starting state. A One-in-a-set DAG
problem is defined over the R working robots and a set of
rendezvous paths for charging robots are computed using the
single recharge cycle method of either Section IV or Section V.
Each time a working robot is charged (i.e., a rendezvous
occurs), we have an option to re-plan. Thus, given a team
of R working robots, the receding horizon window can be
varied from to R rendezvous’ between re-plans.

The size of this window influences the quality of solutions
generated. A larger planning window results in fewer planning
iterations, a lower cumulative computation time and a lower
total path cost per recharge cycle. However, it suffers from
a greater possibility that a subsequent planning iteration will
produce an infeasible path problem. A smaller planning win-
dow, while producing a more myopic path and a larger number
of planning iterations, is more robust to uncertainties and is
less likely to reach an infeasible solution.

In Section VII-B, we examine the effects of the planning
window on the performance, and compare this method to the
multiple charge MILP.

VII. SIMULATION RESULTS

The optimization framework for this paper was implemented
and tested in simulated experiments generated in MATLAB R©.
The mixed integer linear programs were solved optimally
using the IBM CPLEX R© solver and the TSP heuristic used
in the computation was the freely available LKH Solver [19].
The solutions were computed on a laptop computer running a
32 bit Ubuntu 12.04 operating system with a 2.53 GHz Intel
Core2 Duo processor and 4GB of RAM.

The simulation environment consists of a test set of planar
trajectories that are assigned to a team of R working robots.
Each working robot r is defined by its assigned trajectory,
current pose, voltage level and battery lifetime Tr. The envi-
ronment also contains a set of M randomly located charging
robots, each defined by an initial position and a maximum
velocity, υ. The goal is to enable the working robots to
persistently traverse their assigned trajectories for the duration
of mission.

Using these simulations, we benchmark rendezvous path
solutions and examine the performance of the receding horizon
and fixed horizon strategies for persistent recharging.

A. Single Recharge Cycle Path Computation

The recharge path is algorithmically computed using the
Noon-Bean Transformation in the case of a single charging
robot and the Modified Noon-Bean Transformation for multi-
ple charging robots.

Figure 9(a) illustrates a sample problem instance with 8
working robots distributed along 8 paths and 1 charging robot.
The result compares the heuristic solution obtained with the
Noon-Bean transformation and LKH solver against the optimal

12

−4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

(a) Comparison of the optimal CPLEX solution (light grey/green
path) against the Noon bean Transform and LKH Heuristic
solution (dark grey/red path). The problem consists of 8 working
robots (triangles) on 8 paths.

−5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

(b) Comparison of the optimal CPLEX solution (light grey/green
path) against the Modified Noon bean Transform and LKH
Heuristic solution (dark grey/red path). The problem consists of
8 working robots (triangles) on 8 paths and 3 charging robots.

Fig. 9: Rendezvous path computation for a single recharge
cycle.

MILP solution computed with CPLEX, for a single charging
robot. The generated DAG contains 500 vertices. The optimal
solution for a single charging robot was computed by CPLEX
in 102 seconds. The heuristic solution was computed by LKH
in 2 seconds and resulted in a path cost 12.8% higher than the
optimal cost.

Figure 9(b) presents a sample problem instance with eight
working robots distributed among eight paths and 3 charging
robots. The result compares the heuristic solution obtained
with the Modified Noon-Bean transformation followed by the
LKH solver against the optimal MILP solution for multiple
charging robots. The DAG consists of 500 vertices. The
optimal solution was computed by CPLEX in 97 seconds. The
heuristic solution was computed by LKH in 1.2 seconds and
resulted in a path cost 7.8% higher than the optimal cost.

The results demonstrate that the performance of the Mod-
ified Noon-Bean transformation closely matches the original
Noon-Bean method as an algorithmic strategy in comparison
with the optimal MILP solutions.

To further benchmark the performance of the LKH heuristic
against the optimal CPLEX solution, we conducted an exper-
iment to examine the effect of growth in problem complexity
on the runtime and solution quality for both solvers.

A test set of simulation environments with different path
and robot configurations was created. Given each environment
configuration, the complexity of the path optimization was var-
ied by incrementing the density of charging points along each
working robot trajectory from {10, 20, 30, . . . , 100} charging
points per path. The recharge path was computed several times
for each charging point density level. The resulting runtimes
and path lengths for each environment are normalized to show
trends in performance with growth in problem complexity. The
results are summarized Figure 10 using box plots that show
the spread of results over each charging point density level,
using quartiles (box edges), extreme data points (whiskers) and
outliers (crosses). Boxes for the optimal and heuristic solutions
are plotted adjacently for each x-axis data point.

Figure 10(a) demonstrates the the growth in runtime for
the optimal CPLEX solution and the LKH heuristic solution
with a growth in problem complexity. Similarly, Figure 10(b)
demonstrates the trend in path costs for the optimal and
heuristic solutions. The optimal path cost for each simulation
environment is generally consistent for all problem sizes since
the complexity is varied by only increasing the number of
charging points per path. The results show that, on average, as
problem complexity grows, the optimal solver grows exponen-
tially in runtime and the heuristic solver consistently provides
solutions within 10% of the optimal with significant savings
in computational effort.

Finally, since an optimal MILP solution is not computa-
tionally tractable for large problem sizes an extremely large
problem was solved as a performance benchmark. The envi-
ronment consists of sixteen working robots, evenly distributed
among eight paths and one charging robot. The resulting graph
for the TSP solution contains 5761 vertices. The LKH solver
found a TSP solution in 368 seconds. The optimal MILP solver
was not able to compute an solution within a reasonable time
frame.

B. Persistent recharging in extended planning horizons

The following simulation experiments examine the receding
horizon and fixed horizon methods of computing recharge
paths over an extended planning horizon. For appropriate
benchmarking, the receding horizon strategy is implemented
by computing the optimal MILP solution at each planning
iteration and compared with the optimal fixed horizon path
over the planning horizon.

The computational effort required by the receding horizon
method is significantly less than the fixed horizon strategy
due to a shorter planning window and a much smaller MILP
formulation. For the same reason, however, global optimality is
not guaranteed over the entire planning horizon. To investigate
this trade-off, we conducted an experiment, similar to the
single recharge cycle tests, to examine the effect of growth
in problem complexity on the runtime and solution quality for
both methods.

13

(a) Runtime comparison: Optimal CPLEX (blue) vs. LKH heuristic (green).

(b) Path cost comparison: Optimal CPLEX (blue) vs. LKH heuristic (green).

Fig. 10: Performance comparison of Optimal CPLEX and
LKH TSP heuristic solutions

A test set of simulation environments with different path
and robot configurations was created. For each simulated
environment, the recharge path was computed using both the
receding and fixed horizon methods for a set of different plan-
ning horizons from {10, 15, 20, . . . , 40} minutes assuming the
estimated lifetime of each working robot to be 6 minutes. For
all receding horizon simulations, the replanning window was
chosen to be R/2 rendezvous’ per iteration. The optimization
of each planning strategy was aborted if a solution was not
found in 1000 seconds. The aggregate results for cumulative
runtime and total path cost are summarized in Tables I and
II due to the large differences in results between the two
strategies.

Tables I and II demonstrate the spread in the growth of
runtime for the fixed horizon strategy and the receding horizon
strategy respectively with a growth in planning horizon, using
quartiles, similar to the box plots. For each planning horizon,
the 25th percentile, 75th percentile and median of the runtime
results are shown. Figure 11 compares the normalized path

TABLE I: Fixed Horizon Runtimes

Horizon (minutes) Runtime Quartiles (seconds)
25% Median 75%

10 0.12 0.33 0.42
15 5.34 10.23 14.04
20 12.65 21.14 45.87
25 91.71 200.14 500.32
30 254.03 401.55 801.39
35 712.28 900.61 +1000
40 968.75 +1000 +1000

TABLE II: Receding Horizon Runtimes

Horizon (minutes) Runtime Quartiles (seconds)
25% Median 75%

10 0.11 0.14 0.18
15 0.12 0.15 0.20
20 0.16 0.20 0.30
25 0.21 0.28 0.38
30 0.25 0.32 0.49
35 0.31 0.43 0.58
40 0.37 0.54 0.68

costs for both methods with a box plot.
The results show that, on average, as problem complexity

grows, the growth in runtime for the fixed horizon solver
is exponential with a wide spread of growth rates based
on the problem configuration. On the contrary, the receding
horizon strategy consistently results in a significantly smaller
cumulative runtime even with an optimal MILP solution at
each iteration. On average, the receding horizon method is
seen to produce solutions with a total path cost within 20%
of the optimal fixed horizon solution.

Next, we investigate the effect of varying the planing

Fig. 11: Total path cost: Fixed horizon (dark/black) and
Receding horizon (light/red)

14

TABLE III: Receding horizon cumulative runtime

Planning window 1 2 4 6 8
Runtime (seconds) 6.14 3.49 2.03 1.41 infeasible

TABLE IV: Receding horizon total path cost

Planning window 1 2 4 6 8
Total Path Cost 1.22 1.01 1.23 1.02 infeasible

window size on the receding horizon strategy. For a set of 8
working robots and 3 charging robots, a test set of simulation
environments with different path configurations and charging
point densities was generated. For each environment, the plan-
ning window was varied from 1 rendezvous to 8 rendezvous’
and the receding horizon solution was computed for each
window size. Tables III and IV show the normalized results of
cumulative runtime and path cost, respectively, averaged over
all the experiments.

It is important to note that in the presented receding horizon
strategy, at each iteration, regardless of planning window, the
optimal recharge path is computed to visit all working robots.
Hence, Table III shows that the cumulative runtime generally
drops as the planning window grows, due to fewer replanning
iterations. However, a larger planning window also increases
the possibility of the path reaching an infeasible solution as
seen with the planning window of 8 rendezvous’ per iteration.
Table IV shows that the cumulative path cost over the planning
horizon is not significantly affected by the size of the planning
window.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the problem of persistent
recharging with coordinated teams of autonomous robots.

We prove that the One-in-a-set DAG problem is NP-hard
and present a MILP formulation for a single recharge cycle.
We also presented an approach which uses the Noon-Bean
transformation to obtain a TSP problem instance that can be
solved with a TSP heuristic solver. Subsequently, we proposed
a novel modification to the Noon-Bean transformation to ad-
dress the MGTSP case and find multiple rendezvous paths for
M charging robots. Simulation results show that the heuristic
solution using the Modified Noon-Bean transformation and
LKH solver is a viable alternative that produces solutions
of comparable cost and significant runtime savings. Finally,
we extend the problem to longer planning horizons using
a receding horizon and fixed horizon approach. Simulations
demonstrate the trade-off between optimality and computa-
tional complexity presented by the two alternatives.

The main challenge faced by the receding horizon approach
is ensuring that each subsequent planning iteration admits
a feasible solution. One way to mitigate this issue is to
incorporate terminal constraints for each planning iteration
to ensure continued feasibility of path solutions [33]. Im-
plementing safety constraints in the MILP formulation is a
future direction for this work. In the fixed horizon strategy,

in addition to high computational complexity, another draw-
back is poor robustness to uncertainties or modelling errors.
Since the computation is performed offline, this strategy does
not adapt the charging schedule to incorporate disturbances
and mistiming errors in the execution of the optimal plan.
However, robustness strategies such as reactive rescheduling
[34] may be used to make it an effective planning strategy.
Robustness of optimal path plans is a future direction for this
work.

REFERENCES

[1] N. Mathew, S. L. Smith, and S. L. Waslander, “A graph based approach
to multi-robot rendezvous for recharging in persistent tasks,” in IEEE
International Conference on Robotics and Automation, 2013.

[2] J. A. D. E. Corrales, Y. Madrigal, D. Pieri, G. Bland, T. Miles,
and M. Fladeland, “Volcano monitoring with small unmanned aerial
systems,” in American Institute of Aeronautics and Astronautics Infotech
Aerospace Conference, 2012, p. 2522.

[3] D. Casbeer, R. Beard, T. McLain, S.-M. Li, and R. Mehra, “Forest fire
monitoring with multiple small UAVs,” in American Control Conference,
2005. Proceedings of the 2005, 2005, pp. 3530–3535 vol. 5.

[4] B. White, A. Tsourdos, I. Ashokaraj, S. Subchan, and R. Zbikowski,
“Contaminant cloud boundary monitoring using network of UAV sen-
sors,” Sensors Journal, IEEE, vol. 8, no. 10, pp. 1681–1692, 2008.

[5] D. Kingston, R. Beard, and R. Holt, “Decentralized perimeter surveil-
lance using a team of UAVs,” Robotics, IEEE Transactions on, vol. 24,
no. 6, pp. 1394–1404, 2008.

[6] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243 – 255, 2004.

[7] S. L. Smith, M. Schwager, and D. Rus, “Persistent robotic tasks:
Monitoring and sweeping in changing environments,” IEEE Transactions
on Robotics, vol. 28, no. 2, pp. 410–426, 2012.

[8] F. Pasqualetti, J. W. Durham, and F. Bullo, “Cooperative patrolling via
weighted tours: Performance analysis and distributed algorithms,” IEEE
Transactions on Robotics, vol. 28, no. 5, pp. 1181 –1188, 2012.

[9] K. Swieringa, C. Hanson, J. Richardson, J. White, Z. Hasan, E. Qian,
and A. Girard, “Autonomous battery swapping system for small-scale
helicopters,” in IEEE International Conference on Robotics and Automa-
tion, May 2010, pp. 3335 –3340.

[10] K. Suzuki, P. Kemper Filho, and J. Morrison, “Automatic battery replace-
ment system for UAVs: Analysis and design,” Journal of Intelligent and
Robotic Systems, vol. 65, pp. 563–586, 2012.

[11] J. Derenick, N. Michael, and V. Kumar, “Energy-aware coverage control
with docking for robot teams,” in IEEE International Conference on
Intelligent Robots and Systems, 2011, pp. 3667–3672.

[12] Y. Litus, P. Zebrowski, and R. Vaughan, “A distributed heuristic for
energy-efficient multirobot multiplace rendezvous,” IEEE Transactions
on Robotics, vol. 25, no. 1, pp. 130 –135, 2009.

[13] Y. Litus, R. T. Vaughan, and P. Zebrowski, “The frugal feeding problem:
Energy efficient, multi-robot, multi-place rendezvous,” in IEEE Interna-
tional Conference on Robotics and Automation, 2007, pp. 27–32.

[14] K. J. Obermeyer, P. Oberlin, and S. Darbha, “Sampling-based path
planning for a visual reconnaissance unmanned air vehicle,” Journal
of Guidance, Control, and Dynamics, vol. 35, no. 2, pp. 619–631, 2012.

[15] J. Bellingham, A. Richards, and J. P. How, “Receding horizon control of
autonomous aerial vehicles,” in in Proceedings of the American Control
Conference, 2002, pp. 3741–3746.

[16] T. Schouwenaars, J. How, and E. Feron, “Receding horizon path plan-
ning with implicit safety guarantees,” in American Control Conference,
2004. Proceedings of the 2004, vol. 6, 2004, pp. 5576–5581 vol.6.

[17] N. Michael, E. Stump, and K. Mohta, “Persistent surveillance with
a team of MAVs,” in Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on, 2011, pp. 2708–2714.

[18] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations Research, vol. 21, no. 2, pp.
pp. 498–516, 1973.

[19] K. Helsgaun, “General k-opt submoves for the Linkernighan TSP
heuristic,” Mathematical Programming Computation, vol. 1, pp. 119–
163, 2009.

[20] D. Applegate, R. Bixby, V. Chvtal, and W. Cook, The Traveling Sales-
man Problem: A Computational Study. New Jersey, USA: Princeton
University Press, 2011.

15

[21] C. E. Noon and J. C. Bean, “An efficient transformation of the general-
ized traveling salesman problem,” INFOR, vol. 31, no. 1, pp. 39 – 44,
1993.

[22] ——, “A Lagrangian based approach for the asymmetric generalized
traveling salesman problem,” Operations Research, vol. 39, no. 4, pp.
623–632, 1991.

[23] C.-M. Pintea, P. C. Pop, and C. Chira, “The generalized traveling
salesman problem solved with ant algorithms,” Journal of Universal
Computer Science, vol. 13, no. 7, pp. 1065–1075, 2007.

[24] D. Karapetyan and G. Gutin, “Linkernighan heuristic adaptations for
the generalized traveling salesman problem,” European Journal of
Operational Research, vol. 208, no. 3, pp. 221 – 232, 2011.

[25] L. V. Snyder and M. S. Daskin, “A random-key genetic algorithm
for the generalized traveling salesman problem,” European Journal of
Operational Research, vol. 174, no. 1, pp. 38 – 53, 2006.

[26] J. Yang, X. Shi, M. Marchese, and Y. Liang, “An ant colony optimization
method for generalized {TSP} problem,” Progress in Natural Science,
vol. 18, no. 11, pp. 1417 – 1422, 2008.

[27] A. Scheuer and T. Fraichard, “Continuous-curvature path planning for
car-like vehicles,” in Intelligent Robots and Systems, 1997. IROS ’97.,
Proceedings of the 1997 IEEE/RSJ International Conference on, vol. 2,
1997, pp. 997–1003 vol.2.

[28] D. Eppstein, “Finding the k shortest paths,” in Foundations of Computer
Science, 1994 Proceedings., 35th Annual Symposium on, 1994, pp. 154
–165.

[29] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algo-
rithms, 4th ed., ser. Algorithmics and Combinatorics. Springer, 2007,
vol. 21.

[30] C. E. Noon and J. C. Bean, “A Lagrangian based approach for the asym-
metric generalized traveling salesman problem,” Operations Research,
vol. 39, no. 4, pp. pp. 623–632, 1991.

[31] G. Laporte, H. Mercure, and Y. Nobert, “An exact algorithm for the
asymmetrical capacitated vehicle routing problem,” Networks, vol. 16,
no. 1, pp. 33–46, 1986.

[32] J. Hooker and M. Osorio, “Mixed logical-linear programming,”
Discrete Applied Mathematics, vol. 9697, no. 0, pp. 395 – 442,
1999. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0166218X99001006

[33] M. Earl and R. D’Andrea, “Iterative MILP methods for vehicle-control
problems,” Robotics, IEEE Transactions on, vol. 21, no. 6, pp. 1158–
1167, 2005.

[34] “A MILP framework for batch reactive scheduling with limited discrete
resources,” Computers & Chemical Engineering, vol. 28, no. 67, pp.
1059 – 1068, 2004, ¡ce:title¿FOCAPO 2003 Special issue¡/ce:title¿.

