
HOP: Hands-On Projection
Final Report

A Report Submitted in Partial Fulfillment

of the Requirements for SYDE 462

Al Amir-khalili, 20198393

Chris Best, 20200501

Kyle Morrison, 20203836

Faculty of Engineering

Department of Systems Design Engineering

April 5, 2010.

Course Instructor: Dr. Dan Stashuk

Contents

Contents i

List of Tables iii

List of Figures iv

1 Introduction 1

1.1 Problem Statement . 1

1.2 Background . 2

2 Objectives 4

3 Methodology 6

3.1 Marker Detection . 6

Criteria . 6

Research . 7

Implementation and Results . 8

Test Results . 11

Thresholding and Flip Detection . 13

3.2 Bit Extraction . 15

Orientation Detection . 15

Information Extraction . 18

Testing and Evaluation . 19

3.3 Calibration . 20

i

Homography . 20

3-Point Homography . 21

5-Point Homography . 21

OpenCV cvFindHomography . 21

3.4 Entity Persistence and Averaging . 21

3.5 Hardware . 22

Cost . 22

Capture Device . 23

Display Method . 23

Comparison Results . 24

Further Conclusions . 27

3.6 Prototype . 28

4 Results and Discussion 29

4.1 Objectives . 29

4.2 End to End . 30

5 Conclusions and Recommendations 31

5.1 Conclusions . 31

5.2 Recommendations . 32

6 Description of Timeline 33

A Timeline 37

ii

List of Tables

3.1 Robustness Test Results . 12

3.2 Accuracy Test Results . 13

3.3 Accuracy of Bit Extraction . 20

iii

List of Figures

1.1 Hypothetical Layout of the System 2

3.1 The Marker Specification . 9

3.2 OpenCV’s Hough Circle Detection 9

3.3 Parameter Sweep Circle Detection . 11

3.4 Adaptive Thresholding example . 14

3.5 Detected Marker with Orientation Bit 18

3.6 Extraction Grid Projected on the Marker 19

3.7 Capture Devices . 24

3.8 Logitech QuickCam Failing at Detection 25

3.9 PlayStation Eye Detecting 140 markers 26

3.10 Projector Setups . 27

3.11 Physical Layout of the Prototype . 28

iv

1

Introduction

Computer technology has revolutionized the way people approach design and orga-

nization. However, it has also to a large extent taken physical interaction out of the

design work flow. For tasks which are driven by spatial metaphors and benefit from

direct tactile and visual feedback, the traditional approach of using a keyboard and

a mouse as input devices leaves room for improvement. This project aims to address

this need by establishing a system which combines virtual design and physical object

manipulation. The goal is to create a system in which physical markers which are

arranged on a workspace act as handles with which the logical virtual design can be

created and manipulated. The ease with which many users can quickly visualize and

communicate their ideas will be increased. The focal point of the design is allow-

ing people to use natural spatial concepts and actions to interact with the computer

design environment.

1.1 Problem Statement

Current visual design systems impose restrictions, whether physical or virtual, which

create further separation between the designer and the design. Other systems, which

attempt to bridge the gap between physical and virtual design, are cumbersome and

restrictive. What is needed is a simple and intuitive method for integrating physical

design with virtual models.

1

Figure 1.1: Hypothetical Layout of the System

1.2 Background

Humans have an innate aptitude for manipulating objects with their hands, and

performing visual and spatial planning in the real world. For one, human beings

are born with the ability to move, and by five months have started to move objects

with their hands [1]. This is in stark contrast to computers, which must be learned

after a maturation period, and which some people learn only after struggling [2]. By

virtualizing the full appearance of the model while maintaining its tactile nature, a

designer will be able to get the best of both worlds.

Current methods for a physical-virtual hybrid design system do currently exist.

One of the first Augmented Reality systems, called CyberCode [3], used the same

basic idea: use 2D pattern recognition to project a virtualized model into the real

world. However, the CyberCode project only projected Computer generated graphics,

meaning that only when viewed through a computer did the post-processed image

2

contain any extra information. To the people in the room at the time, the patterns

they were looking at remained unchanged.

The idea of CyberCode has been extended on several occasions. One such ex-

tension was the Harbour Game [4], which was implemented via the ARToolkit [5].

However, the implementation method again precludes the designers from projecting

the model into the real world, and instead they must rely on a computer generated

model via a viewing screen.

Another such example is an Augmented Reality Workbench from MIT graduate

students [6]. It incorporates physical manipulation with digital virtualization for

the sole purpose of urban planning. There are several drawbacks with their system,

however. The first is that it restricts the design domain to urban planning, and is

thus inflexible. The second is that it requires a luminous table to project the design,

which adds another barrier between the designer and the design. Finally, it requires

the designer to build stick scaffoldings of buildings instead of using digital projections,

adding more work for the designer.

3

2

Objectives

The primary objective is to create a functioning prototype of a spatial visualization

and manipulation system. A representation model is desired which effectively encap-

sulates the information required for spatial planning. An input scheme which allows

the user to modify their design by intuitively manipulating physical markers is de-

signed, and a physical display will be built which clearly and accurately outputs the

representation model while integrating the marker input system. To this end, the

following technical objectives are used:

• Design a Marker: The group will design a class of markers which are com-

fortable and intuitive for a person to manipulate, which can represent a variety

of spatial planning tasks, and which can be easily recognized using computer

vision for the input to the system. This will involve researching the state of

the art in marker design from an image recognition perspective, developing re-

quirements from a user perspective, and combining these into a simple, robust

design.

• Implement a Recognition Algorithm: The group will implement a com-

puter vision algorithm which takes an image with the above markers and cap-

tures the spatial information they represent. This will involve researching how

to design or adapt such an algorithm given the other constraints imposed by

the model. In particular user interference like hands and arms temporarily ob-

4

scuring markers will need to be accounted for. Also, the algorithm will need

to compensate for the effects of projecting things onto the markers themselves.

The algorithm(s) used will be optimized so that real time feeling performance

can be achieved.

• Design a Visual Overlay Model: The group will design an overlay which

renders additional information from the model, such as dimensions, conflicts,

and visual representations for display to the user. It will be necessary to research

and determine what information is useful for the chosen application, and how

to display it most clearly. For example, a floor planning model might show a

warning when a fire exit was obstructed. In a battle planning scenario, it could

show line of sight. The visual overlay will be take input in forms which are

translatable from the output of the marker recognition subsystem.

• Integrate Into a Physical System: A surface will be designed on which

the markers can be manipulated with augmented display information projected

onto it in real time. Integrating all these components will give the overall effect

of a virtual display which has physical handles by which it can be manipulated.

Concerns

This concept deliberately ties the manipulation of the model to physical objects.

This also introduces limitations - something like scrolling would not be as straight-

forward to accomplish when the items in the scene are “connected” to the physical

markers. This is a trade-off that will have to be handled carefully so that the re-

sulting user experience is not crippled. However, the speed and simplicity of physical

manipulation of objects compensates for some of the possible difficulties.

Another concern is the generality of the design. Even if it is as general as possible

for spatial design tasks, there are still non-spatial but important design tasks (say,

text input) which may be tightly coupled. It is acceptable for the project’s scope to

exclude non-spatial parts of the work flow, but there should at least be some thought

given to how the project would fit into a full design process.

5

3

Methodology

3.1 Marker Detection

In the context of this project, Marker Detection refers to the technique used to deter-

mine the location of the control markers on the input plane. Given a frame captured

from the input camera, which sees the input surface complete with markers, projected

display, and any obstructions, it is necessary to extract usable position data for the

markers. This allows the system to use the locations and movement of the markers

as input. Accurate position information is also a precondition for bit extraction, as

described in the next section.

Criteria

There are three main criteria on which marker detection algorithm will be evaluated.

1. Accuracy - The algorithm should recognize the position of each marker as

accurately possible. This is measured by the deviation, in millimeters, of the

(x,y) coordinates and radius r of each marker circle measured by the algorithm

from the marker’s actual position on the input surface. This is important both

because the accuracy of the input to the application is fundamentally limited

by the performance on this criterion, and because the position information is

used in the bit extraction phase.

6

2. Robustness - The algorithm should be as robust as possible under the required

operating conditions. This is measured jointly by the rate of false positives and

false negatives for detection on an array of test images with varied conditions.

3. Speed - Because of the real time nature of the input system, it is important that

the detection step introduce a minimum of latency. This criterion is measured

by the worst case time, in milliseconds, that the detection algorithm takes to

run.

Research

A great deal of the relevant work on geometric shape detection in images discusses

the concept of Hough transforms, or an improvement thereof, as the core method

for detecting circles or other geometries [7][8][9][10][11][12][13][14]. This technique is

powerful in that it is quite general and robust, but it also suffers from performance

problems [11]. This makes it well suited for problems where the end goal is to find any

circle in an image, regardless of whether the circle is deliberately placed or naturally

occurring.

Other approaches depart completely from the Hough approach, in most cases in

order to gain greater performance at the expense of loss of generality. An example

of this is [15] which uses gradient vector pairs, for a cost saving of eight times over

a Hough method. At the other end of the spectrum [16], uses a genetic algorithm

to achieve greater accuracy, but reports detection times of up to 5 seconds on a

natural image. Finally, a very intriguing method called Inscribed Angle Variance was

presented in [17] which is actually not doing image recognition at all, but rather doing

mapping with laser range finders for a robotics application. The appealing part of this

method is that it uses simple geometric properties of a circle in a very computationally

efficient way, and achieves detection times on the order of milliseconds. Again, this

approach trades away generality in that a) it sets a hard limit to the circle parameters

it will accept, and b) it assumes a certain quality of input information (the laser’s

statistical range tolerance is known) but the approach excels at its intended purpose.

7

The way the Hough transform family of geometry detection methods work, at a

high level, is to define a parameter space for the geometry, and to create an accumu-

lator in the parameter space. The image (or a processed version thereof, usually with

edge detection) is then processed in pieces, and evidence is gathered for whether the

geometry exists at a point in the given parameter space. At the end, the totals are

counted and a “vote” of some type in the parameter space is used to determine where

geometry is found [14].

This has the advantage of being very general, but is computationally relatively

expensive [11]. This means that in applications which require only specific (rather

than general) detection - for example with known intensity level properties - but which

also have strict time complexity constraints, Hough transform based methods are not

ideal. In fact, if the application is specific enough, the generality of the approach

becomes a drawback rather than a benefit, as shapes which are circles, but which

are not the specific circles being searched for, are more likely to be detected. One

approach to address this issue is to add a second classifier such as a neural net to

prune the Hough circle results, as in [12]. However, this fix can only add to the time

complexity problems.

Implementation and Results

Recall that the original reason for the investigation of circle detection techniques is

to detect a specific type of circular marker, shown in Figure 3.1. In the image, the

“Unknown” section refers to the space where data bits are stored, and thus should not

affect detection. Experiments were conducted with OpenCV’s Hough circle detection

algorithm. These showed that the algorithm was actually sufficiently fast, with the

time to process a frame on the order of 20 milliseconds. It also can successfully pick

out the circular markers, as shown in Figure 3.2a. However, given a complex natural

image, the false positive rate is enormous and wildly varying, as seen in Figure 3.2b.

In live video form, it can be seen that not only are a great number of non-markers

are detected, but where it detects these circles varies erratically between frames.

8

Figure 3.1: The Marker Specification

In order to fix this problem, an algorithm was devised with the requirement that

it be as fast or faster than OpenCV’s Hough algorithm, but which detects only the

specific marker circles required for the application. This was accomplished by starting

at the opposite end of the problem from where a Hough transform would start. Instead

of sweeping the spatial domain in order to populate an accumulator in the parameter

domain, the new algorithm sweeps the parameter domain, checking for a match in

the spatial domain at each iteration.

(a) Marker in a simple natural image (b) Complex natural image: many false

positives are found

Figure 3.2: OpenCV’s Hough Circle Detection

9

Define the parameters for the circle to be x and y the coordinates of the top

point of the circle, and r, its radius. Then simply perform a grid sweep of interesting

values for these parameters. At each stage, a boolean decision must be reached as

to whether a marker is in the given location L = (x,y,r). Technically this gives us a

complexity of M*N*R, where M and N are the number of horizontal and vertical steps

in the image at the search resolution, and R is the set of all radius values necessary

to check. However, because the algorithm is looking for a specific image, the boolean

check at each stage can be short circuited, so that for the vast majority of iterations

very little computation is performed. For example it is possible to define intensity

value thresholds for what constitutes “black” and “white” in an image, and use the

algorithm to decide if there is a marker in a given location.

Algorithm 1 Psuedo-code to match a marker

if the top pixel is not black then
return false

end if
if the center pixel is not white then

return false
end if
for all θ do

if pixel at (r, θ) is not black then
return false

end if
if pixel at (r + δ, θ) is not white then

return false
end if

end for
return true

In almost the entire image, the first check will fail, and no additional calculations

are necessary. As an additional optimization, if the very top pixel fails, it is not

necessary to sweep the radii at all, since by the definition resented here, no circle has

its top at that location. Additionally, once a marker is found, it is possible to block

out the entire space covered by that marker from future detection, as in the given

scheme no markers may overlap.

10

(a) Marker in a simple natural image (b) Complex natural image: no false pos-

itives are found

Figure 3.3: Parameter Sweep Circle Detection

The success of this algorithm is seen in figures 3.3a and 3.3b. Because of the

parametric approach taken with the specific marker in mind, there are no false pos-

itives in the complex image, while still accurately matching the marker circle in the

simple test image.

Test Results

Two tests were devised to evaluate the proposed detection algorithm against the

criteria. The first is a robustness test, in which 140 markers are placed in a scene,

and frame captures are taken under an array of sub-optimal lighting conditions. This

captures are passed through the algorithm, and it is manually verified that there are

no false positives. The error rate is then calculated as the number of markers not

detected divided by the total. The time for each detection is also recorded, and this

can be regarded as a worst-case time because both the aggravating conditions - a

large number of markers, and bad lighting conditions - are present.

It can be seen from the tabulated robustness results in Table 3.1 that in most of

the test images there is 100% detection, and in the three of twenty that have failures,

the error rate is 2, 3, and 2 out of 140 respectively. Upon visual inspection, it is

verified that these failures are caused by defects in the image caused by extremely

11

Table 3.1: Robustness Test Results

Image Time (ms) Miss Rate
00.ppm 28 0.000000
01.ppm 26 0.000000
02.ppm 26 0.000000
03.ppm 27 0.000000
04.ppm 26 0.000000
05.ppm 26 0.000000
06.ppm 26 0.014286
07.ppm 26 0.000000
08.ppm 25 0.000000
09.ppm 25 0.000000
10.ppm 25 0.000000
11.ppm 26 0.014286
12.ppm 25 0.021429
13.ppm 25 0.000000
14.ppm 25 0.000000
15.ppm 25 0.000000
16.ppm 24 0.000000
17.ppm 24 0.000000
18.ppm 25 0.000000
19.ppm 25 0.000000

poor lighting. It can also be seen that all detection times are under 30ms, which is

well within the requirements.

The second test is an accuracy test, in which 6 markers were placed in a scene,

and again 20 images in varying poor lighting conditions were captured. For these

images, the true values of the circle parameters topX, topY, and radius were calculated

manually to the pixel. The detection algorithm was then run, and the mean squared

error for each of these parameters computed. The detection time was also measured.

The results of this can be seen in Table 3.2. The mean squared error is less than

1 pixel in nearly all cases, and is at worst 1.3. Again, the detection times are very

acceptable.

12

Table 3.2: Accuracy Test Results

Image Time(ms) Succeeded Failed MSE x MSE y MSE r
img00.ppm 13 6 0 0.000000 0.333333 0.333333
img01.ppm 12 6 0 0.333333 0.166667 0.500000
img02.ppm 24 6 0 0.333333 0.166667 0.500000
img03.ppm 19 6 0 0.666667 0.000000 0.666667
img04.ppm 19 6 0 0.333333 0.166667 0.500000
img05.ppm 12 6 0 0.833333 1.000000 0.500000
img06.ppm 12 6 0 0.000000 0.500000 0.500000
img07.ppm 12 6 0 0.000000 0.333333 0.500000
img08.ppm 12 6 0 0.166667 1.333333 1.000000
img09.ppm 14 6 0 0.000000 0.666667 0.833333
img10.ppm 25 6 0 0.166667 0.166667 0.666667
img11.ppm 14 6 0 0.000000 0.500000 0.500000
img12.ppm 20 6 0 0.500000 0.333333 0.666667
img13.ppm 29 6 0 0.166667 0.833333 0.833333
img14.ppm 31 6 0 0.166667 0.333333 0.500000
img15.ppm 18 6 0 0.000000 0.833333 0.833333
img16.ppm 14 6 0 0.166667 0.166667 0.333333
img17.ppm 20 6 0 0.333333 0.166667 0.333333
img18.ppm 13 6 0 0.500000 0.000000 0.333333
img19.ppm 19 6 0 0.666667 0.000000 0.500000

Thresholding and Flip Detection

Although the testing described in the previous subsection shows that the basic de-

tection algorithm is performant and robust under the test conditions, there are areas

where there is room for integration with the overall system.

The first is that when the top down projection is added to various other poor light-

ing conditions, the input image from the camera can be very degraded. In particular,

the case of purely fluorescent lighting, combined with a DLP projector, results in a

very poor captured image. This can be mitigated by applying adaptive thresholding

to the image, as in Figure 3.4.

13

Raw Input After Adaptive Thresholding

Figure 3.4: And adaptive thresholding filter removes artifacts from fluorescent light-

ing, and other lighting noise

Additionally, this method leaves room for tweaking to adjust for specific lighting

conditions. The adaptive thresholding algorithm bins pixels into black and white

depending if their intensity value is greater or less than the mean value in a neigh-

bourhood around them. OpenCV’s adaptive thresholding algorithm takes an optional

parameter which allows for an offset to be added to this mean first however, which

allows for fine grained adjustment of the thresholding behaviour with respect to mean

intensity.

Another way the location detection can be improved is by fine tuning the center

point and radius detection still further, as this directly impact bit extraction perfor-

mance. The original algorithm is quite accurate, but there is a slight bias towards

the left for circle centers, because of the scan direction. This is addressed by run-

ning the scan twice, once on the image as usual, and once on the image flipped both

horizontally and vertically. The center and radius can then be averaged between the

two, removing the directional bias and making the radius detection more accurate

and more stable.

14

3.2 Bit Extraction

The process of bit extraction occurs after the markers have been located, and is

integral to determining the identity of individual markers. It can be split into two

processes: determining the orientation of the marker, and extracting the information

bits from the marker. However, in the current design of the markers, the significance

of each information bit is dependent on its location relative to the orientation bit, and

thus these two processes must be done sequentially with the orientation identification

coming first. The problem can be stated as: given the top and center of a circle, find

the bit in the marker which determines its orientation.

Orientation Detection

Several methods are considered for finding the orientation bit, and thus determining

the orientation of the marker. The first feature that jumps out about the orientation

bit is that it always represents the farthest cluster of white from the center of the

marker. Furthermore, it is a square, and thus has corners. These two facts suggest

that one might be able to find the bit by simply finding the corners that are farthest

from the center, or finding the clusters of white that are farthest from the center.

Both of these approaches will be considered.

The first approach that comes to mind is finding the two corners farthest from the

center of the marker. The first step is to use a corner detection algorithm to determine

the parts of the marker that have the highest probability of being corners [18]. Then,

step through these corners and keep track of which two are the furthest away from

the center. Once the two corners have been identified, they can be used to create

some basis vector n, and the vector orthogonal to n the orientation vector o. And

thus the problem of finding the orientation has been solved.

The major problem with this approach is that it is very sensitive to loss of resolu-

tion. For a fully cropped, high resolution image of a marker this algorithm does quite

well. However, as the marker gets farther away from the camera, and the resolution

of the marker decreases, the image starts to lose some of the finer detail around the

15

corners. This can result in only one of the corners being found, or none being found

at all. In the case of only one being found, the algorithm would be forced to look

for another corner, and would instead find one of the information bits. This would

lead to a disastrously erroneous estimate of orientation. One idea might be to only

take the single farthest corner from the center instead of the two farthest. This would

also prove difficult, and the resultant vector would be systematically skewed by a

nontrivial angle, and the algorithm has no way of knowing which way the skew is and

thus no way of correcting it. Even worse is the case where the algorithm does not

find any corners. At this point, the behaviour of the algorithm for that particular

mark would be difficult to predict, and even more difficult to correct.

Alas, for the flaws just outlined with the corner detection algorithm, the cluster

detection algorithm is also not suitable for this particular problem. This algorithm

can be described as attempting to find the farthest clusters of white pixels in the

circle, and using the two farthest clusters as the corners of the orientation bit. As

previously mentioned, however, this method is heavily reliant on the resolution of the

image and the finer detail in the corner of the orientation bits. This observation is

borne out in the testing. When the camera is close to the marker, the algorithm does

quite well and identifies the orientation bit around 95% of the time. However, as the

camera is moved farther and farther back, the performance of the algorithm becomes

worse and worse. When the distance of the camera is sufficient to simulate real world

applications (such as tabletop interaction), the detection of orientation can be seen

to oscillate wildly over the marker.

Based on the poor performance of the aforementioned algorithms, a new approach

was required which would not exhibit such drastic performance loss at lower resolu-

tions. Of course, at a certain lower bound of resolution any algorithm is certain to

fail, simply because there is not enough detail in the image. However, what was

needed was an algorithm that would perform well within the distance measurements

that are being considered for the application (between 0.5 and 1 meters). For the new

approach, a third feature of the marker is considered which was previously ignored:

the orientation bit is always a fixed distance from the center of the marker. Thus,

16

once the center of the marker is identified, the new process is to sweep radially around

the center for possible locations of the orientation bit. Since the exact size in pixels

of the marker is expected to change, the radius of interest is instead expressed as a

fraction of the radius of the marker. In this case, the center of the orientation bit

is expected to be at 5
7
∗ r from the center of the marker. To further ensure accu-

racy, instead of the looking for the white pixels at this radius, the algorithm instead

searches for regions of white pixels. A champion region (and an associated angle) is

maintained by the algorithm, which updates only if the new region is, on average,

white than the previous champion. Pseudocode for this algorithm can be seen below.

This champion region method ensures that the edge of the orientation bit is never

detected, only something that is close to the center of the orientation bit. This further

reduces the complexity of orientation finding, because there is no longer any vector

subtraction that was needed with the previous corner methods.

Algorithm 2 Psuedo-code to determine orientation

r ← 5
7
marker.radius()

for all θ do
if pixel.localAverage() at (r, θ) ≥ currentChampion then
bestTheta← θ
currentChampion← pixel.localAverage()

end if
end for
return bestTheta

This method works quite well in practice. Once a marker location is detected

and passed to the algorithm, it is able to determine the correct orientation with a

high degree of accuracy, as can be seen in Figure 3.5. The exact performance of the

algorithm will be considered in the testing. These tests are not as rigorous as the

full application testing that will follow after the calibration phase of the project, but

there are enough to show the potential of the algorithm and the accuracy that it is

capable of.

17

Figure 3.5: The marker is detected, and the orientation bit is correctly found

Information Extraction

Once the orientation of the marker has been determined, the actual information ex-

traction is relatively trivial. Each of the 8 information bits can be uniquely identified

by their expected radius to center and their rotation with respect to the orientation

bit. The estimated location of the bits based on the orientation can be seen in Fig-

ure 3.6. The local average of pixels is taking at these 8 rotations and radii, and this

average is compared against some threshold to determine whether the area is deemed

black or white. This part of the algorithm is smooth, with no defects seen so far

in the testing. These bits are then transformed into a binary representation, which

is in turn transformed into some decimal number. With eight bits of information,

it is possible to represent 256 distinct markers, which is more than enough for the

purposes of this application.

18

Figure 3.6: Using the orientation bit, the information grid is projected onto the

marker

Testing and Evaluation

The testing of the bit extraction depends heavily on the accuracy of the marker

detection as well as the resolution of the image. A steep drop-off in accuracy is

noticed as the resolution of the markers decrease. As can be seen in Table 3.3, the

algorithm more often that not gets more right than wrong. However, it is also clear

that there is a large room for improvement, especially in the largely shaded images

where (3 and 17) where the bit extraction gets more wrong than right.

One possible fix for these accuracy issues is making the markers slightly larger,

and thus increasing the resolution of each marker. That will ensure more pixels (say

12 as opposed to 6) make up the orientation bit, which would allow greater accuracy

in its detection. Another idea is to use a separate image for the bit extraction, and

perform adaptive thresholding on it. This could eliminate the problems seen with

shaded images, and would make the algorithm more robust.

19

Table 3.3: Accuracy of Bit Extraction

Image Succeeded Failed
img00.ppm 4 2
img01.ppm 6 0
img02.ppm 2 4
img03.ppm 6 0
img04.ppm 4 2
img05.ppm 5 1
img06.ppm 4 2
img07.ppm 4 2
img08.ppm 3 3
img09.ppm 4 2
img10.ppm 5 1
img11.ppm 4 2
img12.ppm 4 2
img13.ppm 4 2
img14.ppm 6 0
img15.ppm 6 0
img16.ppm 6 0
img17.ppm 1 5
img18.ppm 5 1
img19.ppm 2 4

3.3 Calibration

It is established that the resolution of the camera is going to be different from the

output of the projector. Furthermore, it would be inefficient to design the system in

such a way that the camera captures nothing other than the projected surface. In

order to fill the gap between points detected in the camera space and where these

points appear in the projection space, a calibration algorithm is required.

Homography

Homography, also known as collinearation, is an invertible transformation which maps

the real projective planes onto a common projective plane. Such transformations are

composed of pairs of perspective transformation. So, on a two dimensional plane, at

least three points are required to form a three-by-three homography matrix [19].

20

3-Point Homography

In the first attempt, a simple 3-point homography technique developed by Fang and

Chang was used [20]. This technique seemed to rely heavily on accurate detection

of the three points. If a point is detected incorrectly, the geometric correction will

heavily favour the incorrect direction. This effect is magnified further by the fact that

the resolution of the capture space is less than half of the projection space. Therefore,

if the detection is off by two pixels, it is effectively off by more than four pixels in the

projection space. A better method is required which takes advantage of redundant

homologous points (more than three).

5-Point Homography

A more robust method was proposed in Fang and Chang uses a 5-point pattern. This

method may also be extended to use an arbitrary amount of points to achieve bet-

ter accuracy. However, these algorithms were developed for calibrating touch-screen

sensors. Touch screens tend not to suffer from pitch, yaw, and fish-eye distortions

that are common with camera lenses. A better method is required which is unique

to applications involving cameras.

OpenCV cvFindHomography

In the end, it was decided to take advantage of the built-in homography matrix gen-

eration function from the OpenCV library. The inputs and output of the function

had to be modified slightly to make it also compatible with two-dimensional trans-

formations.

3.4 Entity Persistence and Averaging

Even with accurate, robust detection, there is no guarantee that every marker will be

recognized in every detection frame. For example, the user’s hand can briefly occlude

21

a marker, or some severe lighting issue like a high contrast shadow can temporarily

cause erroneous detection or prevent detection altogether.

For this reason, although bit values and marker locations are calculated every

frame, these are not passed directly into the application, but rather some averaging is

first applied. In particular, we want to require several fames of detection before a new

entity is added (in case of erroneous detection) and several frames of non-detection

before an entity is removed.

To this end, a list of entities is maintained, which is updated each time detection

runs on a frame. Once a specific marker has been detected in 5 frames (not necessarily

consecutive) it is added as an entity. Once an entity has failed to be detected 10 times

(consecutively) is is removed as an entity, and it must start the process over if it is

re-added.

Additionally the position, radius, and rotation of each marker can now be averaged

over a short period of time to dampen any erroneous changes.

3.5 Hardware

The criteria used to gauge the suitability of hardware can be summarized by three

categories: cost, capture device, and display method.

Cost

Cost is chosen to be the quintessential limiting factor. Given unlimited funding and,

thus, access to state-of-the-art hardware, the criteria in the other categories become

no longer relevant.

1. Cost - The total cost of hardware for this system is aimed to be below $1000

CAD such that it does not restrict the user-base to professionals. Note that the

budget assigned to this project assumes that the user already has a personal

computer at their disposal. The cost of a personal computer is not factored into

this metric.

22

2. Compatibility - Since the system is designed to use a personal computer as

the main processing component, the two remaining hardware components must

be compatible with most personal computers while adhering to the criteria

specified in the following subsections.

Capture Device

In addition to the software components, the capture device plays a very significant

role in achieving real-time results.

1. Response Time - Miller 1968 states that 100 milliseconds is the approximate

limit for having the user feel that the system is reacting instantaneously [21].

This metric is used as the Worst-Case Execution Time (WCET) of the entire

system. Ideally, the system will respond below an average of approximately

50 milliseconds. The main implication is that the capture device must be able

to feed the user’s actions to the detection software fast enough such that the

average response time is satisfied. The maximum response time criteria for the

physical capture device is set to 10 milliseconds.

2. Capture Resolution - One of the objectives of this system is to accurately

detect a minimum of 140 markers at a given instance.The capture device must

be able to capture at high enough resolution such that it allows for bit extraction

to be carried out on 140 markers.

Display Method

The human visual system can detect flicker patterns at frequencies as high 120 Hz.

Even at such high frame rates, judder artifacts occur from fast moving objects [22].

1. Draw Rate - Due to the complexity of the human visual system, it is difficult

to create robust and cost effective systems which give the illusion of real-time

response. Therefore, further constraints are placed on the decision metrics. In

order for the system to be deemed real-time, it must be able to output the

23

overlaying interface at a rate of no less than 30 frames per second. 30p is the

de facto standard for television broadcasting (30 frames per second without

interlacing) [23]. This decision also invariably puts a restriction on the capture

device. Since the overlay is processed through the GPU, rendering above 24

frames per second is not an issue as long as the capture device can supply input

to the system at a faster rate.

2. Display Method - There are many methods of projecting an overlay onto

the markers. The cost metric does away with most options involving expensive

touch-sensitive table-top computers. Referring back to the ‘capture resolution’

metric, the overlay must be large enough such that it can project details onto

the 140 markers. Furthermore, the projection method must be done in such

a way that it does not interfere with the marker detection and bit extraction

process.

Comparison Results

(a) Logitech QuickCam

4000

(b) Canon PowerShot (c) PlayStation Eye

Figure 3.7: Capture Devices

Common household video capture devices were the first candidates for a video capture

device. The particular devices which were initially selected included a Logitech Quick-

Cam 4000 webcam and a Canon PowerShot digital camera. The webcam produced

24

a lot of noise and was very sensitive to changes in ambient environmental bright-

ness levels. It was also unable to accurately detect the required minimum number of

markers (see Figure 3.8).

This device is rejected for failing the second criterion. The seven megapixel dig-

ital camera certainly satisfied this criterion, however, the software used to remotely

capture images from the camera proved to be very slow. It takes on an average of 1.3

seconds for the software to trigger the camera’s image and prepare it for detection.

This is in conflict with the first criterion. The use of a digital camera is thus rejected.

Figure 3.8: Logitech QuickCam Failing at Detection

Ultimately, the Sony PlayStation Eye camera proved to be the ideal capture device

with respect to the established criteria. The PlayStation Eye is capable of capturing

video of 640 by 480 pixels at a maximum rate of 75 frames per second (see Figure 3.9).

The response time for the camera is well below the requirement as well. There open-

source drivers available for the camera which make this device ideal for the purpose

of development. With a price tag of under $45, this device is recommended over other

alternatives.

25

Figure 3.9: PlayStation Eye Detecting 140 markers

The idea of using a large LCD screen as a method of displaying the overlays was

the first to be rejected. Although it meets all of the specified requirements, large

screen LCDs are expensive. Also, the light emanating from the display onto the

capture device results in glare on the camera lens which complicates the process of

detection.

This leaves the option of using a projector. There are two methods of projection.

Back projection (Figure 3.10b) is difficult to implement and is more expensive because

it requires a custom built table and a finely calibrated mirror. Back projection also

suffers from the same drawbacks of using and LCD. The other more common method

is using forward projection (Figure 3.10a). By projecting on top of the surface, as

well as the markers, the details of the marker would be illuminated as well, providing

the high contrast required for detection and bit extraction.

26

(a) Forward Projection (b) Back Projection

Figure 3.10: Projector Setups

Forward projection projects high intensity light normal to the surface. Which re-

duces the shadows occurring from ambient lighting conditions. In conclusion, forward

projection using a projector capable of displaying at a rate of 30 frames per second

is ideal.

Further Conclusions

From these metrics it is deduced that the detection rate (response time) is allowed to

run at a slower clock compared to the rate at which the overlay interface is redrawn.

Since the overlay is processed through the GPU, rendering above 30 frames per second

is not an issue as long as the capture device can supply input to the system at a faster

rate. The main bottleneck occurs at the computationally expensive component of the

system: marker detection. In the case that the detection rate is worse than 30 frames

per second, additional corrective measures may be built into the software. Such

added features include multi-threading the detection algorithm or taking advantage

of a fast predictive motion estimation algorithm to adjust the overlay in between

detection cycles [24].

27

3.6 Prototype

Figure 3.11 shows the final physical layout of the prototype. The projection device, a

bright BENQ DLP projector, is mounted at the top of the apparatus. The distance at

which the projector is mounted away from the table was set such that the projection

area would cover at least three square feet at the lowest zoom. The mounting location

of the PS3Eye camera was chosen in a similar way. Ideally, the camera would be as

far away from the table as possible while covering only the projection area. This

optimizes the resolution of the markers captured by the camera; it is very important

to do so because high resolution increases the effectiveness of the detection and bit

extraction algorithms.

Figure 3.11: Physical Layout of the Prototype

The computer on which the algorithm is hosted is shown on the bottom left corner

of the figure. The projector and camera are both connected to this computer, thus,

completing the loop between the user input and visual feedback.

28

4

Results and Discussion

The final system and prototype design are a success. There are areas where the design

could be improved and extended, but overall the design and prototype meet the goals

of the project.

4.1 Objectives

• Design a Marker: The group successfully designed a marker which is comfort-

able to manipulate, and allows for robust and efficient computer recognition.

The choice of a bit pattern type of recognition allowed for 255 simultaneous

markers, and made the markers themselves generalizable across many applica-

tions. However, it sacrifices specificity to a single application (the pictures on

the marker are not meaningful in a human sense to any particular application.)

• Implement a Recognition Algorithm: A marker recognition algorithm has

been successfully implemented. The speed of the algorithm is very acceptable,

however there is some room for improvement in the rotation and bit extraction

phases. The net result after temporal averaging is a successful tactile input

system.

• Design a Visual Overlay Model: The group successfully designed a simple

application layer which successfully demonstrates the input system - a small 2D

29

orbital simulation sandbox.

• Integrate Into a Physical System: A prototype was successfully built, using

a DLP projector, a PS3 eye, and a normal table.

4.2 End to End

The most meaningful high level result are the results of end to end testing. The

results of these tests have been very positive; in ad-hoc testing in the lab, the orbit

simulator can be readily controlled by using the spatial markers and the overall effect

is as desired.. This can bee seen in the project video [25].

30

5

Conclusions and Recommendations

The prototype was completed on time, and as can be seen above, the primary design

objectives were met. It is important, however, not to get distracted by the details,

lest the overall impact of the project be lost. Thus, it is necessary to draw some

conclusions as to how well the project addresses the initial problem that was identified.

5.1 Conclusions

It may be fruitful, at this point, to go back to the problem statement and evaluate

the success of the design at a high level. For clarity, the problem statement is:

Current visual design systems impose restrictions, whether physical or

virtual, which create further separation between the designer and the de-

sign. Other systems, which attempt to bridge the gap between physical

and virtual design, are cumbersome and restrictive. What is needed is a

simple and intuitive method for integrating physical design with virtual

models.

On a high level, this project succeeds in removing some restrictions which sepa-

rate the user and the computer space: namely, the mouse and keyboard. The user

now interacts with the computer by what would be the equivalent of reaching into

the computer and moving things around herself. Furthermore, after the system is

31

calibrated there are not the inconveniences posed by other such tactile input systems.

In this system, the user gets the virtual space projected back onto the physical space,

and doesn’t have to fiddle with things like wooden structures that they have to build

themselves. Thus, from a very high level, the problem has been solved.

5.2 Recommendations

The problem has been solved, but caveats abound. The first is that the underlying

algorithms for extracting marker information still display some instability. Especially

in terms of bit extraction, the algorithms sometime mis-identify the inner bit pattern,

and this error can propagate throughout the system, leading to all kinds of problems.

These errors have been minimized and dampened by the idea of object persistence

and temporal averaging, but minimizing the effects of the problem is not the same

as solving it. A higher resolution camera would allow more accurate detection, but

better results might be arrived at by rethinking the bit extraction process entirely.

Even though the display application was not the purpose of the project, it could do

more to do show off the full abilities of the system. This could include increasing the

classes of markers (i.e. having 7 or 8, or even 100 types of markers that do different

things). Also, the application could do more display the ability to represent many

different shapes and sizes of virtual objects. One marker could represent a building

almost the size of the input space, while another could be a tree scarcely bigger than

the marker itself.

In terms of hardware, it would be useful to integrate multiple cameras into the

detection. Currently, enough hands moving over the table will eventually occlude the

markers and cause them to go undetected. Of course, in the extreme case this will

always be true, but the amount of collaboration that the system is capable of sustain-

ing could be greatly increased by detecting from multiple angles. One camera would

cover the blind spot of another, and vice versa. Integrating the multiple cameras

wouldn’t be especially difficult, because the calibration programs for transforming

input spaces already exists within the system.

32

6

Description of Timeline

As of the submission of this report, the project has successfully adhered to the timeline

established in the design plan. The deadlines for the symposium and final report

submission were pushed back two weeks after the anticipated date. The extra amount

of time was spent developing additional features, such as a more robust calibration

method.

The timeline for the video was also modified. The group started recording video

on the 23rd of February in order to have part of the video finished for the technical

presentation. Further captures were made during the symposium and the video is

recompiled for the final submission.

The physical design of the system proved to be the simplest task thanks to the

generous help from the Collaborative Systems Lab. It was agreed to take advantage

of their front projection apparatus for the purpose of testing and demonstration. This

eliminated the amount of time needed to purchase and mount a projector.

33

References

[1] P. Rochat, “Object manipulation and exploration in 2-to 5-month-old infants,”

Developmental Psychology, vol. 25, no. 6, pp. 871–884, 1989.

[2] V. Rideout, E. Vandewater, and E. Wartella, “Zero to Six: Electronic Me-

dia in the Lives of Infants, Toddlers and Preschoolers.,” 2003. Henry J.

Kaiser Family Foundation, http://www.kff.org/entmedia/loader.cfm?url=

/commonspot/security/getfile.cfm\&PageID=22754.

[3] J. Rekimoto and Y. Ayatsuka, “Cybercode: designing augmented reality environ-

ments with visual tags,” in DARE ’00: Proceedings of DARE 2000 on Designing

augmented reality environments, (New York, NY, USA), pp. 1–10, ACM, 2000.

[4] T. Lssing, R. Nielsen, A. Lykke-Olesen, and T. F. Delman, “A mixed reality

game for urban planning,”

[5] H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, and K. Tachibana, “Vir-

tual object manipulation on a table-top ar environment,” Augmented Reality,

International Symposium on, vol. 0, p. 111, 2000.

[6] H. Ishii, E. Ben-Joseph, J. Underkoffler, L. Yeung, D. Chak, Z. Kanji, and

B. Piper, “Augmented urban planning workbench: Overlaying drawings, physical

models and digital simulation,” in ISMAR ’02: Proceedings of the 1st Interna-

tional Symposium on Mixed and Augmented Reality, (Washington, DC, USA),

p. 203, IEEE Computer Society, 2002.

34

http://www.kff.org/entmedia/loader.cfm?url=/commonspot/security/getfile.cfm\&PageID=22754.
http://www.kff.org/entmedia/loader.cfm?url=/commonspot/security/getfile.cfm\&PageID=22754.

[7] W. Lam and S. Yuen, “Efficient technique for circle detection using hypothesis

filtering and Hough transform,” IEE PROCEEDINGS VISION IMAGE AND

SIGNAL PROCESSING, vol. 143, pp. 292–300, 1996.

[8] D. Kerbyson and T. Atherton, “Circle detection using Hough transform filters,”

in Image Processing and its Applications, 1995., Fifth International Conference

on, pp. 370–374, 1995.

[9] Q. Li and Y. Xie, “Randomised hough transform with error propagation for line

and circle detection,” Pattern Analysis & Applications, vol. 6, no. 1, pp. 55–64,

2003.

[10] S. Chiu and J. Liaw, “An effective voting method for circle detection,” Pattern

Recognition Letters, vol. 26, no. 2, pp. 121–133, 2005.

[11] C. Ho and L. Chen, “A fast ellipse/circle detector using geometric symmetry,”

Pattern Recognition, vol. 28, no. 1, pp. 117–124, 1995.

[12] T. D’orazio, C. Guaragnella, M. Leo, and A. Distante, “A new algorithm for ball

recognition using circle Hough transform and neural classifier,” Pattern Recog-

nition, vol. 37, no. 3, pp. 393–408, 2004.

[13] H. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of Hough

transform methods for circle finding.,” Image and Vision Computing, vol. 8, no. 1,

pp. 71–77, 1990.

[14] D. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,” Pat-

tern recognition, vol. 13, no. 2, pp. 111–122, 1981.

[15] A. Rad, K. Faez, and N. Qaragozlou, “Fast circle detection using gradient pair

vectors,” in Proc. VIIth digital image computing: techniques and applications,

pp. 10–12, Citeseer, 2003.

[16] V. Ayala-Ramirez, C. Garcia-Capulin, A. Perez-Garcia, and R. Sanchez-Yanez,

“Circle detection on images using genetic algorithms,” Pattern Recognition Let-

ters, vol. 27, no. 6, pp. 652–657, 2006.

35

[17] J. Xavier, M. Pacheco, D. Castro, A. Ruano, and U. Nunes, “Fast line, arc/circle

and leg detection from laser scan data in a player driver,” in IEEE INTER-

NATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, vol. 4,

p. 3930, Citeseer, 2005.

[18] I. Inc, “The OpenCV Open Source Computer Vision Library.” Available [Online]

http://opencvlibrary.sourceforge.net.

[19] R. Sukthankar, R. Stockton, M. Mullin, et al., “Smarter presentations: Exploit-

ing homography in camera-projector systems,” in Proceedings of International

Conference on Computer Vision, vol. 1, pp. 247–253, Citeseer, 2001.

[20] W. Fang and T. Chang, “Calibration in touch-screen systems.”

[21] R. Miller, “Response time in man-computer conversational transactions,” in

Proceedings of the December 9-11, 1968, fall joint computer conference, part

I, pp. 267–277, ACM, 1968.

[22] J. Larimer and J. Gille, “5.1: Visual Performance Depends Upon Signal Resolu-

tion: Frame Rate, Dot Pitch & Bit Depth Guidelines,”

[23] D. G. Fink, “The forces at work behind the ntsc standards.” Available [Online]

http://www.ntsc-tv.com/ntsc-main-01.htm.

[24] D. Buzan, S. Sclaroff, and G. Kollios, “Extraction and clustering of motion tra-

jectories in video,” in International Conference on Pattern Recognition, pp. 521–

524, 2004.

[25] A. Amir-Khalili, C. Best, and K. Morrison, “HOP Hands-On Projection (youtube

video),” 2010. http://www.youtube.com/watch?v=HigfXYnpkTM.

36

http://opencvlibrary.sourceforge.net
http://www.ntsc-tv.com/ntsc-main-01.htm
http://www.youtube.com/watch?v=HigfXYnpkTM

Appendix A

Timeline

37

38

39

	 Contents
	 List of Tables
	 List of Figures
	Introduction
	Problem Statement
	Background

	Objectives
	Methodology
	Marker Detection
	Criteria
	Research
	Implementation and Results
	Test Results
	Thresholding and Flip Detection

	Bit Extraction
	Orientation Detection
	Information Extraction
	Testing and Evaluation

	Calibration
	Homography
	3-Point Homography
	5-Point Homography
	OpenCV cvFindHomography

	Entity Persistence and Averaging
	Hardware
	Cost
	Capture Device
	Display Method
	Comparison Results
	Further Conclusions

	Prototype

	Results and Discussion
	Objectives
	End to End

	Conclusions and Recommendations
	Conclusions
	Recommendations

	Description of Timeline
	Timeline

