Abstract—Cooperative medium access control (MAC) protocols have been proposed for improving communication reliability and throughput in wireless networks. In our previous work, a cooperative MAC scheme called Cooperative ADHOC MAC (CAH-MAC) has been proposed to increase the network throughput under a static networking scenario for vehicular communications. In this paper, we study the effects of relative mobility among nodes and channel fading on the performance of CAH-MAC. In a dynamic networking environment, system performance degrades due to cooperation collisions. To tackle this challenge, we present an enhanced CAH-MAC (eCAH-MAC) scheme, which avoids cooperation collisions and efficiently utilizes cooperation opportunities without disrupting the time-slot reservation operations. Through mathematical analysis and computer simulations, we show that eCAH-MAC increases the effectiveness of node cooperation by increasing utilization of an unreserved time slot. Furthermore, we perform extensive simulations for realistic networking scenarios to investigate the probability of successful cooperative relay transmission and usage of unreserved time slots in eCAH-MAC, in comparison with existing approaches.

Index Terms—VANETs, medium access control (MAC), cooperative communication, time division multiple access (TDMA), collision avoidance.

I. INTRODUCTION

Vehicular ad hoc networks (VANETs) are expected to support a large spectrum of mobile distributed applications that range from collision warning and traffic alert dissemination (safety applications), to file-sharing and location-aware advertisements (infotainment). To support such diverse applications, a VANET consists of a set of vehicles, each equipped with one or more application units (AUs) for running applications [2] and an on-board unit (OBU) for wireless communication, and a set of stationary units along the road called road side units (RSUs). The development and operations of VANETs demand reliable and efficient communication protocols to support the wide range of applications. Although communication nodes (vehicles) are organized in an ad hoc manner to form a vehicular network, directly applying existing communication protocols designed for legacy mobile ad hoc networks may not be reliable and efficient.

The special characteristics of VANETs, such as the highly dynamic network topology (high node mobility with frequent link breakage) and stringent quality of service (QoS) requirements (for high priority delay sensitive safety messages) result in significant challenges in the design of an efficient medium access control (MAC) protocol. Although the IEEE 802.11p standard has been developed for MAC in VANETs [3], the protocol does not acknowledge any successful broadcast messages. Further, with the random channel access, it suffers from unbounded latency and broadcast storm [4], [5]. On the other hand, high priority safety messages are short ranged, uncoordinated and broadcast in nature [6]. They have a strict delay requirement and demand a reliable broadcast service. Distributed time division multiple access based MAC protocols, abbreviated as D-TDMA MAC, such as ADHOC MAC [4] and VeMAC [7], are proposed to facilitate reliable broadcast and point-to-point (P2P) communication in VANETs. Under a perfect channel condition, VeMAC has a smaller probability of transmission collisions and satisfies the strict QoS requirements as compared to the IEEE 802.11p standard [8]. However, due to VANET dynamic topology, the D-TDMA MAC protocols may lead to wastage of time slots. The wastage occurs when there are not enough nodes in a neighborhood to use all the time slots of a frame. In addition, upon a transmission failure, the source node has to wait until the next frame for retransmission even if the channel is idle during unreserved time slots. Hence, both the IEEE 802.11p standard and the existing D-TDMA MAC approaches are not free from packet dropping and throughput reduction due to a poor channel condition. Further, these approaches can be inefficient in utilizing the available radio resources.

Link-layer cooperation among nearby nodes enhances the reliability of communication links and mitigate wireless channel impairments. In [9]–[11], a cooperation scheme for TDMA MAC is presented for infrastructure based wireless networks. In such networks, communication links are established between a central controller (or access point) and mobile nodes. Cooperation is performed by dedicated (fixed) helper nodes and coordinated by the controller. In [10], dedicated time slots are allocated for helper nodes, even if cooperation is not required. Hence, these schemes cannot be applied directly in VANETs. Different from the existing works, when VANETs use D-TDMA, all operations such as cluster formation, slot allocation and cooperation decisions must be performed in a distributed manner. In [12]–[17], node cooperation schemes with distributed cooperation decisions are presented. In [12], helper nodes perform dynamic cooperative retransmission to transmit packets to the target receivers during the source node’s time slot. In the absence of helper nodes, the source node retransmits the same packet. On the other hand, in [13],
helper nodes use their own time slots to relay the failed packets. Application of such cooperative retransmission to VANETs is not straightforward as each node with a time slot must broadcast its neighborhood information to its nearby nodes in every frame, in order to continue using its time slot in the next frame. In [14, 15], cooperative retransmission for multi-hop communication is achieved using idle time slots. It requires acknowledgement (ACK) from the target relay node, during the source node’s time slot. Potential helper nodes participate in cooperation if they have the packet and do not receive ACK from the relay node. Such a scheme requires a large (and may be variable) time slot duration in order to accommodate ACKs during the source node’s time slot, which is not desirable as it adds communication overhead. When the number of vehicles with respect to the number of time slots per frame is high, there are not enough unused time slots to perform node cooperation. In [16], cognitive radio technique to access the unlicensed channel is applied to perform opportunistic node cooperation, when the vehicle density is high. However, such a technique requires the knowledge of channel state information of the unlicensed channel at the cost of additional overhead in terms of signalling. To exploit benefits of node cooperation for D-TDMA MAC, cooperative ADHOC MAC (CAH-MAC) is proposed for VANETs [17]. In CAH-MAC, upon detecting a transmission failure between a source node and the destination node (an \(s-d \) pair), a helper node offers cooperation to relay the packet to the destination node during an unreserved time slot. As unreserved time slots are used, the nodes use their own time slots to broadcast their neighborhood information. Also, throughput improvement is achieved due to the usage of idle time slots that are wasted in the absence of node cooperation [17]. In addition, as the packet is retransmitted by a helper node, transmission delay and packet dropping rate are reduced [18]. However, CAH-MAC is only useful if the unreserved time slots selected for node cooperation are not selected for time-slot reservations. Conflicts occur, in the form of cooperation collisions, if the selected unreserved time slot is chosen by a node seeking a time slot. Thus, cooperation opportunities and time slot reservation attempts fail, and disruption in D-TDMA MAC’s operations occurs due to cooperation collisions. To tackle this problem, the existing node cooperation scheme must be improvised to avoid cooperation collisions, thus efficiently utilizing unreserved time slots for either cooperative relay transmissions or time slot reservations.

In this paper, we study the impact of node cooperation in the operations of D-TDMA MAC. We present an improvised CAH-MAC with a collision avoidance scheme, referred to as enhanced CAH-MAC (eCAH-MAC). In eCAH-MAC, cooperative relay transmission is suspended if there is (are) any transmission attempt(s) from the one-hop node(s) of the destination and/or helper nodes, avoiding cooperation collision. Cooperative relay transmission is performed only if the destination and helper nodes do not detect any potential transmissions in their one-hop neighborhood. Through mathematical analysis and simulations, we show that the proposed collision avoidance scheme increases the utilization of unreserved time slots by either allowing them to be reserved by nodes seeking their own time slots or using them to perform cooperative relay transmissions, without disrupting the D-TDMA MAC’s normal operations. Furthermore, through extensive simulations we study the performance of eCAH-MAC over a practical channel model and relative node mobility. A real highway is replicated using PTV VISSIM [19], a microscopic multi-modal traffic flow simulator, to generate vehicle mobility traces. Such mobility traces are used to simulate and evaluate the performance of the newly proposed eCAH-MAC, in comparison with CAH-MAC and ADHOC MAC.

The rest of this paper is organized as follows. Section II describes the system model and assumptions made for the protocol design. The enhanced CAH-MAC protocol is presented in Section III. Section IV presents performance analysis of eCAH-MAC in terms of efficient utilization of unreserved time slots, which is numerically validated in Section V with simulations. Furthermore, performance of eCAH-MAC in the presence of vehicle mobility over a practical channel model is presented in Section VI. Finally, Section VII provides a summary of our contributions and concludes this research.

II. SYSTEM MODEL

Consider a VANET consisting of \(n \) vehicles moving along a one-way multi-lane road. Vehicles are distributed randomly along the road and moving with the same average speed. Vehicles separated by more than the distance \(R \), referred to as transmission range, cannot communicate with each other, taking account of a possible poor channel condition. Vehicles form sets of neighboring nodes that are in their one-hop and two-hop distance, referred to as one-hop set (OHS) and two-hop set (THS) respectively, based on information exchanged between nodes within their transmission range \(R \). In the following, necessary assumptions, in terms of the network configuration and protocol layers, for tractability in establishing the analytical framework are discussed. As various symbols are used in this paper, summary of important symbols are given in Table I.

A. Channel Model

As the Nakagami-\(m \) channel model represents small scale fading in vehicular communication and reflects a realistic driving environment [20], we consider a generalized Nakagami-\(m \) channel with correlated amplitudes. For the Nakagami-\(m \) channel, the probability density function (pdf) of the received power by a node at distance \(r \), in meters, from a transmitting node, denoted as \(\gamma_r \), follows a gamma distribution and is given by [21]

\[
 f_{\gamma_r}(x) = \left(\frac{m}{\gamma_r} \right)^m x^{m-1} \frac{e^{-x/m}}{\Gamma(m)} \tag{1}
\]

where, \(\Gamma(\cdot) \) is the gamma function, \(\gamma_r = \frac{P_r}{G_t G_r} \) is the average received power at distance \(r \) from the transmitting node, \(P_t \) is the transmission power, \(\alpha \) is the path-loss exponent, \(C = G_t G_r \left(\frac{c}{4 \pi f_c} \right)^2 \) is a constant, \(G_t \) and \(G_r \) are antenna gains at the transmitter and receiver respectively, \(f_c = 5.9 \) GHz is the carrier frequency, \(c = 3 \times 10^8 \) m/s is the speed of light, and \(m \)
is a distance dependent shape parameter of the Nakagami-\(m\) channel, which is given as [22]

\[
m = \begin{cases}
3, & r \leq 50 \\
1.5, & 50 < r \leq 100 \\
1, & r > 100.
\end{cases}
\]

In order to successfully decode a packet within the transmission range, \(R\), from a source node, the instantaneous received power at the target destination node must be equal to or greater than a threshold received power, denoted as \(\gamma_{th}\). All vehicles have the same \(P_t\) and \(\gamma_{th}\) values.

In the system under consideration, vehicles are moving in a one-way road with the same average speed. In [23] it is shown that when vehicles move relatively in a similar speed, the auto-correlation function can be approximated by Jake’s model [24]. Furthermore, in [25] such approximation is validated with simulation in vehicular environment. Hence, the amplitude correlation coefficient of a signal received, denoted as \(\rho\), at two different time instants, separated by \(\tau\) time units, can be realized by Jake’s model and is given by [26]

\[
\rho = J_0^2(2\pi f_d \tau)
\]

where, \(J_0(\cdot)\) is the zeroth-order Bessel function of the first kind and \(f_d\) is the average Doppler spread. The nature of a time-varying channel greatly depends on the normalized fading rates, which is the product of the average Doppler spread and sample time, i.e., \(f_d \tau\) [27]. The average Doppler spread, \(f_d\), of the time-variant vehicle-to-vehicle (V2V) channel, on the other hand, depends on the effective speed, \(v_{eff} = \sqrt{v_r^2 + v_t^2}\), where \(v_r\) and \(v_t\) are the velocities of receiver and transmitter. Moreover, \(f_d\) also depends on the driving environment where the receiver and transmitter are traveling such as, highway, rural and suburban environments. As mobile and stationary scatterers, such as foliage, pedestrians, passing vehicles, are unavoidable, the presence of such scatterers greatly affect the doppler spread [28] and eventually the channel variations. In [29], the authors present an experiment at 5.9 GHz and derive a close form expression of Doppler spread in terms of the effective velocity and environment dependent parameters and is given as

\[
f_d = \frac{\theta}{\lambda \sqrt{2}} v_{eff} + o
\]

where \(\theta\) and \(o\) are environment dependent parameters, referred to as slope and offset respectively, whose values are given in Table IV for different environments.

B. Channel Access Mechanism

The channel access mechanism is based on distributed TDMA MAC protocols [4], [7], where the channel time is partitioned into frames and each frame is further partitioned into time slots. Each time slot is of a constant time interval and each frame consists of a fixed number of time slots, denoted by \(F\). Each vehicle is capable of detecting the start time of a frame and, consequently, the start time of a time slot, based on the one-pulse-per-second (1PPS) signal [30] that a Global Positioning System (GPS) receiver gets every second. Nodes support broadcast, multicast, or point-to-point modes of communication. However, for protocol performance evaluation, we consider nodes communicating in a point-to-point mode only.

C. Reservation, Retention and Release of Time Slots

At the beginning of each time frame, a node prepares to transmit in its own time slot, if it already has a reserved time slot, or selects a time slot to perform reservation attempt based on its neighboring sets, otherwise. Nodes belonging to the same THS contend with each other to reserve a time slot. To reserve a time slot, a node first listens to the channel at the beginning of each time frame, and, consequently, the start time of a time slot, based on the one-pulse-per-second (1PPS) signal [30] that a Global Positioning System (GPS) receiver gets every second. Nodes support broadcast, multicast, or point-to-point modes of communication. However, for protocol performance evaluation, we consider nodes communicating in a point-to-point mode only.
THS nodes, i.e., nodes that are within each others’ two-hop transmission distance, transmit during the same time slot. The node successfully reserves a time slot if there is no collision and all the OHS member nodes have successfully received the FI.

We focus on the control channel, which is used to broadcast safety messages and control information among one-hop neighbors and for negotiation between a pair of nodes for point-to-point communication. With a focus on cooperation to improve transmission efficiency, we consider a network where vehicles have information to transmit, targeting specific destination nodes in each frame. Thus, a node accesses the channel once in every frame in its own time slot and transmits a packet that may consist of FI, packet header (PH), payload data, and cyclic redundancy check (CRC), and makes cooperation decisions (as discussed in [17]). The FI is a collection of ID fields (IDFs) of neighboring nodes and helps a node to maintain neighborhood information which includes: (i) all of its one-hop neighbors, (ii) all of its two-hop neighbors, and (iii) the owner of each time slot in a frame. A node announces time slot ownerships among its one-hop neighbors if it successfully received the packet in the previous frame. If there is no signal in a time slot or a node fails to receive a packet transmitted during the time slot, the node considers it as an unreserved time slot. In such a case, corresponding IDFs of the unreserved time slots are left empty in the FI. Hence, successful reception of FIs helps a node to extract its neighborhood information such as IDs of the one-hop neighboring nodes and their corresponding time slots. Also, FI can be used to detect transmission failures due to poor channel conditions and transmission collisions. A node releases or continues using its time slot based on the FIs received from its OHS neighbors. A node releases its time slot, if it fails to detect its ID in FIs received from at least one of its OHS member nodes. To avoid unnecessary loss of time slots, a node does not use FI from any new one-hop node that is not in its OHS. However, upon receiving FI from new one-hop nodes, the node updates its OHS. Hence, in the network, there are nodes with and/or without their own time slots. In this paper, nodes without (with) their own time slots and seeking for one are referred to as contending (resident) nodes, as they contend for time slots in (continue to be a resident of) the corresponding two-hop neighborhood.

Due to channel fading and relative mobility, a node can fail to reserve or retain a time slot; hence, contending nodes remain as contending nodes or resident nodes become contending nodes respectively, in the next frame. Access collisions occur when two or more contending nodes in the same two-hop neighborhood try to reserve the same unreserved time slot. Furthermore, in the presence of contending nodes, cooperation collisions may occur during unreserved time slots, among reservation packets from contending nodes and cooperative relay transmissions\(^1\). Hence, with the introduction of node cooperation, cooperation collisions occur in D-TDMA MAC between reservation attempt(s) from a contending node(s) and cooperative relay transmission (either C-ACK from a destination node or relayed packet from a helper node or both). Under such a situation, both cooperative relay transmission and time slot reservation fail and contending nodes have to wait longer to acquire time slots. On the other hand, most of the time only resident nodes get an opportunity to access the channel for direct and/or cooperative relay transmission. Furthermore, cooperation collisions occur when cooperative relay transmission is performed during a time slot belonging to an existing user. For instance, if a helper node chooses an unreserved time slot to help an \(s - d\) pair, collision occurs when a node, which owns the selected unreserved time slot, enters the region where the \(s - d\) pair and helper node reside. Under such a case, conflict arises between transmission from newly joined node and scheduled cooperative relay transmission.

A merging collision occurs when resident nodes using the same time slot but belonging to different THSs approach each other, resulting in a transmission collision in the corresponding time slot [31]. A resident node, after suffering from a merging collision, releases its own time slot and attempts to reserve an unreserved time slot. Moreover, merging collisions result in an increase in the number of contending nodes, which likely lead to an increase in the rate of access and/or cooperation collisions. In [31], it is shown that ADHOC MAC suffers from throughput reduction due to node mobility. To overcome the throughput reduction, VeMAC is proposed in [7]. In VeMAC, time slots are separated into three disjoint groups, dedicated to vehicles moving in opposite directions and to RSUs respectively. Separation of the time slots into three disjoint groups alleviates throughput reduction due to node mobility.

A node releases its time slot if it suffers from transmission failure or transmission collision. Upon releasing its time slot, the node seeks a new one. Also, a node which is without a time slot prior to joining the network, seeks a time slot after it joins the network. Furthermore, due to the relative mobility, a node may enter a new THS where its neighboring nodes are not aware of its arrival. If the node owns an unreserved time slot, with respect to the new THS, it keeps on using it as there will not be any conflict. However, a collision occurs if the unreserved time slot is selected to perform cooperative relay transmission. With a focus on analyzing the performance of node cooperation, we consider that a node continues using its time slot in the next frame, if it successfully delivers its packet to all the nodes in its OHS in the current frame. Otherwise, it releases the time slot, becomes a contending node, and seeks for a time slot in the next frame. Hence, by the end of each frame, a resident node may lose its time slot and/or a contending node may successfully reserve one. Consequently, a frame consists of reserved and unreserved time slots at the beginning of the next frame. The number of reserved (or unreserved) time slots depends on channel quality, relative mobility, and other networking scenarios.

\(^1\)In CAH-MAC [17], i.e., node cooperation enabled D-TDMA MAC, a destination node initiates cooperative relay transmission by transmitting cooperation acknowledgement (C-ACK) to a target helper node. When the helper node detects the C-ACK, it transmits a packet with payload data to the destination node following reception of C-ACK.
III. Enhanced Node Cooperation

The cooperation decisions can lead to cooperation collisions resulting in the failure in time slot reservation and cooperative relay transmission. Hence, in this section, we present the approach in the eCAH-MAC scheme to avoid cooperation collisions. In eCAH-MAC, we propose to use different types of packet structure to resolve cooperation collisions. In the following, we present different packet types and a novel collision avoidance scheme for eCAH-MAC.

A. Types of Packet Structure

A resident node transmits a packet in order to exchange its FI and payload data to the nearby nodes during its own time slot. The resident node must deliver the FI to all nodes in its OHS, to continue using its time slot in the next frame, and payload data to the target destination. Furthermore, a resident node may transmit a packet during an unreserved time slot to perform cooperative relay transmission. In such a case, the resident node must deliver the payload data to the target destination(s). On the other hand, a contending node transmits a packet during an unreserved time slot to reserve the time slot for accessing the channel. Thus, the contending node must deliver its FI to all the nodes in its OHS, during the selected unreserved time slot, to successfully reserve the time slot. Hence, it is not necessary to transmit the same information, with the same packet structure or fields, for the aforementioned scenarios. Based on the operations, we define three type of packets that a node can transmit during a time slot, as described below:

- General (Type-G) packet consisting of FI, PH, payload data and CRC, which is transmitted by a resident node to exchange messages to its nearby nodes. A node transmits Type-G packet only during its own time slot to deliver its FI to the OHS nodes and payload data to the target destination(s). Furthermore, the packet may have a cooperation header (COH) if the transmitting node decides to help an $s-d$ pair that failed to exchange a packet during the source node’s time slot [17].

- Reservation (Type-R) packet consisting of FI, PH and CRC, which is transmitted by contending nodes to perform time slot reservation. A node first reserves a time slot to access the channel using a Type-R packet (without payload data), then starts to transmit a Type-G packet to exchange payload data with its one-hop neighbor node(s) during the acquired time slot.

- Cooperation (Type-C) packet consisting of a PH, payload data and CRC, which is transmitted by a helper node to perform cooperative relay transmission. As the helper node has its own time slot to transmit Type-G packets, it is not necessary to transmit its FI during cooperative relay transmission.

In addition to these three types of packet, cooperation acknowledgement (C-ACK) is transmitted by a destination node to start the cooperative relay transmission phase, which consists of the ID of the helper node, as described in [17]. In the following, advantages of using different packet types in eCAH-MAC are discussed.

B. Cooperation Collision Avoidance

In CAH-MAC [17], cooperation decisions, such as selection of helper nodes and unreserved time slots, to perform cooperative relay transmission are performed in a distributed manner. If there are multiple potential helper nodes, the one which first announces to help will relay the packet, while all other potential helper nodes suspend their intention to help for the corresponding $s-d$ pair. Furthermore, an unreserved time slot, among all the available ones, is selected randomly by a potential helper node to perform cooperative relay transmission. A cooperation collision occurs if the unreserved time slot selected for cooperative relay transmission is accessed by a contending node. One possible way to avoid cooperation collisions is to delay the cooperative relay transmission by some time interval, say β_1 time units. The duration of β_1 units must be long enough for a node to sense whether the channel is idle or busy, such as the distributed inter-frame space (DIFS) in the IEEE 802.11 based MAC protocols [32]. During the selected unreserved time slot, the destination node waits for β_1 time units and then transmits C-ACK if the channel is idle during the waiting time, which is illustrated in Fig. 1. Note that in CAH-MAC, the destination node transmits C-ACK as soon as the unreserved time slot starts, i.e., $\beta_1 = 0$. The helper node, after receiving its ID in C-ACK from the destination node, transmits a payload data from the source after a guard time. Since the length of C-ACK (in bits) and guard time are constant, the helper node always performs cooperative relay transmission after the fixed duration from the start of a time slot, i.e., $\beta = \beta_1 + \beta_2$ time units as in Fig. 1, where β_2 time units correspond to the transmission time of C-ACK plus the guard time.

![Fig. 1. Cooperative relay transmission in eCAH-MAC during an unreserved time slot.](image-url)

A helper node transmits a Type-C packet to perform cooperative relay transmission. As each node has its own normal time slot in which it transmits a complete packet with FI, repeated transmission of a copy of the same FI during cooperative relay transmission is unnecessary. The absence of FI compensates for the delayed time of cooperative relay transmission phase and does not affect the normal operation of D-TDMA and node cooperation. Hence, the transmission of C-ACK and a Type-C packet helps to avoid collision among helper or destination nodes and contending nodes during the cooperative relay transmission.

A contending node may access the unreserved time selected for cooperation. When the destination node detects transmission(s) from the contending node(s), it suspends the cooperation or transmission of the C-ACK. As the helper node does not receive C-ACK, it also suspends cooperative relay transmission.
transmission. The helper node makes a decision to suspend cooperative relay transmission after β time units from the start of a time slot. A collision occurs if a contending node and the destination node are in each others’ two-hop distance but not in one-hop distance. In such a case, the destination node does not sense the transmission from the contending node and transmits C-ACK, resulting in a transmission collision at their common one-hop nodes and/or helper node. To avoid such a collision, both the helper and destination nodes must suspend the cooperative relay transmission. One possible way to force both the destination and helper nodes to suspend cooperation is by using energy-burst or channel jamming signal, also known as black-burst [33]. Black-burst has been used in wireless networks to inform neighboring nodes about the channel usage and to avoid transmission collisions by forcing neighboring nodes to delay or suspend their transmissions [34], [35]. In eCAH-MAC, a contending node uses black-bursts to inform destination and/or helper nodes about its intention to perform reservation attempt followed by the transmission of a Type-R packet. The contending node transmits a black-burst of β time units. If the destination node is in the one-hop neighborhood of the contending node, it suspends the cooperative relay transmission after finding the channel busy. On the other hand, if the destination node finds an idle channel, it transmits C-ACK. The transmitted C-ACK collides with the black-burst at helper node’s receiver and helper node suspends cooperative relay transmission. After transmitting a black-burst, a contending node transmits a Type-R packet to reserve the corresponding time slot. The suspension of cooperative relay transmission is illustrated in Figs. 2 and 3. Delaying the cooperative relay transmission phase and the use of a black-burst by contending node allow the destination and/or helper nodes to detect time slot reservation attempts from contending nodes, to avoid cooperation collisions. Access collisions occur if two or more contending nodes transmit black-burst signals and their corresponding Type-R packets during the same unreserved time slot.

To summarize, the use of three packet types, use of black bursts to reserve a time slot, and suspension and/or delay of cooperative relay transmission phase allow to avoid cooperation collision and thus, efficiently use unreserved time slots either to perform cooperative relay transmissions or time slot reservations. In the next section, we derive a close-form expression for the utilization of an unreserved time slot in eCAH-MAC.

IV. UTILIZATION OF AN UNRESERVED TIME SLOT

Reserved time slots are used in a similar manner in cooperation enabled transmission to that without cooperation. However, with node cooperation enabled, unreserved time slots, if used, are used for either time-slot reservations or cooperative relay transmissions. Hence, performance of node cooperation in eCAH-MAC must be evaluated based on how efficiently it utilizes unreserved time slots in comparison with that of D-TDMA MAC, such as ADHOC MAC. The objective of such analysis is to study the effectiveness of node cooperation in utilizing unreserved time slots, without affecting the normal operations of D-TDMA MAC. Specifically, we intend to study how an unreserved time slot is utilized in the presence of node cooperation. For tractable analysis, following assumptions are made:

1) A packet is transmitted only once by the source and/or the helper nodes.
2) Cases where a failed direct transmission does not find a helper node and/or unreserved time slot to perform cooperation are ignored. Details of node cooperation and its performance due to the existence of potential helper nodes and unreserved time slots are presented in [17]. In this study, we focus on how node cooperation affects time slot reservation, which is one of the important operations in D-TDMA MAC.
3) With a focus on impact of node cooperation in the operation of D-TDMA MAC, only the unreserved time slots chosen to perform cooperative relay transmissions are considered. Time slots that are not chosen for cooperation will not be affected by node cooperation, hence we ignored those cases in the following.
4) We define a parameter $\eta \in (0, 1]$, referred to as reserved ratio, which is the ratio of the number of reserved time slots in a frame to the total number of time slots per frame, F. The η (or 1-η) value reflects the number of reserved (or unreserved) time slots and depends on channel quality, relative mobility, and other networking aspects. At the beginning of a time frame, ηF time slots are allowed to be reserved. Accordingly, at least $(1-\eta) F$ time slots are unreserved time slots and are left for contending nodes to perform reservation attempts.

To derive a close form expression for the utilization of unreserved time slots, we consider the following events that can occur during an unreserved time slot selected for cooperative relay transmission:

1) Event 1 (E_1): None of the contending nodes in the THS of both the helper and destination nodes sharing a common frame attempts to access the unreserved time slot;
2) Event 2 (E2): Only one contending node in the THS of both the helper and destination nodes sharing a common frame transmits its reservation packet during the selected unreserved time slot.

Next, we derive necessary probability distribution functions required to obtain the probability of the aforementioned events.

A. Distribution of Node Number

At a given instance, the vehicles are distributed randomly following an exponential distribution. Hence, the probability mass function (pmf) of the number of nodes sharing the same frame, also referred to as THS nodes and denoted as \(N_T \), is given as [17]

\[
\Pr \{ N_T = n_t \} = \frac{(2\rho R)^n e^{-2\rho R}}{n_t!}, \quad n_t = 0, 1, 2, \ldots
\]

(5)

where \(\rho \) is vehicle density in terms of the number of vehicles per unit length of the road segment. For a time slot to be called as reserved (or unreserved) or for a frame to exist, there must be at least one node in the corresponding THS, i.e., \(N_T \geq 1 \). Let \(N_C \) denotes the number of contending nodes in a THS. Contending node exists if \(N_T > \eta F \), such that \(\eta F \) nodes have their own time slots and the remaining are contending nodes seeking their own time slots. Thus, given the reserved ratio, \(\eta \), the number of contending nodes in a THS can be written as

\[
N_C = \begin{cases} 0, & N_T \leq \eta F \\ N_T - \eta F, & N_T > \eta F. \end{cases}
\]

(6)

Hence, from (5) and (6), the pmf of \(N_C \) can be written as,

\[
\Pr \{ N_C = n_c \} = \begin{cases} \sum_{n_t=0}^{\eta F} \frac{(2\rho R)^n e^{-2\rho R}}{n_t!}, & \text{if } n_c = 0 \\ \frac{(2\rho R)^n e^{-2\rho R}}{(\eta F + n_c)!}, & \text{if } n_c > 0. \end{cases}
\]

(7)

Let \(U \) denotes the number of unreserved time slots in a frame. We have

\[
U = \begin{cases} F - N_T, & N_T < \eta F \\ F - \eta F, & N_T \geq \eta F. \end{cases}
\]

(8)

Note, a contending node, if exists \((N_C > 0 \) or \(N_T > \eta F) \), attempts to transmit a packet during an unreserved time slot. Among \(F - \eta F \) available unreserved time slots in a frame, a contending node selects one randomly. Thus, a contending node chooses a given unreserved time slot with probability \(\frac{1}{F-\eta F} \). Consequently, the probability that a contending node does not choose the given unreserved time slot is \(\frac{F - \eta F - 1}{F-\eta F} \). Furthermore, if a THS does not contain any contending nodes, i.e., if \(N_C = 0 \) or \(N_T \leq \eta F \), unreserved time slots are not selected to perform reservation attempts. Based on these probability values, next we will derive the probability of occurrence of Events 1 and 2, and use them to derive the required close-form expressions.

B. Probability of Event 1

A contending node performs reservation during an unreserved time slot. Hence, an unreserved time slot remains idle, i.e., Event \(E_1 \) occurs, if none of the contending nodes in the corresponding THS attempt to access it. Based on discussion in the previous subsection, given \(N_C = n_c \) and \(N_T = n_t \), the probability of Event \(E_1 \) occurrences can be written as

\[
\Pr \{ E_1 | N_C = n_c, N_T = n_t \} = \begin{cases} 1, & n_t \leq \eta F \\ \left(\frac{F - \eta F - 1}{F-\eta F} \right)^{n_c}, & n_t > \eta F. \end{cases}
\]

(9)

Consequently, from (6) and (9), we have

\[
\Pr \{ E_1 | N_C = n_c \} = \begin{cases} 1, & n_c = 0 \\ \left(\frac{F - \eta F - 1}{F-\eta F} \right)^{n_c}, & n_c > 0. \end{cases}
\]

(10)

From (7) and (10), the probability that an unreserved time slot is not selected by contending nodes, i.e., the probability of Event 1 occurrences, can be written as

\[
\Pr \{ E_1 \} = \sum_{n_t=0}^{\eta F} \frac{(2\rho R)^n e^{-2\rho R}}{n_t!} + a^{-n} \eta F e^{-2\rho R} \left(e^b - \sum_{n_c=0}^{\eta F} \frac{b^n}{n_c!} \right)
\]

(11)

where \(a = \frac{F-\eta F-1}{F-\eta F} \) and \(b = 2\rho Ra \).

C. Probability of Event 2

Event \(E_2 \) occurs if only one contending node attempts to access the unreserved time slot selected for node cooperation. Hence, given \(N_C = n_c \) and \(N_T = n_t \), the probability of Event \(E_2 \) occurrences can be written as in (12).

Consequently, from (6) and (12), the probability of Event \(E_2 \) occurrences given \(N_C = n_c \) can be written as in (13). From (7) and (13), the probability that an unreserved time slot is selected by only one contending node, i.e., the probability of Event 2 occurrences, can be written as

\[
\Pr \{ E_2 \} = \left(\frac{1 - a}{a\eta F + 1} \right) e^{-2\rho R} \left(b - \eta F \right) e^b + \sum_{n_c=0}^{\eta F} \frac{b^n}{n_c!}
\]

(14)

D. Close-form Expressions for Time Slot Utilization

In ADHOC MAC, as cooperation is not enabled, a successful time slot reservation guarantees the efficient utilization of the unreserved time slot. With cooperation enabled transmission, in addition to successful time slot reservation, successful cooperative relay transmission further guarantees the efficient utilization of unreserved time slots. In the following, we use the probabilities of event occurrences from the previous subsections to derive the utilization of an unreserved time slot for ADHOC MAC, CAH-MAC and eCAH-MAC.

In ADHOC MAC, an unreserved time slot is referred to as efficiently utilized if only one contending node chooses it to perform reservation. In other cases, i.e., if it remains unused or more than one contending nodes transmit their reservation packets, the unreserved time slot is wasted. Hence,
\[
\Pr\{E_2 | N_C = n_c, N_T = n_t\} = \begin{cases} 0, & n_c \left(\frac{1}{F - \eta F} \right) \left(\frac{F - \eta F - 1}{F - \eta F} \right)^{n_c - 1}, n_t \leq \eta F \\ n_c \left(\frac{1}{F - \eta F} \right) \left(\frac{F - \eta F - 1}{F - \eta F} \right)^{n_c - 1}, n_c > 0 & n_t > \eta F \end{cases}
\]

\[
\Pr\{E_2 | N_C = n_c\} = \begin{cases} 0, & n_c \left(\frac{1}{F - \eta F} \right) \left(\frac{F - \eta F - 1}{F - \eta F} \right)^{n_c - 1}, n_c = 0 \\ \Pr\{E_1\} & n_c > 0 \end{cases}
\]
VI. SIMULATION RESULTS

Computer simulations with a practical channel model and vehicle mobility traces are conducted to evaluate the performance of eCAH-MAC and compare it with that of CAH-MAC and ADHOC MAC. To simulate mobility among nodes, we use a well-known vehicle traffic simulator PTV VISSIM [19] and MATLAB. Real road networks are replicated in VISSIM to generate vehicle traces. We consider a road network based on a segment of Highway 401 of the province of Ontario in Canada. To keep vehicles in the simulation, a ring of highway segment, of length approximately 4 kilometers with three lanes, is formed, such that the vehicles keep moving in the ring throughout the simulation. Road segments, speed limits, and other traffic rules are defined based on realistic observations. Vehicles such as cars, heavy goods vehicles (HGVs) and buses are included. Vehicles follow the Wiedemann99 Car Following Model [37] to follow the headway traffic. Based on these models, appropriate decisions are made to perform lane changes, left or right turns, and to follow the vehicle in front.

At the start of simulations, vehicles are injected to the road networks with rate 2100, 2400 and 7200 vehicle per hour. After the injection period of 5 minutes, the vehicle injection is stopped and the number of vehicles in the network, i.e., N, becomes 364, 496, and 622, respectively, for each vehicle injection rates. The generated vehicles are allowed to move according to the corresponding traffic rules and road network parameters. To reduce any transient state effects, vehicle traces are not recorded for a warm-up period of 5 minutes (after the injection period). When the warm-up period ends, vehicle traces are recorded at the interval of 0.1 second till the end of simulation. The simulation time is the time interval between the end of warm-up period and end of simulation, i.e., actual start of simulation is considered only after the end of warm-up period. The generated vehicle traces consist of vehicle positions and speeds at a given time. Such vehicle traces are used to simulate the performance of eCAH-MAC, which is compared with that of CAH-MAC and ADHOC MAC. The

TABLE III
VISSIM SIMULATION PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC0</td>
<td>1.5 m</td>
<td>CC1</td>
<td>0.90 m</td>
<td>Maximum deceleration</td>
<td>-4 m/s^2</td>
<td>CC5</td>
<td>0.35</td>
</tr>
<tr>
<td>CC2</td>
<td>4.0 m</td>
<td>CC3</td>
<td>-8.0</td>
<td>Accepted deceleration</td>
<td>-1 m/s^2</td>
<td>CC7</td>
<td>0.25 m/s^2</td>
</tr>
<tr>
<td>CC4</td>
<td>-0.35</td>
<td>CC5</td>
<td>0.35</td>
<td>Percentage of the total # vehicles</td>
<td>80%</td>
<td>CC9</td>
<td>1.50 m/s^2</td>
</tr>
<tr>
<td>CC6</td>
<td>11.44</td>
<td>CC7</td>
<td>0.25 m/s^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC8</td>
<td>3.5 m/s^2</td>
<td>CC9</td>
<td>1.50 m/s^2</td>
<td></td>
<td>Average length</td>
<td>4.44 m</td>
<td>11.54 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Car</td>
<td>HGV</td>
</tr>
</tbody>
</table>

Units in meter and second are denoted by m and s, respectively. Furthermore, default VISSIM parameters such as maximum/desired acceleration and deceleration functions for cars, HGVs and buses are used as described in [19].

To realize a practical channel, autocorrelated Nakagami-m envelope sequences are generated based on [38], such that the generated sequence follows the rank statistics of the reference Rayleigh sequence that is generated based on Jake model [24]. Correlation coefficient is generated as in (3) and (4), with slope and offset for highway environment as in Table IV. Other simulation parameters are given in Table II.

Fig. 5 shows the fractions of resident and contending nodes, and reserved and unreserved time slots in a THS sharing a common frame, for various channel conditions. As the channel degrades, a large number of nodes lose their time slots and become contending nodes. Consequently, more time slots are left unreserved in the corresponding frame. Also, Fig. 5(c) shows the frame-by-frame status of time slots, during a stable-state after the initial transitions. At the beginning of the simulation, all nodes in the network try to access the channel, which results in collision. In the steady state, for a given networking scenario, the fractions of reserved (unreserved) time slot remains constant at each time frame.

To study the effects of node cooperation on the operations of D-TDMA MAC, the performance of eCAH-MAC is evaluated based on how efficiently an unreserved time slot selected for cooperative relay transmission is used. To do so, we ignore unreserved time slots during which (a) two or more contending nodes perform reservation attempts, and (b) cooperative relay transmission is not scheduled for a given failed direct transmission. In such events, irrespective of the presence of node cooperation, reservation attempts are unsuccessful due to access collisions or not affected by node cooperation, respectively. If a cooperation is scheduled during an unreserved time slot, one
of the following events occur: (a) a helper node successfully relays the packet to the destination node, i.e., a successful cooperative relay transmission; (b) a helper node fails to relay the packet to the destination node due to channel errors; and, (c) cooperative relay transmission collides or gets suspended due to the reservation attempt from a contending node that is in one-hop neighborhood from either destination node or helper node or both. Fig. 6 shows the probabilities of such events. As the number of nodes in the network increases or the channel quality degrades (when α value increases), the probability of

Fig. 4. Comparison of utilization of unreserved time slots in eCAH-MAC, CAH-MAC and ADHOC MAC with (a) $\eta = 0.80$; (b) $\eta = 0.50$; (c) $\eta = 0.20$.

Fig. 5. Status of two-hop member nodes and time slots of the corresponding frame with $N = 622$ over various channel conditions: (a) Portion of the number of resident and contending nodes in a THS per frame; (b) Portion of reserved and unreserved time slots in a THS per frame; (c) Portion of reserved and unreserved time slots in a THS per frame observed between consecutive frames in a steady state.
surviving cooperative relay transmission decreases. This is primarily due to an increase in the number of cooperation collisions in eCAH-MAC, or suspension of cooperative relay transmission, as a large number of nodes lose their time slots due to channel errors. Similarly, with an increase in the number of nodes in the network, for a given F value, the number of contending node increases. The larger the contending nodes, the higher the probability of reservation attempt(s) during an unreserved time slot. Thus, such phenomenon forces helper and/or destination nodes to suspend the scheduled cooperative relay transmissions in eCAH-MAC or results in cooperation collisions in CAH-MAC, decreasing the probability of successful cooperative relay transmission. In CAH-MAC, cooperation collisions occur when a helper node and a contending node simultaneously perform cooperative relay transmission and time slot reservation, respectively. On the other hand, in eCAH-MAC to tackle the similar situation, the destination node suspends the cooperative relay transmission phase when it detects a reservation packet(s) from the contending node(s).

Furthermore, we study the effectiveness of node cooperation in efficiently using the idle time slots that are selected for node cooperation. Fig. 7 shows the probability of using an unreserved time slot in ADHOC MAC, CAH-MAC, and eCAH-MAC. As the number of nodes increases in the network, the average distance between neighboring nodes decreases. As a result, the capability of a contending node to successfully transmit its reservation packet to all of its OHS nodes due to a poor channel condition decreases. Further, in CAH-MAC, the ongoing cooperative relay transmissions may lead to cooperation collisions, wasting time slot. On the other hand, cooperative relay transmission is suspended in eCAH-MAC, allowing contending nodes to perform reservation attempts. Hence, eCAH-MAC uses an unreserved time slot better than CAH-MAC and ADHOC MAC.

VII. CONCLUSION

Node cooperation for D-TDMA MAC, such as CAH-MAC, suffers from cooperation collisions, thus disrupting the normal operations of the D-TDMA MAC. In this paper, we present a collision avoidance scheme for the CAH-MAC protocol, referred to as enhanced Cooperative ADHOC MAC (eCAH-MAC), for vehicular communication network. In eCAH-MAC, the cooperative relay transmission phase is delayed, so that cooperation collisions can be avoided. It uses available bandwidth resource efficiently in the presence of time slot reservation attempts, which is a consequence of vehicular network dynamics, improving the performance of node cooperation at the MAC layer protocol. Our analysis shows that effectiveness of node cooperation decreases with an increase in the number of nodes mainly due to increase in the number of reservation attempts. However, as contending nodes are allowed to reserve time slot despite of the scheduling of cooperative relay transmission, eCAH-MAC does not disrupt the normal operations of the D-TDMA MAC. Furthermore, we consider a realistic channel model and vehicle traces to perform extensive simulations. We demonstrate the efficiency and robustness of eCAH-MAC in the presence dynamic networking environment. Through mathematical analysis and simulations, we observe that eCAH-MAC is capable of avoiding cooperation collisions by suspending a cooperative relay transmission phase, which allows more contending nodes to efficiently reserve unused time slots.
Fig. 7. Probability of successful usage of unreserved time slots in ADHOC MAC, CAH-MAC and eCAH-MAC, with (a) $\alpha = 2$; (b) $\alpha = 3$; (c) $\alpha = 4$.

In this work, node cooperation for broadcast service to tackle a poor channel condition is considered. Node cooperation mechanism to enhance the reliability of broadcast service in VANETs needs further investigation in order to successfully deploy the safety applications.

REFERENCES

Sailesh Bharati received the B.Eng. degree in Electronics and Communication Engineering from Tribhuvan University, Nepal, in 2005, the M.Eng. degree in Information and Communications Technologies from the Asian Institute of Technology (AIT), Thailand, in 2008, and the Ph.D degree in Electrical and Computer Engineering from the University of Waterloo, Canada, in 2016. Currently, he is a Postdoctoral Fellow with the Department of Electrical and Computer Engineering, University of Waterloo, Canada. He is a co-recipient of the Best Paper Award from the IEEE Globecom 2012. His current research interests include design and analysis of systems and protocols for vehicular networks.

Fan Bai (M’05–SM’15–F’16) is a Staff Researcher in the Electrical & Control Systems Lab., Research & Development and Planning, General Motors Corporation, since September 2005. Before joining General Motors, he received the B.S. degree in automation engineering from Tsinghua University, Beijing, China, in 1999, and the M.S.E.E. and Ph.D. degrees in electrical engineering, from the University of Southern California, Los Angeles, in 2005. His current research is focused on the discovery of fundamental principles and the analysis and design of protocols/systems for next-generation vehicular networks, for safety, telematics and infotainment applications. He received Charles L. McCuen Special Achievement Award from General Motors Corporation in recognition of his accomplishment in area of vehicle-to-vehicle communications for drive assistance and safety. He was featured as “ITS People” in 2014 by IEEE ITS Magazine for his technical contributions to vehicular networks and intelligent transportation systems. He serves as TPC Co-Chairs for a number of academic research conferences including IEEE VTC, GLOBECOM, MILCOM, WPNC, ACM VANET. He is also a reviewer for IEEE Transactions on Vehicular Technology, IEEE Transaction on Communication and IEEE Transactions on Mobile Computing.

Weihua Zhuang (M’93–SM’01–F’08) has been with the Department of Electrical and Computer Engineering, University of Waterloo, Canada, since 1993, where she is a Professor and a Tier I Canada Research Chair in wireless communication networks. Her current research focuses on resource allocation and QoS provisioning in wireless networks, and on smart grid. She was the Editor-in-Chief of IEEE Transactions on Vehicular Technology (2007–2013), and the TPC Co-Chair of IEEE VTC Fall 2016. She is a Fellow of the IEEE, a Fellow of the Canadian Academy of Engineering, a Fellow of the Engineering Institute of Canada, and an elected member in the Board of Governors and VP Publications of the IEEE Vehicular Technology Society. She is a co-recipient of several best paper awards from IEEE and ACM conferences.

Lakshmi V. Thanayankizil is a Senior Systems Engineer in the Core Technologies group in General Motors Corporation, since September 2011. Prior to joining General Motors, she received the B.S. degree in Electrical Engineering from the University of Calicut, India, and the M.S.E.E. and Ph.D. degrees in Electrical Engineering, from Georgia Institute of Technology in 2011. She has also held industry positions at IBM Research Lab and Crash Avoidance Metric Partnership (CAMP) working on Wi-Fi and DSRC. She has been an active member of several industry standard bodies including Wi-Fi Alliance, IEEE 802.11p, and Industry Consortiums like CAMP. She is the Vice-Chair of the DSRC Marketing group at Wi-Fi Alliance. She has received 2 IEEE best paper awards and NSF scholarship for her work. She serves as TPC Co-Chairs for a number of academic research conferences including IEEE VTC, GLOBECOM, MILCOM, WPNC, ACM VANET. She is also a reviewer for IEEE Transactions on Vehicular Technology, IEEE Transaction on Communication and IEEE Transactions on Mobile Computing.