
Page 1 of 7

Software Style Guide  
for Writing Programs in C++ 

SY DE 121 – Digital Computation 
Department of Systems Design Engineering 

University of Waterloo 

1 Introduction 
This handout presents important information pertaining to program style 
for labs in SY DE 121 – Digital Computation.  Follow this closely, as 
proper style is expected for all lab submissions. 

The following is a brief introduction to the program style in SY DE 121.  
This handout is written to indicate what the T.A.'s are looking for with 
respect to program style when marking assignments.  Keep this 
document handy you will need to refer to it when writing your programs.  
Do not worry too much if you do not completely understand the example 
code just yet; as the course progresses you can read over new sections to 
get an idea of what is expected out of your lab. 

Good program style improves readability and makes the program easier 
to maintain (and to mark!).  One of the most important tasks in 
programming (and engineering in general) is communication.  Proper 
program style is an important part of ensuring that someone who is not 
familiar with the code can understand the program you have written.  
That someone may even be you in a few weeks time! 

Please remember that these are general guidelines and not hard and fast 
rules.  For example, individual companies in industry will have their own 
norms and specifications for style.  The most important thing to 
remember is to try to keep things as clear and simple as possible.  
Striving for clarity and simplicity will lead to more reliable programs, 
fewer bugs to weed out, and programs that are easier to debug and 
maintain.  As with all rules, there are exceptions so if you are unsure 
about what to do, ask your T.A. and he or she will be glad to help you out. 

These guidelines are not complete and cover only basic style and layout; 
more instruction and direction will be given as you cover more advanced 
topics in the course and in future software courses.  

1.1 Why is style so important? 

Appropriate programming style serves two purposes: 

1. It improves readability and hence clarity and maintainability.  The 
compiler does not care about this part.  It is done for humans: both 
you and future programmers. 

2. It leads to programming conventions that reduce the chance of 
insidious bugs that may be hard to track down, such as logic errors 
and other run-time bugs.  Often in these cases the program may 
work, but not as intended. 

1.2 Style and Marking 
Failure to follow a consistent, appropriate style will result in a loss of 
marks not only on your assignments, but also on some midterm and final 
exam problems. 

2 Program Layout 
Proper program layout is one of the best ways to make your code easier to 
read and understand.  When laying out your code, you want elements 
considered as part of a group to look like a group.   

2.1 Indenting 

Indent one tab stop every time you enter a new block of code, and every 
time you begin a new conditional statement. 

There are only a few rules to remember when indenting.  First, you 
should always indent whenever you reach a new block of code.  This 
usually means indenting whenever you open a curly brace (i.e. a ‘{‘).  Also 
indent one level for the code following each conditional statement (if 
statements, while statements, for statements, etc.)  You should decrease 
your indent back again when your block of code or conditional statement 
ends. 

Most IDE’s (Integrated Development Environments such as Microsoft 
Developer Studio) and editors (such as EMACS) attempt to handle 
indenting for you. 



Page 2 of 7

2.2 Brackets 

Brackets are placed on separate lines and paired brackets should have the 
same level of indentation. 

When using curly brackets, make sure that each bracket is on its own 
line and that each pair of brackets have the same indentation.  This 
makes it quite easy to find pairs of bracket within nested code.  See 
example at end of this Style Guide. 

2.3 Blank Lines 

Insert a blank line before each new block of code. 

Spacing is another important way of making your program more 
readable.  Putting a blank line after a small group of related statements 
(a group of variable declarations, cin statements, etc.) breaks the code up 
into smaller chunks and makes the program more readable.  Each group 
is often started with a comment indicating the commonality between 
these statements (see section 3.2 for more details).  This grouping of 
related statements is roughly analogous to a paragraph in writing, where 
statements in a paragraph convey details pertaining to a single topic or 
concept. 

2.4 Whitespace 

Use spaces around keywords, symbols, and operators (i.e. +, -, *, /, <<, >>, 
<, <=, etc.). 

When writing statements, judicious use of whitespace (spaces, tabs, etc.) 
around mathematical expressions, keywords, symbols, and operators will 
help make your code more readable.  You should insert a space before and 
after operators such as +, -, <, (), etc. 

For example, 
 hypotenuse = sqrt ( side1 * side1 + side2 * side2 ); 

is preferred over: 
 hypotenuse=sqrt(side1*side1+side2*side2); 

2.5 Line Length 

Break up lines that run over the edge of the page. 

Avoid writing lines that are longer than the width of a printed page (80 
characters). If necessary split long lines.  The computer might split long 
lines for you when printing, but it will always make your code more 
readable if you split them yourself. 

3 Commenting your Code 
Comments are used to document your program and improve readability.  
Comments do not cause the computer to perform any action when the 
program is run.  The general rule for commenting is that comments in 
your program should be complete, yet minimal.  You will find in this 
course that our emphasis is greater on being complete rather than 
minimal.  Our intent is to get you thinking about appropriate 
programming style early, so that when you move to larger programs, 
appropriate habits picked up in this course will help you in the future. 

Later in the course, you will be taught how to comment more advanced 
features of C++, such as classes and structs, as you learn about them. 

3.1 Comment Styles 

Except for very long comments (such as file headings) prefer '//' style 
comments over the '/*     */' kind. 

C++ accepts two styles of comments. One is the '//' kind and the other is 
the '/*  */' kind.  With the ‘//’ kind, everything after the double slashes up 
until the end of the line is ignored by the compiler.  
 // everything after the slashes is ignored on this line 

With the '/*  */' kind, everything between the two comment indicators is 
ignored. 
 /* 
 Everything between these two 
 Comment indicators is ignored 
 */ 
 
 /*  it works on one line too! */ 

Both work fine, but in general we prefer the '//', because these comments 
can be nested (note that this is also the commenting style used by the 
texbook).  With the '/*   */' kind, the compiler considers the comment 
finished the first time it reaches a '*/'.  The '/*   */' kind are useful for 
comments that span many lines (like file headings), commenting 



Page 3 of 7

something in the middle of a line, and commenting out a section of your 
program in order to find a bug.    

3.2 Sectioning 

Divide your code into sections and put a comment before each section. 

When commenting your code, you should not comment every line since 
this obscures your program code and makes it difficult to follow.  Related 
statements should be grouped together into “paragraphs”, roughly 
analogous to paragraphs in writing.  The statements in a “paragraph” 
should together perform a single, simple task.  “Paragraphs” should be 
separated from each other by blank lines, and should be preceded by a 
comment describing what task they are performing. 

Programs in this course normally get input from the user, performs some 
calculations on the data, call a few functions, send some output to the 
screen, etc.  Your program sections should reflect this sort of 
organization.  Break your program up into logical sections and give a 
comment for each section.   
 // variable declarations 
 … 
 … 
 
 // get inputs from user 
 … 
 … 
 

Except for brief comments (such as commenting a variable declaration), 
comments should generally appear on separate lines, and should be 
indented to the same level as the code that follows it. 

Avoid obvious comments, like 
 int value;  // declare an int called value 

 count++; // increment the counter 

These serve no purpose and only act to clutter the code. 

3.3 File Headings 

Begin each file with a heading containing pertinent information about 
your program. 

A file heading is a comment at the start of each file that tells some 
information about the author and about the program.  You should have a 
file heading at the beginning of every file (not just every exercise!) Later 
on you’ll be writing programs using multiple files. 

For the purposes of SY DE 121, your file heading should contain the 
following information: your name, student number, date the project was 
written, course, lab room, assignment number, exercise number, 
filename, and the name you gave the C++ project.  After the file header, 
the purpose of the program (or that particular file) should be stipulated. 

Note that when we say purpose, we are looking for the purpose of the 
program (i.e. what the program does) NOT the purpose (or stated 
objective) of the exercise.  This is an important distinction.  Try not to be 
too verbose when writing the purpose of the program.  Succinctness is the 
key! 

3.4 Function Comments 

Comment each function declaration with a statement about its purpose. 

Comment your declarations with a statement saying what your function 
does.  The comment for your function prototype should appear either 
immediately before or immediately after the function prototype.  Your 
declaration comment should be written in such a way that someone 
reading your code could use and understand your function without 
reading the function definition.  Note that the function comment method 
outlined in Savitch is also acceptable. 

Comment function declarations with a description of their inputs, side 
effects, and return value. 

• Input: describes each argument that is passed to the function in the 
variable list, and any limitations on the variable (e.g. must be a 
positive number, etc.)  

• Side Effects: describes what effects it has on the running of the 
program.  This includes any output to the screen (or any other device) 
and how each pass by reference variable is modified by the function.    

• Return Value: describes what the value returned represents.  No 
comment is needed for void functions, all other functions will have 
one.  

 



Page 4 of 7

Function definitions should be commented and laid out much like the 
main() part of your program.  Break your code into sections, and comment 
each section. 

4 Declaring Variables and Functions 
Variables should be declared one per line, with a short comment 
indicating their use.  Note that this is not the convention used in your 
text, but this is the convention that we will adhere to in this course. 

There are two reasons for this rule.  First, it helps the reader of the 
program to know exactly the purpose of the variable.  Second, it helps 
you, the writer of the program, to think about what kind of data storage a 
program or function will need. 

4.1 Naming Variables 

Declare your variables in all small letters, one per line, with a brief 
comment for each, and use variable names that give an indication as to 
their use. 

Giving your variables and functions meaningful names helps a reader 
understand your code.  Giving arbitrary variable and function names is 
not appropriate.  When assigning variable names you should always ask 
yourself, “does this name convey any information about the variable 
usage?”  If the answer is yes, good; if not, you should probably think of a 
better name.   

Some examples of good variable names: 
 double vehicle_length;  // length of assembled vehicle 
 double pizza_diameter;  // diameter of cooked pizza 
 int num_computers;  // number of computers in classroom 
 double temperature;  // current temperature 
 

Some examples of bad variable names: 
 int joe; 
 double number;  (what number??) 
 double other_number; 
 double temp;  (temperature or temporary?) 
 

Variables should be named using all small letters.  Compound names 
should be written with each element separated by an underscore (e.g. 
max_rain_for_year).  Names using mixed upper and lower case letters will 
be reserved for classes and structs (which you will see later in the course).  
Do not begin variable names with an underscore, compilers generally use 
these to identify special global variables.  When documenting your 
variables, you should not be redundant to the variable name ie. 
 int num_computers;  // number of computers in classroom 
 
is preferred to : 
 int num_computers;  // number of computers 
 

4.2 Naming Constants 

Constant names should be written in all capital letters. 

Another important piece of program style is the use of the const keyword.  
This allows you to make a variable of interest constant; meaning its value 
cannot be changed throughout the execution of the program.  You should 
use constants whenever you have a variable that should not change 
throughout the length of your program.  Plausible examples would be 
things like the number of seconds in a minute, inches in a foot, a value for 
pi, etc. 

In C++ (not just in this course) convention dictates that names for 
constants be written in capital letters.  You are expected to use constants 
and follow this naming convention in the course.  Just as with variable 
names, the names for your constants should convey some sort of meaning 
as to what your constant represents.  This normally doesn't tell the user 
the value of the constant. Names such as const int ZERO = 0; or const int 
NINE = 9; is considered poor style. 

Constants should be declared before regular variables.   

4.3 Naming Functions 

Use small letters for function names, and use names that convey some 
information as to their use. 



Page 5 of 7

The general rules for naming functions are much the same as for naming 
variables, you want to try and pick a name that conveys meaning about 
the use of the function.   

Caution:  Make sure you pick names for your functions that are not in 
conflict with variable names you’ve already used in your program, or with 
C++ keywords (see Appendix 1 in Savitch for a complete list of keywords).  
This will generate errors in your program! 

4.4 Global Variables 
Don't use global variables. 

Global variables are variables declared in the global scope (i.e. outside of 
any curly braces { }, often just before the main() part).  Do not use global 
variables in your programs.  Global variables can be used (and modified) 
by any function in your program without explicitly being passed to the 
function.  Using global variables decreases modularity (the ability to use 
software components over again) and can cause unexpected behaviour if 
your function modifies a global variable unexpectedly.  These concepts 
will be more fully discussed as the course progresses. 

Using global variables generally indicates a deficiency in your program 
design, and often that a student does not have a clear understanding of 
how to use functions properly.  If you feel that the only solution to a 
problem requires the use of a global variable, ask your T.A. for help. 

5 Echoing User Inputs 
Input should be echoed back to the user as soon as it is received.  It 
reassures users when they receive immediate feedback after entering 
input.  Echoing also helps programmers when they are testing their 
programs; errors in input statements are a common cause of defects. 

6 Some Final Notes 
Your textbook has a short section called “Program Style”.  Also, observe 
the way programs are laid out in the book and the program fragments 
that are part of your assignments.  The best method to improve your 
programming skills is to practice, and to imitate conventional 
programming style. 

You will note that your text and the code fragments for your assignments 
sometimes disagree with the guidelines written here (for instance Savitch 

does not break his code into discrete sections and put a comment for each 
section, nor does he declare variables one per line).  When in doubt, refer 
to the guidelines given here. 

7 Advanced Topics 
This section describes some of the more advanced features of C++ and 
how they relate to program style.  A full description of these features will 
be given in your lectures, the intent here is not to describe these features, 
but to indicate the practices we will follow when using them. 

7.1 Structs 

Structs should be given a meaningful name, written in mixed upper and 
lower case letters, with a brief comment as to its use, and a brief comment 
about each data member. 

A struct, which you will see later in the course, is a new type, similar to a 
double or an int.  In order to be able to use the struct, it should be given a 
meaningful name, written in mixed upper and lower case letters.  A brief 
comment should precede the struct giving a description as to its use.  Data 
members should be given meaningful names, be declared one per line, 
and each be given a brief description as to the use of the member. 

7.2 Separate Compilation 

Include a file heading comment for every module in your program. 

When splitting a program up into multiple files, a file heading comment 
should be given for each module as described in section 3.3 (a module is 
the combination of a header file - .h and implementation file - .cpp).  You 
should also include the dependencies of the header file (i.e. what .cpp file 
it needs, where the function definitions are located). 

7.3 #define Names 

Use the name of the file, written in all capital letters, substituting the 
period in the file name with an underscore. 

When choosing names for your #define statements, you must choose a 
name that is unique to your program.  You cannot choose a name that is 
the same as #defined in another file, nor can you choose a name that is 
the same as one of your functions in your program.  Remember that 



Page 6 of 7

names that you #define don't obey the usual rules of program scope, so 
you also have to insure that it does not conflict with any variable or 
constant names. 
For this reason when using #define / #ifndef statements to wrap your 
header, convention dictates that we use the name of the file, substituting 
an underscore for what otherwise would be a dot (note that the period (.) 
cannot be used when using #define).   

Use all capital letters in the name, just as is done for constants.  The 
reasoning behind this is that C++ is derived from a language named C, 
and C does not have the const keyword, constants are declared by using 
#define.  Furthermore, this will help prevent name conflicts caused by 
using #define for the same name you have given one of your functions 
(just make sure it's different from any constants you declare!)! 

For example for the file functions.h, we would use: 
 #ifndef FUNCTIONS_H 

 #define FUNCTIONS_H 

 … 

 #endif 

as our preprocessor directives. 

If you have any further questions, don't hesitate to ask for help. 

 



Page 7 of 7

8 Example Program – Feet to Inches 
 
//  Project:  Feet to Inches 
//  Purpose:  converts a distance in feet to a distance in inches 
//  By:  I.M Cool 
//  Student No.:  123456 
//  Course:  SY DE 121 
//  Assignment #1, Exercise #1 
//  File:  main.cpp 
//  Due Date:  Friday, September 29, 2010 
 
#include <iostream> 
using namespace std; 
 
int feet_to_inches ( int num_feet ); 
// Function converts a distance in feet to a distance in inches 
// INPUTS: num_feet - an integer number of feet 
// RETURNS:  an integer number of inches 
 
int main( )  
{ 
 // variable declarations 
 int num_feet = 0;  // distance in feet 
 int num_inches = 0;  // distance in inches 
 
 // get input from user 
 cout << "Please enter the number of feet to convert: "; 
 cin >> num_feet; 
 cout << endl; 
 cout << "You entered: " << num_feet << endl; 
 
 // check to see if user entered a positive number of feet 
 if ( num_feet > 0 ) 
 { 
  num_inches = feet_to_inches ( num_feet ); 
 
  // output results to screen 
  cout << num_feet << " feet equals " << num_inches  
   << “ inches\n"; 
 } 
  
 else  // negative number of feet 

  cout << “You entered 0, or a negative number of feet\n”; 
 
 return 0; 
} 
 
int feet_to_inches ( int num_feet ) 
{ 
 // variable declaration 
 const int INCHES_IN_FOOT = 12; 
 int inches = 0; 
 
 inches = num_feet * INCHES_IN_FOOT; 
 
 return inches; 
} 

 

File Heading with 
all relevant 
information 

Code is broken up into 
sections, with a comment 
for each section 

Function declaration 
with comment 

Constants in 
capital letters 

Code is nicely 
indented

Echo user inputs 

Long line split 
across two lines 


