CodelLink: Using a Semantic Wiki for Code Documentation
CS886: Natural Language Computing Project (Spring 2007)

Steven She (shshe@uwaterloo.ca)

August 10, 2007

mailto:shshe@uwaterloo.ca

Abstract

Documentation maintainence is a difficult and costly precdsxisting forms of software documentation
exist independent from the code it describes. As a resuhlpms arise when source code evolves since
there is no traceability between the documentation and dodeins.

CodelLink, a semantic wiki designed for code documentatitamgpts to address this problem. CodeLink
provides a platform for establishing traceability linkdween developer documentation and code concepts.
Traceability links between documentation and code can pkoity created by the user through annotations,
or inferred through the use of natural language analysigleCiok employs an ontology as its knowledge
model and a semantic wiki as its user interface. Annotatmngaceability relations in the ontology serve
to connect natural language phrases with formal ontologygepts.

In this paper, the motivation, design and implementatio@adeLink are described. Particular focus is
placed on the natural language processing (NLP) comporiébbaeLink. The process in which the NLP
component infers traceability links from the natural laage text in the semantic wiki is described in depth.
Several methods of querying and retrieving informatiomfrthe knowledge model are discussed, followed
by a summary of related and future work.

Table of Contents

1 Introduction

2 Implementation
2.1 CodeLink Architecture
2.2 CodeLink Ontology .
2.3 Semantic MediaWiki

2.4 Populating the Knowledge Model aa. o
2.5 Analysing the Documentation e

3 Querying the Knowledge Base

4 Reated Work
5 FutureWork

6 Conclusions

List of Figures

CodeLink Example .
CodeLink Screenshot

A WN PP

List of Tables

1 Annotated Object Properties in the CodeLink Ontology

Listings

1 SMW query to retrieve

2 SMW Query to retrieve documentation that contain a calltoeghod

Sketch of the CodeLink Documentation Process v o ww v v v v v v v .
CodeLink Ontology i e e e e

allclassesinapackage c.ou. ...

3 SPARQL query to retrieve all classesinapackage

11

12

14

1 Introduction 1

1 Introduction

Software documentation serves as an important artifacthiclwdomain knowledge and business require-
ments are stored. Current forms of documentation existpeagently from the code it describes. As a
result, documentation maintenance is often neglected anthaintained as software evolves. The knowl-
edge contained in outdated documentation can no longeustett as the requirements and implementation
have changed.

In addition to documentation maintenance, changes to aoftare often captured in a variety of forms
such as change request documents, code comments, or ihfommeils. Traceability between these arti-
facts exists as natural language phrases and sentencesyenpitvis up to a human to mentally extract the
traceability links from the natural language descriptions

CodeLink attempts to address the issues of documentatigmenance and traceability between soft-
ware artifacts. Atits core, CodeLink is a documentation.tdbrough the use of a semantic wiki, CodeLink
provides a collaborative environment for establishingeedility links between software artifacts. Trace-
ability links from unannotated documentation are detebiedpplying natural language analysis to the text.
An ontology is used to formalise the code model and the thalitydinks between code and documentation.

CodelLink is intended for developer documentation. Oneiqdar form of developer documentation
is a software cookbook [1, 2]. A cookbook contains a set ofpescthat informally describe how to adapt
the application framework to solve a specific problem. Apeds typically structured into three section:
purpose, procedure and source code examples. Cookbookndatation is ideal for CodeLink since the
documentation concepts are closer to code in abstractiondtiher forms of documentation.

CodeLink employs @emantic wikas its platform for documentation. wiki is a web application that
allows users to collaborate on the creation and modificadfoime content. Links are created to establish
relationships between pages in the wiki. A semantic wikeéegs a traditional wiki with a form of knowledge
representation. The knowledge model enables the systemasmm about the data contained within the
semantic wiki, thus providing a richer set of relations andrging capabilities than a traditional wiki.

A semantic wiki is well-suited for the collaborative documegtion creation and maintenance process.
Many open-source projects, such as the projects in the Apaotndatioh, Mozilla?> and the Eclipse Foun-
datior?, employ a traditional wiki for documentation. While a troinal wiki provides a collaborative
means of maintaining documentation, there is no tracéalbiditween documentation and code.

In this paper, CodeLink, a semantic wiki for code documémiais presented. In Section 2, the imple-
mentation, architecture and details of the CodeLink coreptsare described. Section 3 presents several
methods of navigating and querying the knowledge base.id®ettdescribes related work, Section 5 de-
scribes short and long term future work and Section 6 coeslud

1Apache Foundatiomttp: //wiki.apache.org/general/
2Mozilla, http://wiki.mozilla.org/Main_Page
3Eclipse Foundatiorhttp://wiki.eclipse.org/Main_Page

http://wiki.apache.org/general/
http://wiki.mozilla.org/Main_Page
http://wiki.eclipse.org/Main_Page

2 Implementation 2

Tomcat Server Apache Web Server

P 2.1 Send to NLP Component CodelLink
> Ontology

2.3 Return Tagged Chunks oo

oo

A

2. Analyse Text 3.1. Get Suggested

2.2. Perform Analysis Traceability Links '

Y A 4

q A q A 3.2 Get Wiki Obj
Natural Language Analysis Semantic MediaWiki ot Wik Objects

l T MediaWiki DB
4. Return)
1. Input Documentation Backend

Filtered Annotations

X

Developer (User)

Figure 1. Sketch of the CodeLink Documentation Process
2 Implementation

2.1 CodelLink Architecture

CodelLink consists of three components: knowledge modelaséc wiki, and natural language processing.
The three components are described in further detail below.

The knowledge model component formalises the documentatid code domain concepts. CodeLink
uses an ontology for its knowledge model. An ontology is aafias “a formal explicit specification of
a shared conceptualisation” [3]. The code domain is fosadlias a sub-ontology based on the language
constructs of the Java Programming Language. In the dodatiem sub-ontology, a single generic doc-
umentation concept was created. CodeLink uses the ontatogyore associated predicates (verbs) and
objects (nouns) for traceability relations between codidocumentation domains. The associated words
are used by CodeLink during its natural language analydi® QodeLink ontology is further described in
Section 2.2.

The semantic wiki component provides users with an userfatte to annotate traceability links between
documentation and code concepts. CodeLink uses Semantd@Wii (SMW) [4] for this component.
SMW is a web application written using the PHRNnguage. A MySQL database is used to store relations
and attributes. The features of SMW are further describesati@n 2.3.

CodelLink provides a natural language processing (NLP) corapt in order to identify potential trace-

“The PHP Grouphttp://www.php.net/

http://www.php.net/

2 Implementation 3

JCompilationUnits —— 3 Asserted Property
""" B> Inheritance

hasCompilationUnits hasPackages
Abstract Property

D
: Abstract Class
L1

Class

hasUnits inPackage
< A

»| JPackage

JCompilationUnit

hasTypes A
docCreatesFile
inUnit Y docCreatesClass
- g hasLinks .
JClass traceabilityLink Documentation
hasMembers A docAccessesField
JField
inClass v
JMember _q_i docCallsMethod, docCreatesMethod
JMethod

Figure 2: CodeLink Ontology

ability links in the documentation. LingPipea linguistic analysis framework written in Java, was used a
the basis of the NLP component. A web service for the NLP corepbusing Apache AXIS was created in

order to interface with SMW. The NLP component performsisiaparsing on the documentation text and
suggests traceability annotations to the user. A sketcheo€CbdeLink documentation process is shown in
Figure 1. The details of each step of the natural languaglgsisare further describe in Section 2.5.

2.2 CodelLink Ontology

The CodeLink ontology consists of the code and documemtstd-ontologies. The CodeLink ontology is
shown in Figure 2. Object properties between code and daatatien concepts are the traceability links
between the two domains. On the code side, the concepts wemalfsed based on Java, by using the
EMF Java metamodel as the basis of the code sub-ontologyhé®dadcumentation side, a single generic
documentation concept exists. Expanding the documentatitology to encompass the different types of
documentation is future worlRredicate andobject annotations are placed on the object properties relating
the code and documentation sub-ontologies. Pielicate and object annotations are used during the
natural language processing stage described in Section 2.5

The CodeLink ontology was formalised using the Web Ontolbgpguage (OWL) [5]. OWL is an
ontology language that is a syntactic extension of RDF-8elver, RDF-S is not fully compatible with
OWL [6]. CodeLink avoids this incompatibility by convertifrom OWL, the more restrictive language, to
RDF-S when importing the ontology into SMW.

Salias-i,http://www.alias-1i.com/lingpipe/

http://www.alias-i.com/lingpipe/

2 Implementation 4

One particularly useful feature of OWL is its ability to reasexistentially about the data contained,
resulting in the ability to derive facts that are not explicpresent in the ontology. Arquivalent class
axiomto capture deprecated documentation in the CodeLink agyatan be written as follows:

DeprecatedDocumentation C Documentation 1 3 traceabilityLink (JMethod M isDeprecated € true)

In the above class axiom, th&eprecatedDocumentation class is defined dSocumentation that con-
tain sometraceabilityLink relation with its value being dMethod thatisDeprecated. By using this class
axiom, DeprecatedDocumentation is not explicitly created, rather, it is derived from thealatored in the
knowledge base. Section 5 describes future extensionsdel@uk that will take advantage of the reasoning
capabilities provided by the ontology.

2.3 Semantic MediaWiki

Semantic MediaWiki (SMW) is an extension of the MediaWikiwmagplication with an underlying knowl-
edge model. SMW'’s knowledge model contains wiki pages goaies, relations and attributes. The SMW
knowledge model is similar to the Resource Description enaark (RDF) [7] and RDF-Schema (RDF-S)
[8]. In SMW, a wiki page is a RDF resource, a category is simitea RDF-S class, a relation is similar to a
RDF predicate where the object is another resource, andréougd is similar to a RDF predicate where the
object is a literal. The similarities and differences beaw&MW and RDF/RDF-S are described in further
detail below.

Categories in SMW are similar to a RDF-S class. A subclasspsesented as a categorisation of a
category. An individual is represented as a categorisedpaiie. SMW does not have a representation for
RDF-S subproperties. Th&ategory namespace in SMW is used to store all categories.

A SMW relation is similar to a RDF predicate, however, SMWat&Ins require the object of the triple
to be another resource, or wiki page in SMW terms. SMW ratatiare added to the knowledge model by
creating a page in thRelation namespace. Establishing a relation between two wiki pagésrie by
placing a relation annotation on one of the wiki pages. FamgXe, in order to establish a relation in SMW
on the pagérl hisPage, the following annotation is added to the wiki page:

[[TestRelation: :TargetPage]]

The above annotation would establish fhestRelation relation from ThisPage to TargetPage. In
terms of RDF, the following triple would be created:

Subject: <http://www.example.com/semanticwiki/ThisPage>
Predicate: <http://www.example.com/semanticwiki/Relation: TestRelation>
Object: <http://www.example.com/semanticwiki/TargetPage> .

2 Implementation 5

SMW attributes are similar to relations, except the objéthe triple must be a literal, or built-in type in
SMW terms. SMW contains several built-in types such as ertegjring and enumeration. SMW attributes
are added to the knowledge model by creating a page iatheibute namespace. Similar to a relation,
attributes are established by placing an attribute anootan a wiki page. For example, in order to set the
attributeName to “Hello World!” on the pageT hisPage, the following annotation is added:

[[Name:=Hello World!']]

2.4 Populating the Knowledge M odel

The CodeLink ontology is formalised using an OWL ontologgwever, SMW requires the use of its own
knowledge model. The current release of SMW (version 0.6yigded a built-in OWL import, however, it
was not capable of parsing and importing the CodeLink OWlologly correctl{. A custom-built import
tool was written for SMW in order to create the wiki categsrieelations and attributes specified in the
CodeLink ontology. The import tool creates a wiki page foliraividual, a category for a class, a relation
for an object-property, and an attribute for a datatype @ryp An annotation in the OWL ontology is
translated into an attribute-value pair on the annotatedteot’'s page in SMW. For example peedicate
annotation of “create” on th®ocCreatesClass object property in the OWL ontology is translated into
setting thePredicate attribute to “create” on th®ocCreatesClass relation page in SMW.

On the code domain, application source code is parsed ahgsaddo extract the source code concepts.
The current implementation of CodeLink constructs a seépaaurce code model instead of directly popu-
lating the OWL code sub-ontology. Populating the CodeLio#tecsub-ontology directly is described further
as future work in Section 5. The source code model is cortstiugsing the Eclipse Modeling Framework
(EMF) in conjunction with the QDo%JavaDoc parser. EMF is a modelling and code generation fwanke
for the Eclipse IDE. EMF generates a class library to manipulate and seriaistarices of a metamodel.
QDox provides an object interface for interacting with Jagarce files. The source code model is stored as
a XML [9] file.

The XML source code model is loaded into SMW through the Cauleode initialisation interface.
CodelLink parses the XML model and generates wiki pages irfidheode concepts in théode names-
pace. Pages for compilation units, packages, classes atithaseare generated. The generated pages
contain SMW annotations specifying the attributes andimia of the code concept, thus, creating the at-
tributes and relations in the SMW knowledge model. For exanpe initialised wiki text for the page
Code:java.util. ArrayList appears as follows:

6Ontoworld.org http://ontoworld.org/wiki/Help:Ontology_import
"QDox, http://qdox.codehaus.org/
8The Eclipse Foundatiomttp: //www.eclipse.org/

http://ontoworld.org/wiki/Help:Ontology_import
http://qdox.codehaus.org/
http://www.eclipse.org/

2 Implementation 6

* Name: [[Name:=ArrayList]]

* Has Compilation Unit: [[HasCompilationUnit::Code:Java.util.ArrayList.java]ll
* [[HasMethod: :Code:Java.util.ArrayList:size()]]

* [[Category:J]Class]]

In the above wiki text for th€ode:java.util. ArrayList page, dame attribute set to “ArrayList”. AHas-
CompilationUnit relation is established to theode:Java.util.ArrayList.java page. TheArrayList
page also contains sevetddsMethod relations, which only one is shown. Tk®de:java.util.ArrayList is
also categorised asJ/& lass, making it an instance of thé&Class concept in the CodeLink ontology. Several
other attributes and relations were omitted to save space.

2.5 Analysing the Documentation

In order to create a traceability link between documentatiad code, a traceability annotation must be
added to a wiki page. CodeLink discovers traceability aatians for a page using natural language analysis.
Early versions of CodeLink automatically applied inferiahotations. While an automatic approach was
transparent to the user, the annotation precision was nigtgbeAs a result, CodelLink adopted a cooperative
approach to page annotation. CodeLink uses natural laegormgessing techniques to discover potential
annotations. The annotations are presented to the usaheander may select or modify the annotations to
be added to the page. In this section, the natural languagsisprocess is described.

CodeLink adds th€ode andDoc hamespaces to the wiki in order to separate the code and @éotam
tion domains. As described in Section 2.4, dwele namespace is used to store attributes and relations on
the associated source code. The namespace is used to store code documentation. CodelLifdepsr
natural language analysis on wiki pages inbloe namespace.

CodelLink begins by extracting valid natural language el@sérom the wiki page. List items and
paragraphs are extracted from the documentation while btmiks are filtered out. Due to the parsing
complexity of wiki text, the wiki text is first converted to H/IL. Regular expressions are used to extract
the appropriate HTML structures. The HTML tags are then needoleaving only plain text.

The next stage separates the extracted text into sentdmoeglh a sentence chunker. Each sentence
is then placed into a phrase chunker, which separates ghitased on their part-of-speech (POS) tag into
four tag categoriescommon noungroper nounsmodal auxiliaries verbs andothers The first category,
common nounsattempts to detect object references to code concepte iddbumentation. For example,
the word “file” is tagged as a common noun. Tveper nounsategory is used to detect object names in a
sentence. CodeLink extends the LingPipe noun chunker ierdoddetect proper nouns for code concepts.
Code concepts follow a syntactic pattern that is distimmnfinatural language. The chunking algorithm was
extended to detect references to compilation units, paskagd methods in the documentation. This was
done by using a heuristic that chunks words which are cordeaogether by a period with no white space
in between. For example, the clgasa.util.ArrayList is recognised and returned as a single proper noun

2 Implementation 7

| Traceability Relation | Predicate Annotation | Object Annotation |
DocCreatesClass create, make class
DocCreatesCompilationUnit create, make file
DocCreatesMethod create, make method
DocCallsMethod call method
DocAccessesField access, read, write field

Table 1: Annotated Object Properties in the CodeLink Omgfplo

by the extended chunker. The third categomgdal auxiliaries attempts to detect the strength of necessity
that a predicate within a sentence carries. This is an irmpbdistinction in documentation as optional or
suggested criteria should not be annotated as an assefenidentification of modal verbs was inspired
by the REVERE system by Sawyer et al. [10]. The fourth catggarbs contains verbs other than modal
auxiliaries. This group is used to determine the action tpdréormed in a sentence. Verbs are especially
useful in cookbook documentation [11] since they conveipastthat are should be performed in the recipe.
Theotherstag category encompasses all other POS tags.

Next, CodeLink attempts to discover traceability linkshirit the sentence. In this stage, the subject,
predicate and object are identified in the tagged sentendbelcurrent version of CodeLink, the subject of
the sentence is assumed to be the current documentationTfageredicate of a sentence is assumed to be
a word that is tagged asvarbby the phrase chunker. The object of a sentence is assumedtedommon
nounof the sentence. Applicable traceability relations areiified through a mapping from the predicate
and object words to traceability relations in the CodeLimkotogy. The mapping is specified through
predicate andobject annotations that are added to the traceability relatiotsérCodeLink ontology. The
predicate annotation contains verbs for which the traceability ieta is applicable. Thebject annotation
contains nouns which are used to filter the set of possibbteataility relations. For example, the traceability
relation DocCreatesCompilationUnit has apredicate annotation of “create” and “make”, anddabject
annotation of “file.” TheDocCreatesCompilationUnit relation is only applicable if the sentence contains
a predicate of “create” and an object of “file”. Tlpesdicate andobject annotations for the traceability
relations in the CodeLink ontology are shown in Table 1.

The final step in CodeLink’s natural language analysis igdbatification of target pages for the trace-
ability relations. The target page is determined by the aibjmme of the sentence. The object name is
assumed to be the firgroper nounfollowing the object. In the case that an object name is nttaled
in the sentence, the target page is unknown and it is up togbeta provide a page for the traceability
relation. On the contrary, when an object name is detectedeldnk searches through the wiki for pages
with a similarName attribute. All matching pages, if any, are then providedh® tiser.

Figure 3 provides an example of the natural language asapeiformed by CodelLink. This exam-
ple begins after sentencing chunking with the followingteane extracted from the wiki page: “Create
a file named Test.java.” The input sentence is then procdsgale phrase chunker. The phrase chun-
ker tags “create” as gerh “file” as a common nounand “Test.java” as @roper noun The next stage

3 Querying the Knowledge Base 8

Input sentence:
Create a file named Test.java.

Tagged text after phrase chunking:
Createyerld a filefcommon noupnamed Test.jav@roper noun.

CodeLink analysis:

| Predicates | Object | Object Namesin Wiki
DocCreatesClass file Code:Com.example.Test. java
DocCreatesCompilationUnit
DocCreatesMethod

Suggested annotation:
[[DocCreatesCompilationUnit: :Code:Com.example.Test.java]]

Figure 3: CodeLink Example

attempts to discover traceability relations. The predicateate”, matches three traceability relations in
the CodeLink ontologyDocCreatesClass, DocCreatesCompilationUnit, DocCreatesMethod. The trace-
ability relations are then filtered using the object of thaeteace. In this case, the object “file”, reduces
the applicable traceability relations to only origocCreatesCompilationUnit. The last step is the iden-
tification of the target page for the traceability relatiom this example, “Test.java” is found to be the
object name. CodeLink searches through the contents of ti@md discovers that only one concept, the
Code:Com.example.Test.java compilation unit, has a matchingame attribute. Now that all the anal-
ysis steps are completed, CodeLink will compile a list ofgegjed annotations. In this case, there is only
one: [[DocCreatesCompilationUnit: :Code:Com.example.Test.java]l].

A screenshot of CodeLink is shown in Figure 4. In this scrhefjsCodeLink has performed its natural
language analysis on a simple two-step recipe. The taggexssed and suggested annotations are shown
under the “Phrase Chunking” section. Highlighted, notieitavords were tagged as common or proper
nouns and words iitalics were tagged as verbs. The suggested annotations are shtmmntbe tagged
phrase. In both cases, only a single relation and target wagesuggested. The user has the choice of
selectingotherin order to modify the suggested annotation.

3 Querying the Knowledge Base

In order to retrieve information from the knowledge basedé&ldnk uses the semantic query language of
SMW. The SMW query language is similar to other RDF query lages, such as SPARQL [12], however,
the SMW query language is less expressive than SPARQL. Th&/ §hkry language allows for conjunc-
tions, disjunctions and sub-queries using relations atnidbaties as predicates.

Listing 1 is a SMW query to retrieve all classes within thekzae java.util. The<ask> tag is used
to denote the start of a query and #g- tag is used to denote a sub-query. It is important to notetligat

3 Querying the Knowledge Base

code discussion edit || +| | history protect delete move watch refresh

Doc:SampleCookbook

Sample Recipe

= Create the file Testjava
= You should call the method java util Arraylist:size

Codelink

Phrase Chunking

= | Creafe the file Testjava
Annotate this sentence as...

Relations
" Relation:DocCreatesCompilationUnit
" Other

Target Page
" Code:Test java
" Other

Add Annotation |

= | You should call the method java.utilArrayList:size
Annotate this sentence as...

Relations
" Relation.DocCallsMethod
" Other

Target Page
" Code:Java util ArrayList
" Other

Add Annotation |

[edit]

Figure 4: CodeLink Screenshot

<ask>
[[HasCompilationUnit::
<g>[[HasPackage:;java.util]]</q>
1l

</ask>

Listing 1: SMW query to retrieve all classes in a package

N o o A~ W N P

3 Querying the Knowledge Base 10

<ask>
[[DocCallsMethod::
<g>[[HasClass::java.util.ArrayList]] [[Name:=size]]</q>
1l

</ask>

Listing 2: SMW Query to retrieve documentation that contaicall to a method

PREFIX wiki: <http://www.example.com/semanticwiki#>
SELECT 7class
WHERE

{

?class wiki:HasCompilationUnit ?compUnit .
7compUnit wiki:HasPackage "java.util" .

}

Listing 3: SPARQL query to retrieve all classes in a package

JCompilationUnit concept is the domain of theasPackage relation, and the/Class concept is the domain

of the HasCompilationUnit relation in the CodeLink ontology. The sub-query is exedutest, returning

all JCompilationUnit pages contained in thiava.util package. Each page returned in the sub-query is
then used as a value in the parent query. In this case, thetgarery returns allClass pages that have a
JCompilationUnit in the java.util package.

In Listing 2, a SMW query to retrieve all documentation patieg contain a method call fava.util.-
ArrayList.size(. ..) is shown. The sub-query of this example contains a conjomé&tetween two predicates.
The first predicate[[HasClass: : java.util.ArrayList]], returns alUMethod pages contained in the
JClass java.util.ArrayList. The second predicatg[Name:=size]] returns all pages with idame attribute
of “size”. The conjunction, or intersection of the two preatie selects allava.util.ArrayList.size(. . .)
method pages.

CodelLink provides an interface for an alternate query laggu SPARQL. A SPARQL query to retrieve
all classes in thgava.util package is shown in Listing 3. SPARQL is more expressive tharSMW
guery language. Some of the limitations of the SMW query lagg include: allowing only a single return
variable, lack of a negation operator and optional pred&atannot be easily written. While SPARQL
provides an improvement over the SMW query language, itilisistapable of using all the reasoning
capabilities provided by an ontology. Section 5 discussseral description logic query languages that
could be used in the future.

The knowledge model can also be viewed using a relation arnitbudé browser in SMW. The SMW
browser displays the values of relations and attributea ffiven page. Using the SMW browser, associated
documentation and code concepts can be easily retrievedaaighted.

The querying and browser tools mentioned only work with d@ateol documentation. The use of auto-
mated natural language analysis tools in CodeLink provadegans of performing a semantic search on

4 Related Work 11

unannotated text. Using the CodeLink annotation discof@rgearch is further discussed in Section 5.

4 Reated Work

Literate Programming by Donald Knuth [13] combines docutaton and program code into a single source
file. In literate programming, the source file is organised imanner that is meant to be read by a human,
rather than a computer. The source filéasgledin order to produce compilable code,wovento create
documentation. Traceability links between documentatiod code concepts are easily established since
both are written in the same source file. Literate programmsra very heavyweight approach. Documen-
tation and code languages are both restricted by the Eematgramming language. Literate programming
also assumes that the documentation are written by the saoptepthat write code. In larger projects, this
assumption does not hold. Despite these disadvantagemtditprogramming addresses similar issues as
CodelLink. A further look into literate programming is fueuwork.

AbstFinder by Goldin and Berry [14] uses natural languagalyais in order to identifyabstraction
identifierswithin the text. An abstraction identifier is defined as theafechunks within a sentence that
define an abstraction. AbstFinder treats a sentence aaastfdytes, ignoring the semantics of a sentence.
Abstractions are identified by finding common substrings ragntbe different sentences. The characters in
a sentence are circularly shifted in order to account fdiegiht orderings of words. CodeLink differs
in that its design attempts to take advantage of sentencandies by using POS tagging and noun and
verb chunking. CodeLink also uses an ontology to formaligeuthentation and code domain concepts.
AbstFinder relies on the assumption that some representafian abstraction will appear as a concept in a
single sentence. CodelLink also relies on the same assumptio

In a paper by Gervansi and Nuseibeh [15], shallow parsingnigaes are applied on a specification in
order to detect and extract concepts. The authors used & detument-specific rules in order to extract
concepts using a domain-based parser. The resulting passétstructured in terms of domain concepts
as oppose to the document structure. CodeLink currently asamall set of heuristics in order to extract
concepts out of sentences. A rule-based approach will berexpfurther in the future.

The REVERE system by Sawyer et al. [10] is a support tool faraeting requirements from natural
language documents. REVERE relies completely on prolstibilnatural language processing techniques.
The natural language document is first tagged by a part-edddptagger. A semantic tagger is then applied
to the tagged text in order to assign a semantic categorngpesivords and a list of common idioms (e.qg.
“as a rule” or “keep tabs on”). The user is then able to interath the abstracted view of the text. Although
CodeLink and REVERE share a similar process, there is a rddference in the way domain concepts are
identified. REVERE relies on using statistical techniquesadraining corpus while CodeLink relies on a
domain-specific ontology to identify concepts in the ndtlalaguage text.

XSDoc Wiki by Aguiar and David [16] weaves separate softvatiacts such as source code or models
into a wiki page. Traceability links can only be explicitlyeated using wiki tags for different types content

5 Future Work 12

such as[<uml>], or [<javaSource>]. CodeLink infers traceability links in the documentatidmaugh
the use of natural language analysis. In addition, Codel#s an ontology to formalise documentation
and code concepts.

5 Future Work

Ontology Integration CodeLink currently uses an OWL ontology for specifying tlomeoepts and rela-
tions, and a XML file for source code data. Removing the sepatdiL file and directly populating the
OWL ontology with instance data is future work. The curranpiementation of CodeLink uses the EMF
generated framework in order to serialise the source cot® Hlawever, EMF supports only the XML
Metadata Interchange (XMI) and XML formats. The Eclipse B@project adds OWL compatibility to
EMF. Using EODM, it would be possible to use the EMF framewtorkopulate instance data into an OWL
ontology.

In addition to using the OWL ontology to store instance datighter integration of the CodeLink OWL
ontology with SMW is planned. The current implementatiorsW uses database tables to store relations
and attributes as subject-predicate-object triples. &hitlatabase implementation is efficient, it does not
take advantage of the reasoning capabilities of an ontology

Ontology Reasoning The SMW query language and SPARQL are insufficient for saighi®d reasoning
on the knowledge model. One example where using ontologgon#ag is advantageous over the current
model was presented in Section 2.2. nRQL [17] is a descrifigic query language that can reason existen-
tially on an ontology. The following is a NnRQL query to retréeall Documentation with atraceabilityLink

to a deprecatedMethod:

(retrieve (?doc)
(and (?doc Documentation)
(?method JMethod)
(and (?xdepMethod isDeprecated) (?xdepMethod true))
(?doc ?method traceabilityLink)))

Future work will include identifying how the expressiveaas the description logic query languages
can be used to retrieve useful traceability links from thevdedge base.

Using Synonyms The verb and noun mappings are manually populated in therurersion of CodeLink.
Annotation suggestions could be improved if synonyms wetgewved for each verb or noun. Using an
approach described by Turney [18] to discover analogy pajtrsonyms could similarly be retrieved using
a thesaurus.

Shttp://www.eclipse.org/modeling/mdt/?project=eodm

http://www.eclipse.org/modeling/mdt/?project=eodm

5 Future Work 13

Improving Natural Language Recognition The current implementation of CodeLink applies shallow
parsing to natural language text. Sentences much conforanlimited verb-object pattern in order to
be recognised by CodeLink. Using deeper semantic analfsfedext could help to improve coverage.
CodelLink currently uses the Brown corpus as its trainingaddising a technical corpus, or even sim-
ply a bigger corpus could provide better word sense disamalbign, more accurate collocations and better
part-of-speech tagging.

Searching Over Unannotated Text Extending the search capability of SMW is future work. Thiural
language analysis of CodeLink could be applied on unanembtaixt in order to derive suggested annotations
about the documentation. The derived annotations couldsbiiuin identifying related, but unannotated
pages during a search. Search provides a lightweight agptoausing the capabilities of CodeLink, allow-
ing users to slowly transition their documentation to ayfalhnotated form.

Similar or Related Documentation Developing a similarity measure between documentatiorepds
future work. The annotations on a documentation page cauladsbd as the basis of the similarity measure.
Using a similarity measure, documentation could be clestand related documentation could be identified.

Software Evolution CodeLink can help developers to identify outdated docuatamt. By establishing
traceability links between documentation and code cos¢cé&mdeLink is able to map changes in the code
to affected documentation. As a result, maintenance sffmh concentrate on the affected documentation.
Taking it a step further, CodeLink can attempt to automéyigaropagate code changes to documentation
and vice versa. Automatically updating documentation ireguhe use of model comparison and merging
techniques. In a paper by Brunet et al. [19], model merginglgsbraic operations over models and rela-
tionships are described. Operators suchnasch diff andcheck-propertyare described in the paper. The
techniques describes in the paper could be applied in Callébidetect changes in the code and documen-
tation models, however, further research is required mdhéa.

CodeComments Code comments provide developers with a means of addingahénguage text to their
code. Some of the comments, such as the JavaDo@sagsand@link explicitly create links between code
and documentation elements. Extracting these traceabiliks using the QDox JavaDoc parser is future
work.

Occasionally, code comments are used to store documentdtior example, several methods in the
Eclipse IDE contain guidelines and examples embedded amnmeat headéf. This in-line documentation
is very similar to a cookbook recipe, since it provides a sstged framework solution to a problem. Further
research is required to identify how this form of documeatatan be incorporated into CodeLink.

10Refer to The Eclipse Foundation, Eclipse SDK—ViewPart Daa

6 Conclusions 14

Generic Platform for Traceability An exciting prospect for CodeLink is the generalisation lod tool

to enable traceability between domain concepts based atogidgs. CodeLink currently uses an ontology
for source code as its knowledge model. The source codeogytalould be replaced by an ontology in a
completely separate domain. Annotations in the ontologydcbe used to provide a dictionary for natural
language similar to th@redicate and Object annotations currently in use by CodeLink. For example, a
banking ontology could be used in place of the current Cauelointology. References to transactions,
such as “debit” and “credit” could be detecting in the wikitteising the approach described in this paper.
Establishing CodeLink as a generic platform for tracegbisi potential long-term future work.

6 Conclusions

In this paper, CodeLink, a semantic wiki for code documémnitais presented. CodeLink enables developers
to harness the inherent connection between software dotatite and the code it describes. An ontology
is used to formalise documentation and code concepts, amchargic wiki is used to manage and present
the knowledge model to the user. CodeLink discovers tralityalnks between software documentation
and code concepts using natural language analysis. Tiityelitiks are presented to the user as suggested
annotations.

CodeLink consists of three components: knowledge modelaséc wiki, and natural language pro-
cessing. The knowledge model provides a formalisation efditcumentation and code concepts and rela-
tions. The semantic wiki component serves as a frontendnferacting with the knowledge model. The
natural language processing component performs shallogingaon wiki text to discover potential trace-
ability links.

The natural language processing (NLP) component of Codtelvars of particular focus in this paper.
The NLP component begins by extracting natural languagagpaphs from the wiki text. The natural
language paragraphs are then chunked into sentences,atiersentence is chunked into tagged phrases.
Five tag categories are used to separate the tagged phtasgsion houngroper nounsmodal auxiliaries
verbsand others A custom proper noun chunker was developed in order to de¢éerences to code
concepts. CodeLink identifies traceability links througle use of annotated traceability relations in the
ontology. Predicate andobject annotations are placed on traceability relations as ciondithat a natural
language sentence must be fulfilled in order for the relatimnbe valid. The semantic wiki knowledge
model is used as a dictionary for matching object names.

CodelLink is still in its early stages, however, it providesextensible platform for research in estab-
lishing traceability between natural language and a forknawledge model. Through the use of natural
language analysis, traceability links from natural largguphrases to formal concepts in an ontology can be
established. Much work remains to be done before CodeLihlewes its full potential. In spite of this, the
early prototype is promising and further work will bring Grdnk a step closer to its goal of connecting
software documentation with the very code it describes.

References 15

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

G. E. Krasner and S. T. Pope, “A cookbook for using the Médew-Controller user interface
paradigm in Smalltalk-80,Journal of Object-Oriented Programmingol. 1, no. 3, pp. 26—49, 1988.

A. Schappert, P. Sommerlad, and W. Pree, “Automated@upr software development with frame-
works,” in SSR '95: Proceedings of the 1995 Symposium on Softwarehiétysa(New York, NY,
USA), pp. 123-127, ACM Press, 1995.

T. R. Gruber, “A translation approach to portable ongylcspecifications,”"Knowl. Acquis. vol. 5,
no. 2, pp. 199-220, 1993.

M. Krotzsch, D. Vrandecic, and M. Volkel, “Semantic madiiki.,” in International Semantic Web
Conferencq(l. F. Cruz, S. Decker, D. Allemang, C. Preist, D. SchwabdyliRa, M. Uschold, and
L. Aroyo, eds.), vol. 4273 ofecture Notes in Computer Sciengp. 935-942, Springer, 2006.

D. L. McGuinness and F. van Harmelen, “OWL web ontologydaage overview,” W3C recommen-
dation, W3C, Feb. 2004. http://www.w3.0rg/TR/2004/RBE@-eatures-20040210/.

B. N. Grosof, I. Horrocks, R. Volz, and S. Decker, “Degtion logic programs: combining logic
programs with description logic,” ilWVWW '03: Proceedings of the 12th international conferente o
World Wide Wep(New York, NY, USA), pp. 48-57, ACM Press, 2003.

F. Manola and E. Miller, “RDF primer,” W3C recommendatio W3C, Feb. 2004.
http://mww.w3.0rg/TR/2004/REC-rdf-primer-20040210/.

D. Brickley and R. V. Guha, “RDF vocabulary descriptianfjuage 1.0: RDF schema,” W3C recom-
mendation, W3C, Feb. 2004. http://www.w3.0rg/TR/2004(Rtef-schema-20040210/.

E. Maler, T. Bray, C. M. Sperberg-McQueen, F. Yergeau,d ad. Paoli, “Extensible
markup language (XML) 1.0 (fourth edition),” W3C recommatidn, W3C, Aug. 2006.
http://mww.w3.0rg/TR/2006/REC-xmI-20060816.

P. Sawyer, P. Rayson, and R. Garside, “Revere: Supporefiuirements synthesis from documents,”
Information Systems Frontiersol. 4, no. 3, pp. 343-353, 2002.

W. Pree, G. Pomberger, A. Schappert, and P. Sommeradivé guidance of framework develop-
ment,” Software - Concepts and Topisl. 16, no. 3, pp. 136—, 1995.

A. Seaborne and E. Prud’lhommeaux, “SPARQL query laggdar RDF,” candidate recommendation,
W3C, June 2007. http://www.w3.0rg/TR/2007/CR-rdf-spaygery-20070614/.

D. E. Knuth, “Literate programmingComput. J.vol. 27, no. 2, pp. 97-111, 1984,

References 16

[14] L. Goldin and D. M. Berry, “Abstfinder, a prototype natlifanguage text abstraction finder for use in
requirements elicitation Automated Software Enggol. 4, no. 4, pp. 375-412, 1997.

[15] V. Gervasi and B. Nuseibeh, “Lightweight validation pftural language requirements: A case
study,” in ICRE '00: Proceedings of the 4th International ConferenceRequirements Engineering
(ICRE’00), (Washington, DC, USA), p. 140, IEEE Computer Society, 2000

[16] A. Aguiar and G. David, “Wikiwiki weaving heterogenemsgoftware artifacts,” inWwikiSym '05: Pro-
ceedings of the 2005 international symposium on \Wilew York, NY, USA), pp. 67-74, ACM
Press, 2005.

[17] V. Haarslev, R. Mdller, and M. Wessel, “Querying the setic web with racer + nrgl,” ifProceed-
ings of the KI-2004 International Workshop on ApplicatiafsDescription Logics (ADL'04), Ulm,
Germany, September 22004.

[18] P. D. Turney, “Similarity of semantic relationgomput. Linguist.vol. 32, no. 3, pp. 379-416, 2006.

[19] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Nind M. Sabetzadeh, “A manifesto for model
merging,” inGaMMa '06: Proceedings of the 2006 international workshap3lobal integrated model
managemeni{New York, NY, USA), pp. 5-12, ACM Press, 2006.

	Introduction
	Implementation
	CodeLink Architecture
	CodeLink Ontology
	Semantic MediaWiki
	Populating the Knowledge Model
	Analysing the Documentation

	Querying the Knowledge Base
	Related Work
	Future Work
	Conclusions

