
CodeLink: Using a Semantic Wiki for Code Documentation

CS886: Natural Language Computing Project (Spring 2007)

Steven She (shshe@uwaterloo.ca)

August 10, 2007

mailto:shshe@uwaterloo.ca


Abstract

Documentation maintainence is a difficult and costly process. Existing forms of software documentation

exist independent from the code it describes. As a result, problems arise when source code evolves since

there is no traceability between the documentation and codedomains.

CodeLink, a semantic wiki designed for code documentation attempts to address this problem. CodeLink

provides a platform for establishing traceability links between developer documentation and code concepts.

Traceability links between documentation and code can be explicitly created by the user through annotations,

or inferred through the use of natural language analysis. CodeLink employs an ontology as its knowledge

model and a semantic wiki as its user interface. Annotationson traceability relations in the ontology serve

to connect natural language phrases with formal ontology concepts.

In this paper, the motivation, design and implementation ofCodeLink are described. Particular focus is

placed on the natural language processing (NLP) component of CodeLink. The process in which the NLP

component infers traceability links from the natural language text in the semantic wiki is described in depth.

Several methods of querying and retrieving information from the knowledge model are discussed, followed

by a summary of related and future work.

i



Table of Contents

1 Introduction 1

2 Implementation 2

2.1 CodeLink Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 2

2.2 CodeLink Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 3

2.3 Semantic MediaWiki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 4

2.4 Populating the Knowledge Model . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 5

2.5 Analysing the Documentation . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 6

3 Querying the Knowledge Base 8

4 Related Work 11

5 Future Work 12

6 Conclusions 14

List of Figures

1 Sketch of the CodeLink Documentation Process . . . . . . . . . . .. . . . . . . . . . . . . 2

2 CodeLink Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 3

3 CodeLink Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 8

4 CodeLink Screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 9

List of Tables

1 Annotated Object Properties in the CodeLink Ontology . . . .. . . . . . . . . . . . . . . . 7

Listings

1 SMW query to retrieve all classes in a package . . . . . . . . . . . .. . . . . . . . . . . . 9

2 SMW Query to retrieve documentation that contain a call to amethod . . . . . . . . . . . . 10

3 SPARQL query to retrieve all classes in a package . . . . . . . . .. . . . . . . . . . . . . . 10

ii



1 Introduction 1

1 Introduction

Software documentation serves as an important artifact in which domain knowledge and business require-

ments are stored. Current forms of documentation exist independently from the code it describes. As a

result, documentation maintenance is often neglected and not maintained as software evolves. The knowl-

edge contained in outdated documentation can no longer be trusted as the requirements and implementation

have changed.

In addition to documentation maintenance, changes to software are often captured in a variety of forms

such as change request documents, code comments, or informal e-mails. Traceability between these arti-

facts exists as natural language phrases and sentences, however, it is up to a human to mentally extract the

traceability links from the natural language descriptions.

CodeLink attempts to address the issues of documentation maintenance and traceability between soft-

ware artifacts. At its core, CodeLink is a documentation tool. Through the use of a semantic wiki, CodeLink

provides a collaborative environment for establishing traceability links between software artifacts. Trace-

ability links from unannotated documentation are detectedby applying natural language analysis to the text.

An ontology is used to formalise the code model and the traceability links between code and documentation.

CodeLink is intended for developer documentation. One particular form of developer documentation

is a software cookbook [1, 2]. A cookbook contains a set of recipes that informally describe how to adapt

the application framework to solve a specific problem. A recipe is typically structured into three section:

purpose, procedure and source code examples. Cookbook documentation is ideal for CodeLink since the

documentation concepts are closer to code in abstraction than other forms of documentation.

CodeLink employs asemantic wikias its platform for documentation. Awiki is a web application that

allows users to collaborate on the creation and modificationof the content. Links are created to establish

relationships between pages in the wiki. A semantic wiki extends a traditional wiki with a form of knowledge

representation. The knowledge model enables the system to reason about the data contained within the

semantic wiki, thus providing a richer set of relations and querying capabilities than a traditional wiki.

A semantic wiki is well-suited for the collaborative documentation creation and maintenance process.

Many open-source projects, such as the projects in the Apache Foundation1, Mozilla2 and the Eclipse Foun-

dation3, employ a traditional wiki for documentation. While a traditional wiki provides a collaborative

means of maintaining documentation, there is no traceability between documentation and code.

In this paper, CodeLink, a semantic wiki for code documentation is presented. In Section 2, the imple-

mentation, architecture and details of the CodeLink components are described. Section 3 presents several

methods of navigating and querying the knowledge base. Section 4 describes related work, Section 5 de-

scribes short and long term future work and Section 6 concludes.

1Apache Foundation,http://wiki.apache.org/general/
2Mozilla, http://wiki.mozilla.org/Main_Page
3Eclipse Foundation,http://wiki.eclipse.org/Main_Page

http://wiki.apache.org/general/
http://wiki.mozilla.org/Main_Page
http://wiki.eclipse.org/Main_Page


2 Implementation 2

Figure 1: Sketch of the CodeLink Documentation Process

2 Implementation

2.1 CodeLink Architecture

CodeLink consists of three components: knowledge model, semantic wiki, and natural language processing.

The three components are described in further detail below.

The knowledge model component formalises the documentation and code domain concepts. CodeLink

uses an ontology for its knowledge model. An ontology is defined as “a formal explicit specification of

a shared conceptualisation” [3]. The code domain is formalised as a sub-ontology based on the language

constructs of the Java Programming Language. In the documentation sub-ontology, a single generic doc-

umentation concept was created. CodeLink uses the ontologyto store associated predicates (verbs) and

objects (nouns) for traceability relations between code and documentation domains. The associated words

are used by CodeLink during its natural language analysis. The CodeLink ontology is further described in

Section 2.2.

The semantic wiki component provides users with an user interface to annotate traceability links between

documentation and code concepts. CodeLink uses Semantic MediaWiki (SMW) [4] for this component.

SMW is a web application written using the PHP4 language. A MySQL database is used to store relations

and attributes. The features of SMW are further describe in Section 2.3.

CodeLink provides a natural language processing (NLP) component in order to identify potential trace-

4The PHP Group,http://www.php.net/

http://www.php.net/


2 Implementation 3

Figure 2: CodeLink Ontology

ability links in the documentation. LingPipe5, a linguistic analysis framework written in Java, was used as

the basis of the NLP component. A web service for the NLP component using Apache AXIS was created in

order to interface with SMW. The NLP component performs shallow parsing on the documentation text and

suggests traceability annotations to the user. A sketch of the CodeLink documentation process is shown in

Figure 1. The details of each step of the natural language analysis are further describe in Section 2.5.

2.2 CodeLink Ontology

The CodeLink ontology consists of the code and documentation sub-ontologies. The CodeLink ontology is

shown in Figure 2. Object properties between code and documentation concepts are the traceability links

between the two domains. On the code side, the concepts were formalised based on Java, by using the

EMF Java metamodel as the basis of the code sub-ontology. On the documentation side, a single generic

documentation concept exists. Expanding the documentation ontology to encompass the different types of

documentation is future work.Predicate andobject annotations are placed on the object properties relating

the code and documentation sub-ontologies. Thepredicate and object annotations are used during the

natural language processing stage described in Section 2.5.

The CodeLink ontology was formalised using the Web OntologyLanguage (OWL) [5]. OWL is an

ontology language that is a syntactic extension of RDF-S, however, RDF-S is not fully compatible with

OWL [6]. CodeLink avoids this incompatibility by converting from OWL, the more restrictive language, to

RDF-S when importing the ontology into SMW.

5alias-i,http://www.alias-i.com/lingpipe/

http://www.alias-i.com/lingpipe/


2 Implementation 4

One particularly useful feature of OWL is its ability to reason existentially about the data contained,

resulting in the ability to derive facts that are not explicitly present in the ontology. Anequivalent class

axiomto capture deprecated documentation in the CodeLink ontology can be written as follows:

DeprecatedDocumentation ⊑ Documentation ⊓ ∃ traceabilityLink (JMethod ⊓ isDeprecated ∈ true)

In the above class axiom, theDeprecatedDocumentation class is defined asDocumentation that con-

tain sometraceabilityLink relation with its value being aJMethod that isDeprecated. By using this class

axiom,DeprecatedDocumentation is not explicitly created, rather, it is derived from the data stored in the

knowledge base. Section 5 describes future extensions to CodeLink that will take advantage of the reasoning

capabilities provided by the ontology.

2.3 Semantic MediaWiki

Semantic MediaWiki (SMW) is an extension of the MediaWiki web application with an underlying knowl-

edge model. SMW’s knowledge model contains wiki pages, categories, relations and attributes. The SMW

knowledge model is similar to the Resource Description Framework (RDF) [7] and RDF-Schema (RDF-S)

[8]. In SMW, a wiki page is a RDF resource, a category is similar to a RDF-S class, a relation is similar to a

RDF predicate where the object is another resource, and an attribute is similar to a RDF predicate where the

object is a literal. The similarities and differences between SMW and RDF/RDF-S are described in further

detail below.

Categories in SMW are similar to a RDF-S class. A subclass is represented as a categorisation of a

category. An individual is represented as a categorised wiki page. SMW does not have a representation for

RDF-S subproperties. TheCategory namespace in SMW is used to store all categories.

A SMW relation is similar to a RDF predicate, however, SMW relations require the object of the triple

to be another resource, or wiki page in SMW terms. SMW relations are added to the knowledge model by

creating a page in theRelation namespace. Establishing a relation between two wiki pages is done by

placing a relation annotation on one of the wiki pages. For example, in order to establish a relation in SMW

on the pageThisPage, the following annotation is added to the wiki page:

[[TestRelation::TargetPage]]

The above annotation would establish theTestRelation relation fromThisPage to TargetPage. In

terms of RDF, the following triple would be created:

Subject: <http://www.example.com/semanticwiki/ThisPage>

Predicate: <http://www.example.com/semanticwiki/Relation:TestRelation>

Object: <http://www.example.com/semanticwiki/TargetPage> .



2 Implementation 5

SMW attributes are similar to relations, except the object of the triple must be a literal, or built-in type in

SMW terms. SMW contains several built-in types such as integer, string and enumeration. SMW attributes

are added to the knowledge model by creating a page in theAttribute namespace. Similar to a relation,

attributes are established by placing an attribute annotation on a wiki page. For example, in order to set the

attributeName to “Hello World!” on the pageThisPage, the following annotation is added:

[[Name:=Hello World!]]

2.4 Populating the Knowledge Model

The CodeLink ontology is formalised using an OWL ontology, however, SMW requires the use of its own

knowledge model. The current release of SMW (version 0.6) provided a built-in OWL import, however, it

was not capable of parsing and importing the CodeLink OWL ontology correctly6. A custom-built import

tool was written for SMW in order to create the wiki categories, relations and attributes specified in the

CodeLink ontology. The import tool creates a wiki page for anindividual, a category for a class, a relation

for an object-property, and an attribute for a datatype property. An annotation in the OWL ontology is

translated into an attribute-value pair on the annotated concept’s page in SMW. For example, apredicate

annotation of “create” on theDocCreatesClass object property in the OWL ontology is translated into

setting thePredicate attribute to “create” on theDocCreatesClass relation page in SMW.

On the code domain, application source code is parsed and analysed to extract the source code concepts.

The current implementation of CodeLink constructs a separate source code model instead of directly popu-

lating the OWL code sub-ontology. Populating the CodeLink code sub-ontology directly is described further

as future work in Section 5. The source code model is constructed using the Eclipse Modeling Framework

(EMF) in conjunction with the QDox7 JavaDoc parser. EMF is a modelling and code generation framework

for the Eclipse IDE8. EMF generates a class library to manipulate and serialise instances of a metamodel.

QDox provides an object interface for interacting with Javasource files. The source code model is stored as

a XML [9] file.

The XML source code model is loaded into SMW through the CodeLink code initialisation interface.

CodeLink parses the XML model and generates wiki pages in thefor code concepts in theCode names-

pace. Pages for compilation units, packages, classes and methods are generated. The generated pages

contain SMW annotations specifying the attributes and relations of the code concept, thus, creating the at-

tributes and relations in the SMW knowledge model. For example, the initialised wiki text for the page

Code:java.util.ArrayList appears as follows:

6Ontoworld.org,http://ontoworld.org/wiki/Help:Ontology_import
7QDox,http://qdox.codehaus.org/
8The Eclipse Foundation,http://www.eclipse.org/

http://ontoworld.org/wiki/Help:Ontology_import
http://qdox.codehaus.org/
http://www.eclipse.org/


2 Implementation 6

* Name: [[Name:=ArrayList]]

* Has Compilation Unit: [[HasCompilationUnit::Code:Java.util.ArrayList.java]]

* [[HasMethod::Code:Java.util.ArrayList:size()]]

* [[Category:JClass]]

...

In the above wiki text for theCode:java.util.ArrayList page, aName attribute set to “ArrayList”. AHas-

CompilationUnit relation is established to theCode:Java.util.ArrayList.java page. TheArrayList

page also contains severalHasMethod relations, which only one is shown. TheCode:java.util.ArrayList is

also categorised as aJClass, making it an instance of theJClass concept in the CodeLink ontology. Several

other attributes and relations were omitted to save space.

2.5 Analysing the Documentation

In order to create a traceability link between documentation and code, a traceability annotation must be

added to a wiki page. CodeLink discovers traceability annotations for a page using natural language analysis.

Early versions of CodeLink automatically applied inferredannotations. While an automatic approach was

transparent to the user, the annotation precision was not perfect. As a result, CodeLink adopted a cooperative

approach to page annotation. CodeLink uses natural language processing techniques to discover potential

annotations. The annotations are presented to the user, andthe user may select or modify the annotations to

be added to the page. In this section, the natural language analysis process is described.

CodeLink adds theCode andDoc namespaces to the wiki in order to separate the code and documenta-

tion domains. As described in Section 2.4, theCode namespace is used to store attributes and relations on

the associated source code. TheDoc namespace is used to store code documentation. CodeLink performs

natural language analysis on wiki pages in theDoc namespace.

CodeLink begins by extracting valid natural language elements from the wiki page. List items and

paragraphs are extracted from the documentation while codeblocks are filtered out. Due to the parsing

complexity of wiki text, the wiki text is first converted to HTML. Regular expressions are used to extract

the appropriate HTML structures. The HTML tags are then removed, leaving only plain text.

The next stage separates the extracted text into sentences through a sentence chunker. Each sentence

is then placed into a phrase chunker, which separates phrases based on their part-of-speech (POS) tag into

four tag categories:common nouns, proper nouns, modal auxiliaries, verbs, andothers. The first category,

common nouns, attempts to detect object references to code concepts in the documentation. For example,

the word “file” is tagged as a common noun. Theproper nounscategory is used to detect object names in a

sentence. CodeLink extends the LingPipe noun chunker in order to detect proper nouns for code concepts.

Code concepts follow a syntactic pattern that is distinct from natural language. The chunking algorithm was

extended to detect references to compilation units, packages and methods in the documentation. This was

done by using a heuristic that chunks words which are connected together by a period with no white space

in between. For example, the classjava.util.ArrayList is recognised and returned as a single proper noun



2 Implementation 7

Traceability Relation Predicate Annotation Object Annotation
DocCreatesClass create, make class
DocCreatesCompilationUnit create, make file
DocCreatesMethod create, make method
DocCallsMethod call method
DocAccessesField access, read, write field

Table 1: Annotated Object Properties in the CodeLink Ontology

by the extended chunker. The third category,modal auxiliaries, attempts to detect the strength of necessity

that a predicate within a sentence carries. This is an important distinction in documentation as optional or

suggested criteria should not be annotated as an assertion.The identification of modal verbs was inspired

by the REVERE system by Sawyer et al. [10]. The fourth category, verbs, contains verbs other than modal

auxiliaries. This group is used to determine the action to beperformed in a sentence. Verbs are especially

useful in cookbook documentation [11] since they convey actions that are should be performed in the recipe.

Theotherstag category encompasses all other POS tags.

Next, CodeLink attempts to discover traceability links within the sentence. In this stage, the subject,

predicate and object are identified in the tagged sentence. In the current version of CodeLink, the subject of

the sentence is assumed to be the current documentation page. The predicate of a sentence is assumed to be

a word that is tagged as averbby the phrase chunker. The object of a sentence is assumed to be thecommon

nounof the sentence. Applicable traceability relations are identified through a mapping from the predicate

and object words to traceability relations in the CodeLink ontology. The mapping is specified through

predicate andobject annotations that are added to the traceability relations inthe CodeLink ontology. The

predicate annotation contains verbs for which the traceability relations is applicable. Theobject annotation

contains nouns which are used to filter the set of possible traceability relations. For example, the traceability

relation DocCreatesCompilationUnit has apredicate annotation of “create” and “make”, and aobject

annotation of “file.” TheDocCreatesCompilationUnit relation is only applicable if the sentence contains

a predicate of “create” and an object of “file”. Thepredicate andobject annotations for the traceability

relations in the CodeLink ontology are shown in Table 1.

The final step in CodeLink’s natural language analysis is theidentification of target pages for the trace-

ability relations. The target page is determined by the object name of the sentence. The object name is

assumed to be the firstproper nounfollowing the object. In the case that an object name is not detected

in the sentence, the target page is unknown and it is up to the user to provide a page for the traceability

relation. On the contrary, when an object name is detected, CodeLink searches through the wiki for pages

with a similarName attribute. All matching pages, if any, are then provided to the user.

Figure 3 provides an example of the natural language analysis performed by CodeLink. This exam-

ple begins after sentencing chunking with the following sentence extracted from the wiki page: “Create

a file named Test.java.” The input sentence is then processedby the phrase chunker. The phrase chun-

ker tags “create” as averb, “file” as a common noun, and “Test.java” as aproper noun. The next stage



3 Querying the Knowledge Base 8

Input sentence:
Create a file named Test.java.

Tagged text after phrase chunking:
Create[verb] a file[common noun] named Test.java[proper noun].

CodeLink analysis:

Predicates Object Object Names in Wiki
DocCreatesClass file Code:Com.example.Test.java

DocCreatesCompilationUnit
DocCreatesMethod

Suggested annotation:
[[DocCreatesCompilationUnit::Code:Com.example.Test.java]]

Figure 3: CodeLink Example

attempts to discover traceability relations. The predicate “create”, matches three traceability relations in

the CodeLink ontology:DocCreatesClass, DocCreatesCompilationUnit, DocCreatesMethod. The trace-

ability relations are then filtered using the object of the sentence. In this case, the object “file”, reduces

the applicable traceability relations to only one,DocCreatesCompilationUnit. The last step is the iden-

tification of the target page for the traceability relation.In this example, “Test.java” is found to be the

object name. CodeLink searches through the contents of the wiki and discovers that only one concept, the

Code:Com.example.Test.java compilation unit, has a matchingName attribute. Now that all the anal-

ysis steps are completed, CodeLink will compile a list of suggested annotations. In this case, there is only

one:[[DocCreatesCompilationUnit::Code:Com.example.Test.java]].

A screenshot of CodeLink is shown in Figure 4. In this screenshot, CodeLink has performed its natural

language analysis on a simple two-step recipe. The tagged phrases and suggested annotations are shown

under the “Phrase Chunking” section. Highlighted, non-italic words were tagged as common or proper

nouns and words initalics were tagged as verbs. The suggested annotations are shown below the tagged

phrase. In both cases, only a single relation and target pagewas suggested. The user has the choice of

selectingother in order to modify the suggested annotation.

3 Querying the Knowledge Base

In order to retrieve information from the knowledge base, CodeLink uses the semantic query language of

SMW. The SMW query language is similar to other RDF query languages, such as SPARQL [12], however,

the SMW query language is less expressive than SPARQL. The SMW query language allows for conjunc-

tions, disjunctions and sub-queries using relations and attributes as predicates.

Listing 1 is a SMW query to retrieve all classes within the packagejava.util. The<ask> tag is used

to denote the start of a query and the<q> tag is used to denote a sub-query. It is important to note thatthe



3 Querying the Knowledge Base 9

Figure 4: CodeLink Screenshot

1 <ask>
2 [[HasCompilationUnit::
3 <q>[[HasPackage::java.util]]</q>
4 ]]
5 </ask>

Listing 1: SMW query to retrieve all classes in a package



3 Querying the Knowledge Base 10

1 <ask>
2 [[DocCallsMethod::
3 <q>[[HasClass::java.util.ArrayList]] [[Name:=size]]</q>
4 ]]
5 </ask>

Listing 2: SMW Query to retrieve documentation that containa call to a method

1 PREFIX wiki: <http://www.example.com/semanticwiki#>
2 SELECT ?class
3 WHERE
4 {
5 ?class wiki:HasCompilationUnit ?compUnit .
6 ?compUnit wiki:HasPackage "java.util" .
7 }

Listing 3: SPARQL query to retrieve all classes in a package

JCompilationUnit concept is the domain of theHasPackage relation, and theJClass concept is the domain

of the HasCompilationUnit relation in the CodeLink ontology. The sub-query is executed first, returning

all JCompilationUnit pages contained in thejava.util package. Each page returned in the sub-query is

then used as a value in the parent query. In this case, the parent query returns allJClass pages that have a

JCompilationUnit in thejava.util package.

In Listing 2, a SMW query to retrieve all documentation pagesthat contain a method call tojava.util.-

ArrayList.size(. . . ) is shown. The sub-query of this example contains a conjunction between two predicates.

The first predicate,[[HasClass::java.util.ArrayList]], returns allJMethod pages contained in the

JClass java.util.ArrayList. The second predicate,[[Name:=size]] returns all pages with aName attribute

of “size”. The conjunction, or intersection of the two predicate selects alljava.util.ArrayList.size(. . . )

method pages.

CodeLink provides an interface for an alternate query language, SPARQL. A SPARQL query to retrieve

all classes in thejava.util package is shown in Listing 3. SPARQL is more expressive thanthe SMW

query language. Some of the limitations of the SMW query language include: allowing only a single return

variable, lack of a negation operator and optional predicates cannot be easily written. While SPARQL

provides an improvement over the SMW query language, it is still incapable of using all the reasoning

capabilities provided by an ontology. Section 5 discusses several description logic query languages that

could be used in the future.

The knowledge model can also be viewed using a relation and attribute browser in SMW. The SMW

browser displays the values of relations and attributes fora given page. Using the SMW browser, associated

documentation and code concepts can be easily retrieved andnavigated.

The querying and browser tools mentioned only work with annotated documentation. The use of auto-

mated natural language analysis tools in CodeLink providesa means of performing a semantic search on



4 Related Work 11

unannotated text. Using the CodeLink annotation discoveryfor search is further discussed in Section 5.

4 Related Work

Literate Programming by Donald Knuth [13] combines documentation and program code into a single source

file. In literate programming, the source file is organised ina manner that is meant to be read by a human,

rather than a computer. The source file istangledin order to produce compilable code, orwovento create

documentation. Traceability links between documentationand code concepts are easily established since

both are written in the same source file. Literate programming is a very heavyweight approach. Documen-

tation and code languages are both restricted by the literate programming language. Literate programming

also assumes that the documentation are written by the same people that write code. In larger projects, this

assumption does not hold. Despite these disadvantages, literate programming addresses similar issues as

CodeLink. A further look into literate programming is future work.

AbstFinder by Goldin and Berry [14] uses natural language analysis in order to identifyabstraction

identifierswithin the text. An abstraction identifier is defined as the set of chunks within a sentence that

define an abstraction. AbstFinder treats a sentence as a stream of bytes, ignoring the semantics of a sentence.

Abstractions are identified by finding common substrings among the different sentences. The characters in

a sentence are circularly shifted in order to account for different orderings of words. CodeLink differs

in that its design attempts to take advantage of sentence semantics by using POS tagging and noun and

verb chunking. CodeLink also uses an ontology to formalise documentation and code domain concepts.

AbstFinder relies on the assumption that some representation of an abstraction will appear as a concept in a

single sentence. CodeLink also relies on the same assumption.

In a paper by Gervansi and Nuseibeh [15], shallow parsing techniques are applied on a specification in

order to detect and extract concepts. The authors used a set of document-specific rules in order to extract

concepts using a domain-based parser. The resulting parse tree is structured in terms of domain concepts

as oppose to the document structure. CodeLink currently uses a small set of heuristics in order to extract

concepts out of sentences. A rule-based approach will be explored further in the future.

The REVERE system by Sawyer et al. [10] is a support tool for extracting requirements from natural

language documents. REVERE relies completely on probabilistic natural language processing techniques.

The natural language document is first tagged by a part-of-speech tagger. A semantic tagger is then applied

to the tagged text in order to assign a semantic category to single words and a list of common idioms (e.g.

“as a rule” or “keep tabs on”). The user is then able to interact with the abstracted view of the text. Although

CodeLink and REVERE share a similar process, there is a majordifference in the way domain concepts are

identified. REVERE relies on using statistical techniques on a training corpus while CodeLink relies on a

domain-specific ontology to identify concepts in the natural language text.

XSDoc Wiki by Aguiar and David [16] weaves separate softwareartifacts such as source code or models

into a wiki page. Traceability links can only be explicitly created using wiki tags for different types content



5 Future Work 12

such as[<uml>], or [<javaSource>]. CodeLink infers traceability links in the documentation through

the use of natural language analysis. In addition, CodeLinkuses an ontology to formalise documentation

and code concepts.

5 Future Work

Ontology Integration CodeLink currently uses an OWL ontology for specifying the concepts and rela-

tions, and a XML file for source code data. Removing the separate XML file and directly populating the

OWL ontology with instance data is future work. The current implementation of CodeLink uses the EMF

generated framework in order to serialise the source code data, however, EMF supports only the XML

Metadata Interchange (XMI) and XML formats. The Eclipse EODM9 project adds OWL compatibility to

EMF. Using EODM, it would be possible to use the EMF frameworkto populate instance data into an OWL

ontology.

In addition to using the OWL ontology to store instance data,a tighter integration of the CodeLink OWL

ontology with SMW is planned. The current implementation ofSMW uses database tables to store relations

and attributes as subject-predicate-object triples. While a database implementation is efficient, it does not

take advantage of the reasoning capabilities of an ontology.

Ontology Reasoning The SMW query language and SPARQL are insufficient for sophisticated reasoning

on the knowledge model. One example where using ontology reasoning is advantageous over the current

model was presented in Section 2.2. nRQL [17] is a description logic query language that can reason existen-

tially on an ontology. The following is a nRQL query to retrieve allDocumentation with a traceabilityLink

to a deprecatedJMethod:

(retrieve (?doc)

(and (?doc Documentation)

(?method JMethod)

(and (?∗depMethod isDeprecated) (?∗depMethod true))

(?doc ?method traceabilityLink)))

Future work will include identifying how the expressiveness of the description logic query languages

can be used to retrieve useful traceability links from the knowledge base.

Using Synonyms The verb and noun mappings are manually populated in the current version of CodeLink.

Annotation suggestions could be improved if synonyms were retrieved for each verb or noun. Using an

approach described by Turney [18] to discover analogy pairs, synonyms could similarly be retrieved using

a thesaurus.
9http://www.eclipse.org/modeling/mdt/?project=eodm

http://www.eclipse.org/modeling/mdt/?project=eodm


5 Future Work 13

Improving Natural Language Recognition The current implementation of CodeLink applies shallow

parsing to natural language text. Sentences much conform toa limited verb-object pattern in order to

be recognised by CodeLink. Using deeper semantic analysis of the text could help to improve coverage.

CodeLink currently uses the Brown corpus as its training data. Using a technical corpus, or even sim-

ply a bigger corpus could provide better word sense disambiguation, more accurate collocations and better

part-of-speech tagging.

Searching Over Unannotated Text Extending the search capability of SMW is future work. The natural

language analysis of CodeLink could be applied on unannotated text in order to derive suggested annotations

about the documentation. The derived annotations could be useful in identifying related, but unannotated

pages during a search. Search provides a lightweight approach to using the capabilities of CodeLink, allow-

ing users to slowly transition their documentation to a fully annotated form.

Similar or Related Documentation Developing a similarity measure between documentation pages is

future work. The annotations on a documentation page could be used as the basis of the similarity measure.

Using a similarity measure, documentation could be clustered and related documentation could be identified.

Software Evolution CodeLink can help developers to identify outdated documentation. By establishing

traceability links between documentation and code concepts, CodeLink is able to map changes in the code

to affected documentation. As a result, maintenance efforts can concentrate on the affected documentation.

Taking it a step further, CodeLink can attempt to automatically propagate code changes to documentation

and vice versa. Automatically updating documentation requires the use of model comparison and merging

techniques. In a paper by Brunet et al. [19], model merging asalgebraic operations over models and rela-

tionships are described. Operators such asmatch, diff andcheck-propertyare described in the paper. The

techniques describes in the paper could be applied in CodeLink to detect changes in the code and documen-

tation models, however, further research is required in this area.

Code Comments Code comments provide developers with a means of adding natural language text to their

code. Some of the comments, such as the JavaDoc tags@see and@link explicitly create links between code

and documentation elements. Extracting these traceability links using the QDox JavaDoc parser is future

work.

Occasionally, code comments are used to store documentation. For example, several methods in the

Eclipse IDE contain guidelines and examples embedded as a comment header10. This in-line documentation

is very similar to a cookbook recipe, since it provides a suggested framework solution to a problem. Further

research is required to identify how this form of documentation can be incorporated into CodeLink.

10Refer to The Eclipse Foundation, Eclipse SDK—ViewPart JavaDoc



6 Conclusions 14

Generic Platform for Traceability An exciting prospect for CodeLink is the generalisation of the tool

to enable traceability between domain concepts based on ontologies. CodeLink currently uses an ontology

for source code as its knowledge model. The source code ontology could be replaced by an ontology in a

completely separate domain. Annotations in the ontology could be used to provide a dictionary for natural

language similar to thePredicate andObject annotations currently in use by CodeLink. For example, a

banking ontology could be used in place of the current CodeLink ontology. References to transactions,

such as “debit” and “credit” could be detecting in the wiki text using the approach described in this paper.

Establishing CodeLink as a generic platform for traceability is potential long-term future work.

6 Conclusions

In this paper, CodeLink, a semantic wiki for code documentation is presented. CodeLink enables developers

to harness the inherent connection between software documentation and the code it describes. An ontology

is used to formalise documentation and code concepts, and a semantic wiki is used to manage and present

the knowledge model to the user. CodeLink discovers traceability links between software documentation

and code concepts using natural language analysis. Traceability links are presented to the user as suggested

annotations.

CodeLink consists of three components: knowledge model, semantic wiki, and natural language pro-

cessing. The knowledge model provides a formalisation of the documentation and code concepts and rela-

tions. The semantic wiki component serves as a frontend for interacting with the knowledge model. The

natural language processing component performs shallow parsing on wiki text to discover potential trace-

ability links.

The natural language processing (NLP) component of CodeLink was of particular focus in this paper.

The NLP component begins by extracting natural language paragraphs from the wiki text. The natural

language paragraphs are then chunked into sentences, then each sentence is chunked into tagged phrases.

Five tag categories are used to separate the tagged phrases:common nouns, proper nouns, modal auxiliaries,

verbsand others. A custom proper noun chunker was developed in order to detect references to code

concepts. CodeLink identifies traceability links through the use of annotated traceability relations in the

ontology. Predicate andobject annotations are placed on traceability relations as conditions that a natural

language sentence must be fulfilled in order for the relations to be valid. The semantic wiki knowledge

model is used as a dictionary for matching object names.

CodeLink is still in its early stages, however, it provides an extensible platform for research in estab-

lishing traceability between natural language and a formalknowledge model. Through the use of natural

language analysis, traceability links from natural language phrases to formal concepts in an ontology can be

established. Much work remains to be done before CodeLink achieves its full potential. In spite of this, the

early prototype is promising and further work will bring CodeLink a step closer to its goal of connecting

software documentation with the very code it describes.



References 15

References

[1] G. E. Krasner and S. T. Pope, “A cookbook for using the Model-View-Controller user interface

paradigm in Smalltalk-80,”Journal of Object-Oriented Programming, vol. 1, no. 3, pp. 26–49, 1988.

[2] A. Schappert, P. Sommerlad, and W. Pree, “Automated support for software development with frame-

works,” in SSR ’95: Proceedings of the 1995 Symposium on Software reusability, (New York, NY,

USA), pp. 123–127, ACM Press, 1995.

[3] T. R. Gruber, “A translation approach to portable ontology specifications,”Knowl. Acquis., vol. 5,

no. 2, pp. 199–220, 1993.

[4] M. Krötzsch, D. Vrandecic, and M. Völkel, “Semantic mediawiki.,” in International Semantic Web

Conference(I. F. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P.Mika, M. Uschold, and

L. Aroyo, eds.), vol. 4273 ofLecture Notes in Computer Science, pp. 935–942, Springer, 2006.

[5] D. L. McGuinness and F. van Harmelen, “OWL web ontology language overview,” W3C recommen-

dation, W3C, Feb. 2004. http://www.w3.org/TR/2004/REC-owl-features-20040210/.

[6] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker, “Description logic programs: combining logic

programs with description logic,” inWWW ’03: Proceedings of the 12th international conference on

World Wide Web, (New York, NY, USA), pp. 48–57, ACM Press, 2003.

[7] F. Manola and E. Miller, “RDF primer,” W3C recommendation, W3C, Feb. 2004.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

[8] D. Brickley and R. V. Guha, “RDF vocabulary description language 1.0: RDF schema,” W3C recom-

mendation, W3C, Feb. 2004. http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

[9] E. Maler, T. Bray, C. M. Sperberg-McQueen, F. Yergeau, and J. Paoli, “Extensible

markup language (XML) 1.0 (fourth edition),” W3C recommendation, W3C, Aug. 2006.

http://www.w3.org/TR/2006/REC-xml-20060816.

[10] P. Sawyer, P. Rayson, and R. Garside, “Revere: Support for requirements synthesis from documents,”

Information Systems Frontiers, vol. 4, no. 3, pp. 343–353, 2002.

[11] W. Pree, G. Pomberger, A. Schappert, and P. Sommerlad, “Active guidance of framework develop-

ment,”Software - Concepts and Tools, vol. 16, no. 3, pp. 136–, 1995.

[12] A. Seaborne and E. Prud’hommeaux, “SPARQL query language for RDF,” candidate recommendation,

W3C, June 2007. http://www.w3.org/TR/2007/CR-rdf-sparql-query-20070614/.

[13] D. E. Knuth, “Literate programming,”Comput. J., vol. 27, no. 2, pp. 97–111, 1984.



References 16

[14] L. Goldin and D. M. Berry, “Abstfinder, a prototype natural language text abstraction finder for use in

requirements elicitation,”Automated Software Engg., vol. 4, no. 4, pp. 375–412, 1997.

[15] V. Gervasi and B. Nuseibeh, “Lightweight validation ofnatural language requirements: A case

study,” in ICRE ’00: Proceedings of the 4th International Conference on Requirements Engineering

(ICRE’00), (Washington, DC, USA), p. 140, IEEE Computer Society, 2000.

[16] A. Aguiar and G. David, “Wikiwiki weaving heterogeneous software artifacts,” inWikiSym ’05: Pro-

ceedings of the 2005 international symposium on Wikis, (New York, NY, USA), pp. 67–74, ACM

Press, 2005.

[17] V. Haarslev, R. Möller, and M. Wessel, “Querying the semantic web with racer + nrql,” inProceed-

ings of the KI-2004 International Workshop on Applicationsof Description Logics (ADL’04), Ulm,

Germany, September 24, 2004.

[18] P. D. Turney, “Similarity of semantic relations,”Comput. Linguist., vol. 32, no. 3, pp. 379–416, 2006.

[19] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh, “A manifesto for model

merging,” inGaMMa ’06: Proceedings of the 2006 international workshop on Global integrated model

management, (New York, NY, USA), pp. 5–12, ACM Press, 2006.


	Introduction
	Implementation
	CodeLink Architecture
	CodeLink Ontology
	Semantic MediaWiki
	Populating the Knowledge Model
	Analysing the Documentation

	Querying the Knowledge Base
	Related Work
	Future Work
	Conclusions

