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Framework usage is a difficult and often frustrating process requiring in depth
knowledge and understanding of the framework API. To ease the learning process,
programmers often use example code or recipes as guides when using frameworks.
Unfortunately, these resources tend not to be readily available.

We present StarCharter, a tool for synthesizing concept recipes by mining example
code. Recipes describe a procedure for implementing framework concepts. Using
StarCharter, users begin constructing a recipe by starring statements which they think
are essential to the concept’s implementation. Next, StarCharter infers code queries
from these statements and searches for related examples. A concept slicer is then
applied to each example to find related statements and types. Finally, the recipe miner
reverse-engineers a recipe by finding associations and patterns in the sliced usages.

1 Introduction

Object-oriented frameworks provide reusable abstractions for building software systems. Unfortu-
nately, understanding framework usage is often a difficult and time consuming process. Developers
frequently use code snippets and existing code as guiding examples. However, these sample usages
are typically not readily available to the user. For example, finding relevant implementation code
may require a web search to locate the correct tutorial article followed by searching within the page
for the code snippet. Existing concept usages in other applications and contexts provide a bountiful
repository of examples, however, current techniques require a user to manually scour multiple source
files to locate the relevant lines of code. Even then, the concept’s usage tend to be scattered over
multiple classes or methods and tangled with other unrelated concepts. In this report, we present
StarCharter!, a tool for aiding developers in locating relevant examples and constructing a recipe
describing framework usage.

I'The purpose of the tool is analogous to the process of identifying constellations in the night sky, in my opinion.



A user begins with StarCharter by specifying statements that he knows are essential to a concept’s
implementation. This is accomplished by starring code statements in the IDE editor. Afterwards,
StarCharter derives related statements through program slicing, a process for retrieving statements
that affect or are affected by the starred statements. The resulting slice constitutes a single example
usage.

Examining a single example usage provides only one particular implementation of the concept.
The user will not know with certainty that the chosen usage is correct and most likely the code
will be incomplete. In addition, the analyzed implementation may contain superfluous code that is
unrelated to the chosen concept. Luckily, there are often a considerable amount of example code
accessible using a code search engine. As a result, StarCharter derives a code query from the starred
statements and executes the query on a search engine to find related usages.

The final step in StarCharter involves the creation of an concept recipe [HBCO07] using data
mining. A concept recipe has the advantage of consolidating the patterns from multiple example
usages into a single model. Superfluous and erroneous statements are filtered since these statements
are typically infrequent. In addition, StarCharter derives probabilistic expression which can be used
for providing guidance in future tool support.

StarCharter makes the following contributions:

e Heuristics for inferring code search queries from statements.
e Concept slicing, a specialized program slicing geared for analyzing framework usage.
o Synthesizing a model of framework usage in the form of a recipe.
e Providing an Eclipse plug-in for program slicing.
The remainder of this report is organized as follows. In Section 2, each component of StarCharter

will be discussed in depth. Section 3 describes the current implementation prototype, Section 4
discusses related work, Section 5 discusses future work and Section 6 presents conclusions.

2 StarCharter

StarCharter aims to be a lightweight and interactive tool for understanding framework usage.

e Lightweight. The user should expend minimal effort to construct an initial recipe. The ap-
proach should be built into an IDE providing easy access for the user to invoke the tool and
view the output.

¢ Interactive. While creation of the initial recipe should require minimal effort, the tool should
also allow the user to iteratively modify the input and progressively see improved results.

An overview of StarCharter is shown in Figure 1. The workflow begins with the user selecting
a set of starred statements and an optional framework boundary. There are four components in
StarCharter:

1. Statement Starring. StarCharter’s workflow begins with the user starring a set of statements.
These starred statements represent what the user thinks is essential to the concept’s implemen-
tation.



( 2 Starred .
) ™ Statements Search Engine

E B B

Usage Usage Usage
Framework . ] '
Boundary — | Concept Slicer Recipe Miner —

Recipe

Figure 1: StarCharter overview

2. Search Engine. The search engine is responsible for finding related concept usages given the
starred statements. It first derives a usage query given the set of starred statements then uses
the query to find example usages.

3. Concept Slicer. After the search engine has found a set of example usages, the concept slicer
finds related statements. The user can optionally input a framework boundary to restrict the
slicer to only events pertaining to a framework. The output after processing by the concept
slicer is set of program slices.

4. Recipe Miner. The program slices are combined into a single recipe using the recipe miner.
The recipe miner mines for a feature model by discovering associations and patterns. The
resulting recipe describes the aggregate behaviour exhibited in all the examined slices.

2.1 Starring Statements

StarCharter begins with the user selecting several statements in a sample program. These selected
statements form a set of starred statements, which define the statements that the user believes to
be essential to the concept’s implementation. The starred statements have two purposes: (1) the
statements are used as the starting points for slicing, and (2) they are used to construct a code
query for finding related usages with the search engine. StarCharter currently supports two types of
statements: method invocations and variable assignments.

2.2 Finding Concept Usages

The search engine in StarCharter is responsible for finding related examples given a set of starred
statements. The starred statements are first generalized into a code query using several heuristics.
Next, the search engine finds related usages that satisfy the inferred code query.



I JLabel label = new JLabel("Hello,World!");
* 2 Container cp = getContentPane();
¥ 3 cp.add(label);

(a) LabelUsage.java

JButton button = new JButton("Click Here!");
JPanel panel = new JPanel();
getContentPane().add(button, 2);
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(b) ButtonUsage.java

Figure 2: Finding related usages

The StarCharter search engine locates code for statements satisfying a given code query [ABCO7].
A code query is an expression that matches a pattern found in framework usage code. Code queries
are like meta-expressions that describes properties of the code itself, similar to aspect pointcuts
[KLM*97]. A matched statement is one that satisfies a given code query. Code queries are inferred
from the starred statements using the following heuristics:

e Method Calls. Given a starred method call, StarCharter will construct a code query that
searches for all method invocations with the same name in the same type. For example, a
starred call to foo.bar(x,y,z) will construct a query for all methods contained in foo’s type
with the name bar. Thus, parameter types and values are ignored in the inferred code query.

e Variable Assignments. A starred assignment will generate a code query for all assignments
to variables with the same type. For example, the starred assignment Foo foo = getFoo(bar)
will create a query that finds statements where a variable is assigned a instance of type Foo.
The right-hand side of the assignment can either be a method or constructor invocation.

Multiple queries can be disjunctively composed such that the search results contain a union of
the results from the smaller queries. Implementing conjunctive queries such that each search result
satisfies all the conjoined queries is left for future work.

In Figure 2a, the user has starred two statements in LabelUsage.java. The first statement is an
assignment to a Container variable shown by the %. This starred statement is generalized into a code
query that matches all variable assignments to Container variables. As a result the assignment to the
panel variable @ is matched by the search engine in a separate source file, ButtonUsage.java. The
second starred statement is a method invocation to Container.add(Component), located at ¥. This
statement is generalized to a code query that matches all invocations to methods with the signature
Container.add(. .. ). This query matches the statement marked by @ in ButtonUsage.java.

In addition to the code query, the search engine also requires a search scope. The search scope
defines the types and methods that may be returned by the search engine. StarCharter currently
restricts the search scope to the current working Eclipse project and all associated libraries.

Sample search results for a code query are shown in Figure 3. Each matched statement is
represented as a row in the table. The compilation unit, method and location of each usage is



Compilation Unit Method Line

1 HelloWorldl.java  constructor 10
2 HelloWorld2.java  constructor 7

3 HelloWorld3.java  init 14
4 HelloWorld3.java  paint 20

Figure 3: Sample search results for a query

void foo() { B bar(A a) {
A a = new A("Arr!"); new C();
B ¢ = bar(a); return new B(a);

} }

Figure 4: A Java program with two methods

recorded by the search engine. It is possible for multiple usages from the same source file to match
the same query such as the two results in HelloWorld3.java.

Each of the matched statements represent a usage that exhibits behaviour similar to the starred
statements. However, the matched statements may not contain all relevant statements. As a result,
StarCharter uses a technique called slicing to construct a more complete example usage.

2.3 Program Slicing

Program slicing is a technique introduced by Weiser for reducing a program to only the relevant
statements needed to implement a given slicing criterion at a specific point of interest [Wei81].
The slicing criterion consists of a set of variables whose behaviour is to be maintained in the
resulting slice. Thus providing a single variable x as the slicing criterion, program slicing will
remove statements that do not affect or are not affected by variable x. Given all of a program’s
variables as the slicing criterion, the entire program will be return as a slice.

Slicing uses a combination of data-flow and control-flow analysis to find dependent statements.
The results of the analyses are stored in a structure called a program dependence graph. A program
dependence graph (PDQG) is a structure where the nodes represent program statements and edges
represent data or control dependence. A statement x is control dependent on y if the execution of y
affects the execution of x. Similarly, a statement x is data dependent on y if the execution of y affects
the value of x.

There are two common forms of slicing: forward and backward slicing. A forward slice contains
all the statements which may have some effect on the slicing criterion. On the other hand, a backward
slice contains all the statements which are affected by the slicing criterion. Combining the statements
from both forward and backward slices forms a complete slice.

Slicing on PDGs alone enables only intraprocedural analysis. The system dependence graph
(SDG) extends the PDG to enable interprocedural analysis [HRB90]. In a SDG, each method is
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Figure 5: System dependence graph showing data dependence

represented by its own PDG. Method parameters are represented as formal-in and formal-out nodes
and call arguments are represented as actual-out nodes. Method invocations are represented by
edges connecting the arguments at the call site, termed the actual-out nodes, to the input parameters
of the target method, called the formal-in nodes.

To demonstrate SDGs, we first present a small example Java program in Figure 4. This program
has two methods, foo and bar and involves two types, A and B. Figure 5 presents the SDG constructed
from this simple program. Only data dependences are present in this SDG. The gray nodes represent
method declarations and white nodes represent statements. Variable have a subscript denoting their
context. For example, ay,, refers to variable a in the foo method while ay,,(,) refers to variable a at
the time of the bar(a) method invocation. Variables suffixed with a prime such as aj ,, represent the
variable value at the end of the method execution. A special variable suffixed with ref represents
the return value of a method. Edges represent data dependences between two nodes such that the
source affects the target node. For example, the literal “Arr!” affects the constructor invocation new
A(“Arr!"). The return value of method bar, denoted by bar,,, affects the value of variable c in foo,
denoted by c .

Forward and backward slicing is accomplished using graph reachability algorithms on the SDG.
Dependencies that are indirectly related to the slicing criterion are found due to the transitive nature
of the reachability algorithms. Calculating reachability on the SDG in Figure 5 will result in a
forward slice. Reversing the edges and calculating reachability will result in a backward slice.

As a simple example of slicing, the return value of bar represented by bar,,, reaches only the
variable cy,,. As a result, the forward slice contains only two elements: bar,,; and cy,,. A forward
slice on the variable ay,, would reveal the following statements: ay,,, Qpar(a)s Bbars NEW B(a), a;m.
In both these cases, unrelated statements are removed by slicing.

StarCharter uses a custom-built, interprocedural, flow-insensitive program slicer. The slicer
implements the SDG, thus enabling interprocedural analysis. Dependence graphs for methods are
constructed only when a method invocation exists in the same method as the input usage. Control
dependence has not been implemented in the current version.



A | Imagelcon icon = new Imagelcon("middle.gif", "...");
2 JLabel I1 = new JLabel("...", icon, JLabel. CENTER);
3 JlLabel 12 = new JLabel("Text—Only, Label");

* 4 JLabel I3 = new JLabel(icon);

Vv 5 [3.setVertical TextPosition(JLabel. BOTTOM);

¥ 6 I3.setHorizontal TextPosition(JLabel. CENTER);
7 add(l1);
8 add(12);

v 9 add(I3);

Figure 6: Forward and backward slice

2.4 Concept Slicing

StarCharter uses concept slicing to locate related framework usage statements. Concept slicing is a
specialized version of program slicing that is geared towards isolating the framework usage code of
a concept. A framework boundary specification is provided to restrict the slicer to only statements
relating to the framework of interest.

Program slicing finds related statements given a slicing criterion of variables. However, input into
the slicer in StarCharter is simply a matched statement that can either be a method invocation or a
variable assignment. Consequently, StarCharter translates these statements into slicing criterions.

A matched method invocation translates into a slicing criterion of the target and all parameter
variables. For example, the slicing criterion for a call foo.bar(x,y,z) will consist of the variables:
foo, x, y and z. A matched variable assignment directly translates to a slicing criterion consisting
solely on the assigned variable. Since StarCharter is currently flow-insensitive, there is no need to
specify a point of interest (ie. line number) at which slicing should begin.

Figure 6 illustrates the slicing procedure on a code snippet. Assume that line 4 is a matched
statement given to the concept slicer. Since this statement is an assignment, StarCharter uses its
assigned variable, 13 as the slicing criterion. The statements present in the forward slice are shown
with the ¥ symbol. The statements in the backward slice are shown with the A symbol. The union
of forward and backward slice constitutes the complete slice. Note that statements related to the |13
variable are part of the slice while statements involving solely 11 and 12 are excluded.

With program slicing, a slice captures all statements that affect the variables in the slicing criterion.
However, it is often the case that the slice is too general and contains too many statements to be
useful for understanding framework usage. Take the example in Figure 7. This example adds a List
concept in lines 5-6. Applying forward and backward slicing on the label variable at line 2 would
find that all statements excluding line 5 are related (shown by the A, ¥ and © symbols).

StarCharter uses a framework boundary specification to restrict slicing to only statements related
to a framework of interest. The framework boundary consists of a set of Java type and package
names. Take Figure 7 once again. This time around, assume that the user is interested in the usage
of the Java Swing toolkit. Thus the user sets the framework boundary to javax.swing.*. Slicing on



Imagelcon icon = new Imagelcon("middle.gif", "...");
JLabel label = new JLabel(icon);
label.setVertical TextPosition(JLabel. BOTTOM);
label.setHorizontal TextPosition(JLabel. CENTER);
List<JLabel> items = new ArrayList<JLabel>();

6 items.add(label);
v 7 add(label);

4 4 » >
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Framework boundary: javax.swing.*

Figure 7: Filtering statements using a framework boundary

this example would filter the statement at line 6 since the type of the items variable belong in the
java.util package.

A feature of StarCharter is that it does not expand the slicing criterion as it encounters new
variables. As a result, the resulting slice may not be executable. This behaviour avoids the case
where slicing causes an explosion of dependent statements where the entire program is added to
the slice. In Figure 7, StarCharter did not slice on the usage of the items variable even though it
sliced the related items.add(label) statement. Consequently, the items variable was left uninitialized.
Variables that are not initialized either through a method or constructor invocation are considered
free variables. A free variable is considered a separate concept and a second StarCharter invocation
may be used to mine their usage. Whether this behaviour is too restrictive for constructing useful
recipes remains an open question.

The experience so far with StarCharter has been that the slices have been relatively contained.
This may be due to the fact that the slicing criterion is not expanded during the search or to the
single starred statement restriction in the current prototype. It is also unclear whether the framework
boundary specification is sufficient for limiting cases where program slicing does yields too large a
slice.

2.5 Synthesizing the Recipe

The final component of StarCharter is the recipe miner. The recipe miner is responsible for synthe-
sizing a single recipe from a set of usage slices. Each individual slice provides a narrow view of the
concept’s implementation by describing only a single example usage. Each slice may contain super-
fluous or erroneous statements. StarCharter applies data mining to distinguish between common and
uncommon statements. Common statements generally reflect statements that are required by the
concept’s implementation. Uncommon statements are typically application-specific and are optional
or unrelated statements. The recipe miner extracts information by comparing the usage in all slices
and presents their patterns and associations in a model called a concept recipe.

StarCharter uses feature model mining to synthesize a recipe in the form of a probabilistic feature
model [She08]. A probabilistic feature model (PFM) consists of a feature hierarchy and an optional
set of hard and soft constraints [CSWO08]. A feature model can be instantiated as a set of selected
features called a configuration. The feature hierarchy is a tree of features where each feature may



Slice Location Statement

Hello World

S1 paint(Graphics)  drawString(...)
Sy paint(Graphics)  “Hello World!”

S, init() add(Component) init() [67%] "Hello World!"
Sy init() new JLabel ’ ot Graohi 3%
Sy init() getContentPane() paint(Graphics g) [33%]
S, init() “Hello World!" new Label ﬁ
S3  init() new Label add £ £
S3 init() add(Component) l
S3 init() “Hello World!" ’ getContentPane [50%] ‘
(a) Sample set of slices (b) Mined recipe

Figure 8: Mining a recipe from a sample set of slices

have one or more child features called subfeatures. Features may either be solitary or grouped. A
solitary feature is either optional, meaning that the feature may or may not be present or mandatory,
meaning that it must be present. A grouped feature is a subfeature of either an OR-group (inclusive-or)
or an XOR-group (exclusive-or).

A PFM may also have an additional set of hard and soft constraints. A hard constraint is one that
must be satisfied in all legal configurations. On the contrary, a soft constraint describes a suggestion
that may or may not be followed.

Feature model mining uses association rule mining to derive constraints. Association rules
are implication-like expressions with an associated support and confidence [AIS93]. Support is a
measure of statistical significance and confidence is a measure of rule strength. We mainly ignore
support since our sample sets tend to be small. Confidence can be interpreted as a conditional
probability of the consequent (right-hand side) given the antecedent (left-hand side) is present.

Feature model mining is demonstrated in Figure 8. First, a sample set of slices is shown in
Figure 8a. Each row represents a statement in a slice. Applying the feature model mining algorithm
on this sample set would synthesize the feature model shown in Figure 8b. The root feature, Hello
World represents the user’s concept of interest. Edges denote subfeature relations. Solid circles
denote mandatory features. Empty circles denote optional features. The empty arc between init
and paint(Graphics g) denotes an XOR-group. The attached features (add and new Label) represent
an AND-group such that both features must be selected or neither. The percentages beside certain
statements represent soft constraints. These are equivalent to their conditional probability of being
selected given that their parent statement is selected. For example, getContentPane is selected 50%
percent of the time, given that add and new Label are present.

The mined association rules and soft constraints represent the patterns that were discovered in the
sample set of slices. It may be that all the slices were incomplete and a statement was missing from
the set. It may also be the case that a superfluous statement was present in all slices and thus appears
as a mandatory statement. As a result, the mined concept recipe should be considered a rough guide
or be subsequently verified by a framework expert.
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public class Test extends JApplet{ ~

@0verride

public void init() {
Imagelcon icon = new Imagelcon("images/middle.gif", "...");
JLabel 11 = new JLabel("Image and Text", icon, JlLabel.CENTER);
JLabel 12 = new JLabel("Text-Only Label");
JLabel 13 = new JlLabel(icon); =
13.setVerticalTextPosition (JLabel.BOTTOM) ;
13.setHorizontalTextPosition (JLabel.CENTER) ;
add(11); =
add(12);
add(13);

Figure 9: StarCharter editor markers
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Cons: Imagelcon init()
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Cons: JLabel init{) i

Figure 10: StarCharter Slice View

3 Implementation

StarCharter is implemented as an Eclipse plug-in. StarCharter currently contributes a Slice View
and marker generation to the Eclipse workbench.

The current StarCharter prototype supports only selecting a single starred statement as the query.
StarCharter is activated in the text editor either by: (a) highlighting a statement and right-clicking, (b)
right-clicking with no selection, or by (c) right-clicking on the left ruler. In the first case, highlighting
a statement will star only the statement covered by the highlight. When there is no selection,
StarCharter assumes the user is interested in the entire line and star any statement in that line.
Right-clicking on the left ruler behaves in the same manner as right-clicking without a selection. In
future versions, the left ruler would be used to place stars on the statements, enabling the user to star
multiple statements as described earlier.

A screenshot of the Eclipse editor with StarCharter is shown in Figure 9. Here, StarCharter was
executed on the starred statement add(13). The left ruler shows markers identifying the location of
related statements found by the concept slicer in the currently open source file.

Figure 10 shows a screenshot of the Slice View. The Slice View shows a list slices found using
the StarCharter search engine sorted by source file and matched statement. Within each slice is a list
of related statements found in the forward and backward slice. Clicking on a slice will update the

10



markers in the text editor to reflect the selected slice. For example, the slice that is currently selected
shows the markers in Figure 9. Clicking on another slice in Test.java will update the markers to
show the statements in the selected slice.

Double-clicking on a slice will open the selected source file and update the editor markers to
reflect the selected slice. Double-clicking a statement will highlight the selected statement in the
editor window. Note that there is currently a bug preventing users from opening types and fields. A
screencast illustrating the current StarCharter prototype is available online.

The search engine in StarCharter is implemented using the Eclipse JDT Search Engine (JDTSE).
JDTSE provides the search capability that is invoked when using the semantic Java Search in Eclipse.
The heuristics for inferring queries described in Section 2.2 is implemented by analyzing method
signatures using JDT and the dependence graph constructed by the concept slicer.

The concept slicer component uses the Eclipse Java Development Tools (JDT) [Ecl08a] to parse
and construct an abstract syntax tree (AST) from a Java source file. A custom-built dependence
graph generator is used in StarCharter. StarCharter output a set of GraphViz files for each generated
program dependence graph under the /output directory of the Eclipse project that StarCharter was
executed in. The slicer generates a system dependence graph for each slice.

The concept slicer is currently interprocedural and flow-insensitive. Loops are treated as if they are
executed once and method invocations are handled using the system dependence graph. Recursion
is handled by processing only method invocations up to a maximum specified depth. Exceptions and
break statements are also not handled in the current implementation.

The integrated between the mining algorithm and StarCharter has been disabled in the prototype
due to some critical bugs. The feature model mining algorithm as described in Section 2.5 has been
fully implemented using the LCM algorithm by Uno et al. [UKAO04] and the Eclipse Modeling
Framework [EclO8b] as its data model.

4 Related Work

Prospector. Prospector [MXBKO05] is a tool for finding jungloids, which are sequences of field or
method and constructor invocations that derive a specified output type from an input type. Prospector
gathers the majority of its jungloids from the framework API. StarCharter is fundamentally different
from Prospector in that it analyzes example usages to derive the slices. However, StarCharter may
be augmented with framework API information in the future. Prospector does employ data mining
to retrieve examples of downcasts. StarCharter does not support these statements at the moment.
One disadvantage of jungloids are that they are restricted to a single variable input. This restriction
is not present when using SDGs since multiple paths can converge on the same node.

PARSEWeb. PARSEWeb [TXO07] is a tool for finding method invocation sequences by searching over
code found through an internet code search engine. PARSEWeb and StarCharter share a similarity in
the search engine component. However, StarCharter does not use input type — output type queries
like PARSEWeb. Regarding program analysis, StarCharter uses well established program slicing
techniques for finding related statements. In addition, StarCharter outputs a single concept recipe
while PARSEWeb presents each individual method sequences.

’http://gsd.uwaterloo.ca/~shshe/starcharter.html user: static password: analysis
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5 Future Work

StarCharter is still a work in progress. An evaluation remains to be done to determine the example
usages that StarCharter is capable of mining. Another issue relates to the use of feature models for
representing concept recipes. Whether this is appropriate for the future requires further evaluation.
Below are some ideas for short term extensions for StarCharter:

Downcasts. StarCharter currently does not allow typecast statements to be starred. Prospec-
tor [MXBKO5] mined for downcasts by mining on a corpus of examples. This approach may
be integrated into StarCharter in the future.

White-box frameworks. Using a white-box framework involves extending framework classes and
overriding certain callback methods. This form of framework usages requires knowledge of the inner
workings of the base class. The techniques in StarCharter can be very useful for mining white-box
framework usage.

More precise slicing. StarCharter uses a custom-built slicer based on early program slicing research.
Since then, there has been substantial research in slicing. A technique for slicing object-oriented
systems was presented by Liang and Harrold [LH98]. Hammer and Snelting developed a Java-
specific slicer [HS04].

Improved search heuristics. The current heuristics for inferring queries from starred statements
can be improved. For example, StarCharter currently search for all method calls contained in the
same class as the starred statement for method invocations. This can be generalized such that
superclasses are included in the search as well.

6 Conclusions

This report has introduced StarCharter, an light-weight and interactive tool for synthesizing concept
recipes from a set of starred statements. Using StarCharter, a user would begin constructing a recipe
by starring a set of statements. A search engine locates other usages and a concept slicer is used to
find related statements. Finally, a recipe miner is applied to synthesize a single recipe describing the
concept’s framework usage. The tool has been implemented as an Eclipse plug-in. StarCharter is tool
that is useful for framework understanding, framework modeling and as an interactive development
aide.
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