
Formal Semantics of the Kconfig Language
Technical Note

Steven She1 and Thorsten Berger2

1shshe@gsd.uwaterloo.ca, University of Waterloo, Canada
2berger@informatik.uni-leipzig.de, University of Leipzig, Germany

January 2010

Abstract

The Kconfig language defines a set of symbols that are assigned a value in a configuration.

We describe the semantics of the Kconfig language according to the behaviour exhibited in the

xconfig configurator. We assume an abstract syntax representation for concepts in the Kconfig

language and delegate the details of the translation from concrete to abstract syntaxes to a later

document.

1 Abstract syntax

Identifiers and expressions. We start be defining the preliminary concepts available in the
Kconfig language. Let Id be a finite set of names identifying a symbol—more precisely, Id ∈ P(String).
Let Const = Tri ∪ String ∪ Hex ∪ Int be the set of values assignable to each feature and available as
constants in expressions, where Tri = {0t, 1t, 2t}. Tri is ordered such that 0t < 1t < 2t. The Tri,
String, Hex, and Int domains are disjoint (i.e. mutually exclusive). We can now define an expression in
the Kconfig language. KExpr(Id) is a set of expressions over Id generated by the following grammar,
where e ∈ KExpr(Id), iv ∈ Id ∪ Const, ⊗ ∈ {or, and}, ⊖ ∈ {=, 6=}:

e ::= e⊗ e | not e | iv ⊖ iv | iv (1)

Evaluating a KExpr returns a tristate value (i.e. v ∈ Tri). We will define the semantics of an eval

function in Section 2.2.

Kconfig model. Kconfig denotes the set of all possible models in the Kconfig language. Thus
a single Kconfig model m ∈ Kconfig is a tuple consisting of a set of configs and a set of choices.
Kconfig is defined as:

Kconfig = P(Configs)× P(Choices) (2)

Given a Kconfig model m ∈ Kconfig, we define the shorthand mconfig to refer to its set of configs and
mchoice to refer to its set of choices.

0The semantics defined in this document directly reflect the behavior of the Linux make xconfig tool, which could

 in some specific cases  act differently from what the Kconfig language developers originally had in mind. At least

in case of the reverse dependency the documentation explicitly states the following gap: "Select should be used with

care. Select will force a symbol to a value without visiting the dependencies. By abusing select you are able to select

a symbol foo even if foo depends on bar that is not set."

1

Configs are the primary components of a Kconfig model. A config defines a unique identifier with
type, a prompt condition — a condition that determines when a config becomes user-changeable, a
list of defaults, a expression denoting its reverse dependency — the conditions that would forcefully
enable this feature through a select statement, and a set of ranges — restrictions on the value for
configs or hex type. We define Configsas follows:

Configs = Id × Type × KExpr(Id)× Default ∗ ×KExpr(Id)× P(Range) (3)

where,

• Type = {boolean, tristate, int, hex, string} denotes a type and consequently the possible values
for the config.

• Default = KExpr(Id)×KExpr(Id) denotes defaults. The first KExprdenotes a default expression
(i.e. that is evaluated and assigned to the symbol) and the second KExprdenotes the condition
required for the default to become effective.

• Range = (Int ∪ Hex ∪ Id)× (Int ∪ Hex ∪ Id)×KExpr(Id) is a triple consisting of a lower bound,
an upper bound and a condition. Note the absence of Tri in the lower and upper bounds of
the range; this is due to ranges being only effective on int and hex-typed configs as we will
describe in the following paragraph.

We further define a function Id(m) to denote identifiers of configs in the model m:

Id(m) = {n | (n,_,_,_,_,_) ∈ mconfig} (4)

The second component of Kconfig refers to a set of choice nodes. A choice is an abstract construct
that defines no symbol in the configuration, however, it imposes additional constraints on its nested
elements. We define choices as a quadruple consisting of a type where boolean or tristate are the
only valid types, a flag indicating whether the choice is mandatory, a prompt condition followed by
a set of identifiers indicating its members. The set Choices is defined as:

Choices = {boolean, tristate} × Bool × KExpr(Id)× P(Id(m)) (5)

Well-formedness rules. Given an element (_, t,_,_, rev, rngs) ∈ Configs, this config is well-
formed if the following conditions are satisfied:

• The reverse dependency of configs with type int, hex or string must be 0t. In other words, no
config may select a config that is not of type boolean or tristate.

(rev 6= 0t) =⇒ t = boolean ∨ t = tristate (6)

• Ranges can only be defined on configs with a numerical type, namely int or hex types. Thus,
the following constraint must hold for a config to be well-formed:

(|rngs| > 0) =⇒ t = int ∨ t = hex (7)

Brief note on concrete syntax translation. Menuconfigs and menus are first-class concepts
in the concrete syntax of the Kconfig language. However, both of these concepts are not present in
the abstract syntax. First, menuconfigs are semantically identical to configs and only differ in terms
of its appearance in the configurator; thus, we model menuconfigs as configs in the abstract syntax.
Menus do not define a symbol; thus menus are not present in a configuration. However, menus can
impose constraints on its nested elements. We handle these constraints via a syntactic rewrite on
the prompt, default and range conditions of all nested symbols. Details for this syntactic rewrite
will be provided in later document.

2

2 Semantics

2.1 Semantic domain

A configuration of a Kconfig model is an assignment of values v ∈ Const to config elements. Thus,
the set of all possible configurations is defined as:

Confs = Id → ⌊Const⌋ (8)

If c ∈ Confs and x ∈ Id, we write c(x) in order to refer to the value of identifier x under the
configuration c. Now, we define the semantics of a Kconfig model in terms of sets of configurations.
Thus, P(Confs) is our semantic domain. We define [[·]]kconfig as the function that evaluates a Kconfig
model and returns a set of valid configurations:

[[·]]kconfig : Kconfig → P(Confs) (9)

2.2 Global functions

We start with the definition of some functions used throughout the semantics. First, we define an
interpretation of tristate values in boolean logic with bool : Tri → Bool where Bool = {T, F}:

bool(v) =

{

F iff v = 0t

T iff v = 1t ∨ v = 2t
(10)

Moreover, we define a function access : (Id ∪ Const) × Confs → Const that retrieves the value of
either a constant or a symbol. When an identifier has the value of ⊥ (to be defined in Equation 14),
then the access function returns the identifier itself in the form of a string:

access(iv, c) =

{

iv iff iv ∈ Const ∨ (iv ∈ Id ∧ c(iv) = ⊥)

c(iv) otherwise
(11)

Next, we define the function toStr : Const → String that models the translation of a constant to
a string representation. Let i ∈ Int, h ∈ Hex and s ∈ String, in the following definition of toStr:

toStr(0t) = “n” toStr(1t) = “m” toStr(2t) = “y”

toStr(i) = “” + i toStr(h) = “0x” + h toStr(s) = s
(12)

where the + operator is string concatenation.
Finally, the function eval : KExpr(Id) → Tri describes the evaluation of a KExpr in the Kconfig

language. We define eval recursively with e1, e2 ∈ KExpr(Id) and iv, ivx, ivy ∈ Id ∪ Const:

eval(ivx = ivy, c) =

{

2t iff toStr(access(ivx, c)) = toStr(access(ivy, c))

0t otherwise

eval(ivx 6= ivy, c) = 2t − eval(ivx = ivy, c)

eval(not e1, c) = 2t − eval(e1, c)

eval(e1 and e2, c) = min(eval(e1, c), eval(e2, c))

eval(e1 or e2, c) = max(eval(e1, c), eval(e2, c))

eval(iv, c) =

{

viv iff viv = access(iv, c) ∧ viv ∈ Tri

0t otherwise

(13)

3

2.3 Valuation functions

Kconfig model. We begin by defining the [[·]]kconfig. Given a Kconfig model m ∈ Kconfig, the
semantics of a model is the intersection of all denotations across the model, configs and choices. In
other words, the set of valid configurations for a Kconfig model is those configurations that satisfy
all denotations. [[·]]kconfig : Kconfig → Confs is defined:

[[m]]kconfig =





⋂

n∈mconfig

[[n]]type ∩ [[n]]bounds ∩ [[n]]default ∩ [[n]]range



 ∩

(

⋂

n∈mchoice

[[n]]choice

)

∩ [[m]]module

∩ [[m]]undeclared

(14)

Type. The first denotation pertains to the constraints imposed by a config’s type. The type of a
config restricts its valid values to those in its respective domain. [[·]]type : Configs → Confs is defined:

[[(n, t,_,_,_,_)]]type =































{c ∈ Confs | c(n) ∈ Tri \ {1t}} iff t = boolean

{c ∈ Confs | c(n) ∈ Tri} iff t = tristate

{c ∈ Confs | c(n) ∈ String} iff t = string

{c ∈ Confs | c(n) ∈ Hex ∪ {“”}} iff t = hex

{c ∈ Confs | c(n) ∈ Int ∪ {“”}} iff t = int

(15)

Upper and lower bounds. Next, the bounds denotation models the lower and upper bounds of
a config. The lower bound is determined by the evaluation of a config’s reverse dependency. Recall
that the reverse dependency models the behaviour of the select statement in the concrete syntax.
The upper bound is defined by a config’s prompt condition. This denotation has no effect on configs
of type int, hex, or string since the the reverse dependency that determines a lower bound is 0t
by our well-formedness rules, and the eval function returns 0t when evaluating a value not in Tri.
[[·]]bounds : Configs → Confs is defined:

[[(n,_, pro,_, rev,_)]]bounds =

{c ∈ Confs | eval(c(n), c) ≥ Lower(c) ∧ (Upper(c) < Lower(c) ∨ eval(c(n), c) ≤ Upper)}
(16)

where Lower(c) = eval(rev,c) and Upper(c) = eval(pro,c).

Defaults. Kconfig has support for setting a default expression for a config. The default expression
interacts with the prompt condition that determines when the config is user-changeable. When
the prompt condition is satisfied, then the user is free to set a value. However, when the prompt
condition is not satisfied, the default determine the config’s value. [[·]]default : Configs → Confs is
defined:

[[(n,_,_, defs, rev,_)]]default =

{c ∈ Confs | bool(eval(pro, c)) ∨ c(n) = max(eval(default(defs, c)), eval(rev, c))}
(17)

where default : P(Default) × Type × Confs → Const is a function that models the retrieval of a
default. Recall that defs is a list of defaults (and thus ordered). The effect of a default’s value
depends on the type of its defining config. If the config is boolean or tristate, then the default value
is evaluated to a value in Tri. Otherwise, the default value must be either an element of Const or
Id. Let Nil be the empty list and :: be the list cons operator. Let tTri ∈ {boolean, tristate} and

4

tEntry ∈ {int, hex, string}. The default function is defined recursively, so we begin by defining its
base cases:

default(Nil, tTri, c) = 0t

default(Nil, tEntry, c) = “ ”
(18)

Equation 18 states that given an empty list of defaults, we return 0t if the type is either boolean or
tristate, or the empty string for types int, hex or string. Next, we define the recursive rule. In the
following equation, we decompose the list into its head and tail components. First, we describe the
function for boolean and tristate type:

default((e, cond) :: rest, tTri, c) =

{

eval(e, c) if bool(eval(cond, c))

default(rest, tTri, c) otherwise
(19)

Now for the remaining types:

default((e, cond) :: rest, tEntry, c) =

{

access(e, c) if bool(eval(cond, c))

default(rest, tEntry, c) otherwise
(20)

Ranges. Ranges impose a lower and upper bound on the value of int or hex configs. [[·]]range : Configs →
Confs is defined as:

[[n,_,_,_,_, rngs)]]range = {c ∈ Confs | ∀(l, u, cond) ∈ rngs.

bool(eval(cond, c)) → c(n) ≥ access(l, c) ∧ c(n) ≤ access(u, c)} (21)

Choices. A choice restricts the number of members that can be selected (i.e. have a value greater
than 0t). The choice denotation, [[·]]choice : Choices → Confs is defined:

[[(boolOrT ri, isMand, prompt,mems)]]choice =

{c ∈ Confs | bool(eval(prompt, c)) → Xor ∧ BChoice ∧ Mandatory} (22)

where Xor defines the condition that one and only one member may be set to 2t:

Xor = ∃m1 ∈ mems. (m1 = 2t) → (∀m2 ∈ mems \ {m1}. m2 = 0t) (23)

If the choice is a boolean choice, then the only valid value for its members is 2t. In combination
with Xor, this defines that a boolean choice may have at most one member with a value not equal
to 0t and that member must be set to 2t:

BChoice = (boolOrT ri = boolean) → ∃m ∈ mems. c(m) = 2t (24)

Finally, if the choice is mandatory, then at least one member must be selected:

Mandatory = isMand → ∃m ∈ mems. c(m) > 0t (25)

Modules. A special modules config is used to specify support for modules in the kernel. Disabling
modules disallows the 1t state for configs and effectively turns all tristate configs into boolean
configs. A special symbol m is used in expressions to identify a dependency on the modules feature
in the concrete syntax. Configs with a dependency on m cannot be selected (i.e. must be set to 0t)
if modules is not selected. We assume that the special m identifier has been expanded to modules

in the abstract syntax.

[[m]]module = {c ∈ Confs | c(modules) = n → ∀i ∈ Id. c(i) 6= 1t} (26)

5

type interpretation in tristate logic
X tristate X = y or X = m

¬X tristate X = n

X boolean X = y

¬X boolean X = n

X string X = “. . . ” (some non-empty string)
¬X string X = “ ”
X int X = i (some integer, including 0)

¬X int X = “ ”
X hex X = i (some hex)

¬X hex X = “ ”

Table 1: Interpretation of propositional variables

Undeclared symbols. We also define the behaviour of undeclared symbols. The Kconfig language
supports references to symbols that are not declared in constraints. These undeclared symbols are
assigned the special symbol ⊥ in our semantics. The use of this symbol will become apparent in
the definition of the eval function in Section 2.2. The [[·]]undeclared : Kconfig → P(Confs) denotation
is defined as:

[[m]]undeclared = {c ∈ Confs | ∀x ∈ Id \ Id(m). c(x) = ⊥} (27)

3 1-Var Propositional Semantics

The goal of the propositional semantics is to achieve a weakening of the constraints of the full
semantics.

Rewrite rules for expressions. The rewrite is a partial function that implements rewrite rules
on expressions. The function rewrite : KExpr(Id) → KExpr(Id) is defined as:

rewrite(e) =



















0 if (e is an variable ∧ typeOf(e) ∈ {int, hex, string}) ∨ e = 0t

1 if e = 1t ∨ e = 2t

X ↔ Y if e is X = Y where X and Y are variables

Use Table 1 if e is X = lit ∨X 6= lit

(28)

We further define the function relax : KExpr(Id) → KExpr(Id) which converts an expression to
CNF and removes clauses equivalent to equality checks. This function is used to relax the constraints
on the antecedent (LHS) of an implication.

Semantics. In the propositional semantics, we model the set of propositional configurations as
Confsp:

Confsp = Id → Bool (29)

The default function is defined as Id×Default ∗×Confsp → Bool. An extra parameter providing
the declaring identifier is needed for the propositional semantics.

default(n, defs, c) =



















¬n if no default conditions are satisfied

rewrite(n = eval(ivi, c)) otherwise if t ∈ {boolean, tristate},

where ivi is the 1st matching default value

n otherwise if t ∈ {int, hex, string}

(30)

6

The default denotation is defined as:

[[(n, t, vis, pro, defs, rev, rngs)]]default = {c ∈ Confsp | eval(pro, c) ∨ default(n, defs, c)} (31)

The constraint denotation which models constraints imposed by the reverse dependency and
visibility conditions is defined as:

[[(n, t, vis, pro, defs, rev, rngs)]]bounds = {c ∈ Confsp | (eval(relax(rev), c) → c(n))∧(c(n) → eval(vis, c))}
(32)

We ignore ranges since we abstract away the value of each config. We also assume that the
module config is enabled, thus allowing for the 1t state in tristate configs.

[[(boolOrT ri, isMand, vis,mems)]]choice =
{

c ∈ Confs | eval(vis, c) → choose(1, ids(mems)) ∧

(

isMand →
∨

m∈mems

m

)}

(33)

7

