
Appendix A

A Short Primer on Using UTEC

This appendix serves two purposes. The first is to provide a more thorough explana-

tion of the design and operation of the UTEC Mark I prototype than was presented

in chapter 2. The second purpose is to explore the only UTEC code known to exist,

and provide a transcription of selected examples. As the only surviving code written

in Canada by Canadians for the first Canadian electronic digital computer it deserves

preservation, and in doing so bestows light on how UTEC could have been used for

practical computation, limited as it was.

A.1 Design and Operation of UTEC

After the UTEC project ended and the final demonstration was held at the ACM meet-

ing in September 1952, the remnants of the machine were eventually dismantled and

it is believed that any valuable parts were cannibalized or sold for scrap. No phys-

ical component of the UTEC project larger than a vacuum tube is known to have

survived. Extant documentation is also limited. Few formal design documents or

blueprints were preserved by University of Toronto staff, and many of those held by

private individuals were lost to the normal ravages of over-exuberant housecleaning.

The situation is not helped by the fact that there has been no contact by historians or

325

Appendix A. A Short Primer on Using UTEC 326

archivists with Ratz since he left the project and academia in 1952. Within the Uni-

versity of Toronto Archives, there exists a single relevant box of material collected

primarily by Gotlieb. The box contains progress reports, the occasional diagram and

plans, but no blueprints.1

That said, there are several publications with comprehensive descriptions of

UTEC. The first can be found in the proceedings of the 1952 ACM meeting. The

meeting delegates were given a demonstration of UTEC, and R.F. Johnston, who was

primarily responsible for the input and output design and implementation, wrote an

article summarizing the purpose, operation, circuitry, and use of UTEC.2 The other

important text to depict UTEC is Gotlieb and Hume’s 1958 High-Speed Data Processing.

Following several chapters that explain the functional units of a modern computer,

the authors select UTEC as an example of an“extremely primitive machine” that can

be examined as a whole, a discussion that occupies only five pages.3 While these two

sources provide details concerning the design and operation of UTEC, a third offers an

intriguing look into what it was like to write programs for UTEC. B.H. Worsley, a staff

member of the Computation Centre throughout its entire existence, wrote the bulk

of her doctoral dissertation at Cambridge, but completed writing in 1952 in Toronto.4

It included a comparison of the EDSAC, the Manchester Mark I, and UTEC, though

she was less concerned with the hardware than the preparation of programs for each

machine. Her program examples will be presented in a later section. Unfortunately,

although it is known that several UTEC reports describing multiword arithmetic sub-

routines were written, they cannot be located. The reports were not published but

had limited circulation internally among the UTEC team members. Fortunately, the

two people most responsible for the design and construction of UTEC, J. Kates and

A.G. Ratz, also wrote doctoral dissertations related to the computer research under-

1UTARMS B1988-0069, Box 01.
2Johnston, “The University of Toronto Electronic Computer”, 154–160.
3Gotlieb and Hume, High-Speed Data Processing, 67.
4Worsley, “Serial Programming for Real and Idealized Digital Calculating Machines”.

Appendix A. A Short Primer on Using UTEC 327

taken during the project. Kates’ subject matter – his own theory of the operation of

Williams tubes – is only peripherally related to the operation of UTEC as the particular

tubes were not used on the prototype, but Ratz’s dissertation provides an important

glimpse into his thinking regarding the design of UTEC, and the arithmetic unit in

particular.5

Unfortunately, recreating a complete understanding of UTEC is impaired by the

prototype nature of the machine. Some specifications were relatively inflexible, but

others changed frequently as various ideas and hardware components were tested.

For example, the design of the parallel primary store implied that 12 bit word size

was more or less invariant, but there were difficulties with the actual implementation

of the Williams tubes. Although the plans called for a 512 word store, only 256 words

(the even numbered storage locations) were available most of the time. More impor-

tant, the instruction set was changed several times to accommodate lessons learned in

the testing phase. Other modifications and improvements, less critical to the overall

logical design but important nonetheless were frequent and common, as befitting an

experimental prototype. Power supplies were changed, different vacuum tubes and

storage tubes were used at different times, and an attempt was made in mid-1952 to

add a magnetic tape system for auxiliary storage. Thus there is no singular and defini-

tive description of UTEC, but by combining the various sources it is possible to arrive

at an approximation.

UTEC was a parallel, binary, one-address digital computer.6 Physically, it had

about 800 vacuum tubes, and stood approximately six feet high, eight feet wide, and

one foot deep. Twelve Williams tubes operated in parallel to provide 512 words of

storage. UTEC used a 12 bit word, of which 3 bits specified one of eight instructions

5Kates, “Space Charge Effects in Cathode-Ray Storage Tubes” and Ratz, “The Design of the Arith-
metic Unit of an Electronic Digital Computer”.

6For an introduction to the principles of computer architecture, the reader is encouraged to consult
the early chapters of Gotlieb and Hume, High-Speed Data Processing, or for a more historically nuanced
approach, Ceruzzi, A history of modern computing, 58–64.

Appendix A. A Short Primer on Using UTEC 328

and 9 bits pointed to the address – when the store was not working properly and only

256 bits were available, 8 bits were used to indicate the storage location. Otherwise,

the 12 bit word referred to a signed 11 bit number, or about 3 decimal digits.

Input and output on the completed prototype was handled with modified six-hole

Flexowriter paper tape equipment. In general, only four of the six holes held signif-

icant data. Both octal and binary coded decimal (BCD) numbers could be used to

represent a word. In the former case, four rows of octal were used – one row for the

instruction and three for the location – while in the latter case, three rows of BCD rep-

resented a single three digit number. Special symbols such as Stop Input or Decimal

Input did use all six holes.7 A switch on the control panel toggled between octal and

decimal output.

The basic operation of UTEC depended on a handful of registers and counters:

the 12 bit accumulator and 12 bit arithmetic register for arithmetic, the 9 bit control

counter – similar to a program counter in today’s terminology – which pointed to the

storage location of the next instruction, the control register which held the instruc-

tion as it was decoded, and the 12 bit storage register for temporary storage during

transfers to and from the accumulator, store, and input-output. The basic machine

cycle was split into four periods, named A, B, C, and D. Each period required 30 mi-

croseconds and so a full clock cycle was 120 microseconds long. During A time, the

control counter is read to determine the location of the next instruction. In period

B, the instruction itself is read from the store into the control register and the control

counter is incremented to point to the next instruction. In the C time, the instruction

in the control register is decoded and in D time the instruction is carried out. To pro-

vide program branching, some instructions modified the control counter to point to a

specific storage location and instruction rather than one sequential to the last.

As work on UTEC progressed, several different instruction sets were used. Table

7Johnston, “The University of Toronto Electronic Computer”, Figure 9.

Appendix A. A Short Primer on Using UTEC 329

A.1 contains a full set of the twelve different instructions proposed or implemented;

as a maximum of eight could be used at any one time, the last five columns indicate

approximately when each instruction was in use. The initial set was described in a

September 1951 progress report (column 1951).8 The set was not considered com-

plete or optimal in anyway, but intended instead for testing purposes. In particular,

it was expected that instructions T and U (transfer accumulator contents and uncon-

ditional transfer of control) would be replaced at a later time by more useful ones.

By way of comparison, the Manchester SSEM initially had only seven instructions in

June of 1948.9 Though it and the 1951 UTEC set were similar in purpose, there were

a few significant differences. The most obvious is that SSEM lacked input and output

instructions, in all likelihood because at that point the Manchester prototype lacked

input and output devices accessible to a programmer. Instead, this activity was ac-

complished by hand and visually. Difficulties getting the UTEC input and output

tape system working may help explain why this practice was also adopted in Toronto

and why both instructions were subsequently dropped until the end of 1952.

Worsley’s dissertation includes a snapshot of the instruction set (column 1952a).10

Though she finished writing around May 1952, her version of the instruction set and

account of UTEC’s features indicate that her familiarity with the machine began some-

time prior to March 1952. At that time, “several relatively minor modifications were

undertaken . . . to make the Model a more satisfactory computing instrument” includ-

ing “a more useful set of orders” (column 1952b).11 The changes to the UTEC instruc-

tion set since September 1951, including those described by Worsley in March 1952,

are directly related to increased experience using the machine and writing programs.

8Computation Centre Progress Report, October 1, 1950 to September 30, 1951, UTARMS B1988–0069,
Box 1, Folder 2.

9Napper, “The Manchester Mark 1 Computers”, 367.
10Worsley, “Serial Programming for Real and Idealized Digital Calculating Machines”, 44.
11Computation Centre Progress Report, 1 January 1952 to 31 March 1952, UTARMS A1968–0007, Box

110, Folder 4. Worth noting is that these modifications took place after the decision was made to acquire
the Ferranti Mark I and cancel the full-scale UTEC plans.

Appendix A. A Short Primer on Using UTEC 330

The input and output instructions were removed temporarily as these could be per-

formed manually at the console until the tape reader and writer were operating more

consistently. Until then, an output instruction was reserved and a halt instruction was

added. More important was the introduction of the K instruction, which transferred

the contents of the accumulator to storage without the sign bit, which was instead

put in the least significant position of the accumulator. Though it was not functioning

for Worsley, it was in effect, a carry mechanism to facilitate multiple word arithmetic.

With UTEC’s 12 bit word and small store, this was essential for non-trivial compu-

tations as it “materially shortens most routines.”12 Worsley’s notes make clear that

multiple word arithmetic subroutines had been written by this time, though the de-

tails and code do not seem to have survived. By September 1952 (column 1952c) and

the ACM meeting, the input and output instructions were operating.

Gotlieb and Hume provide the final UTEC instruction set in their book (column

1958), though they warn that “different combinations of instructions were tried to

see how the programming was affected, but for the purposes of this description the

instruction code [below] will be assumed.”13 There is one large difference between

this set and all 1952 sets: the removal of the K instruction and the gain of the R in-

struction, which shifted the contents of the accumulator to the right one bit. In any

number notation, a right shift is the same as dividing by the base; in this case it di-

vided the accumulator by 2. As UTEC lacked a multiplication or division instruction,

the R instruction would have dramatically improved the speed of those programs that

could take advantage of it. However, it is not clear if the instruction was implemented

for UTEC, or if it is merely an example intended for the book. A block diagram in-

cluded by Gotlieb and Hume shows clearly how it could have been supplied, but

unless changes were made to the adder hardware, the K instruction would have been

substantially more useful.

12Johnston, “The University of Toronto Electronic Computer”, 154.
13Gotlieb and Hume, High-Speed Data Processing, 68.

Appendix A. A Short Primer on Using UTEC 331

Table A.1: UTEC Instruction Sets

Instr. Description 1951 1952a 1952b 1952c 1958
A s Add the contents of s into the accumulator ⋆ ⋆ ⋆ ⋆ ⋆

S s Subtract the contents of s from the accumula-
tor

⋆ ⋆ ⋆ ⋆ ⋆

T s Transfer the contents of the accumulator to s ⋆ ⋆

t s Transfer the contents of the accumulator to s

and clear the accumulator to zero
⋆ ⋆ ⋆ ⋆ ⋆

R Shift the contents of the accumulator right one
bit

⋆

K s Transfer 0a1a2 a11 to s and clear accu-
mulator to 00 00a0

(⋆) ⋆ ⋆

C+ s Conditionally transfer control to s if the con-
tents of the accumulator ≥ 0

(⋆) ⋆ ⋆ ⋆

C- s Conditionally transfer control to s if the con-
tents of the accumulator < 0

⋆ ⋆

U s Unconditionally transfer control to s ⋆ ⋆ ⋆ ⋆

I s Input one word from the paper tape to s ⋆ ⋆ ⋆

O s Output the contents of s onto paper tape ⋆ ⋆ ⋆ ⋆

H Halt ⋆ ⋆

Notes: – s is a storage location
– the 12 bits of the accumulator are a0a1a2 a11

– (⋆) indicates an instruction that was not working at the time.

A.2 Programming UTEC

In various UTEC reports, references were made to routines that computed e
−x,

√
x,

and even the elliptic integral defined by:

K =

∫

Π/2

0

dΦ√
1 − msin2Φ

but code for these examples cannot be located. Furthermore, it is known that subrou-

tines to handle multiple word arithmetic were conceived of at least as early as 1950,

and eventually implemented during the testing phase of the machine. Although the

routines did not survive (or cannot be located), a timing table for mathematical oper-

ations employing one to four words has been reproduced as table A.2.14 Thus UTEC

could compute with accuracy as high as 13 decimal digits, which was comparable to

14Johnston, “The University of Toronto Electronic Computer”, 160.

Appendix A. A Short Primer on Using UTEC 332

Ferut, but under those conditions was considerably slower than the British computer.

Yet on a more level playing field, if a program did not resort to multiple word subrou-

tines, UTEC was faster thanks to its parallel architecture.

Table A.2: UTEC Multiple word mathematical operations

Word Extent
1 2 3 4

Operation n Time n Time n Time n Time
Addition 2 240 µsec. 6 720 µsec. 9 1.1 msec. 12 1.4 msec.
Subtraction 2 240 µsec. 8 950 µsec. 15 1.6 msec. 18 2.2 msec.
Multiplication 2 18 msec. 42 70 msec. 56 120 msec. 70 260 msec.
Division 34 36 msec. 58 120 msec. 80 300 msec. 100 500 msec.
Complement 1 120 µsec. 6 720 µsec. 10 1.2 msec. 14 1.7 msec.
Modulus 4 480 µsec. 10 1.2 msec. 14 1.7 msec. 18 2.2 msec.
Square Root 36 200 msec. 57 2 sec. 80 5 sec. 100 14 sec.
Zero Test 6 720 µsec. 10 1.2 msec. 14 1.7 msec. 18 2.2 msec.
Input Decimal 400 msec. 800 msec. 1.2 sec. 1.6 sec.
Input Conversion 120 100 msec. 150 140 msec. 170 200 msec. 215 250 msec.
Output Decimal 400 msec. 800 msec. 1.2 sec. 1.5 sec.
Output Conversion 75 16 msec. 100 45 msec. 125 120 msec. 150 250 msec.

n refers to the number of instructions.

A.3 B.H. Worsley’s UTEC Code

B.H. Worsley was one of the first two employees of the Computation Centre (the other

was J.P. Stanley), hired in January 1948 by B.A. Griffith to operate the IBM 602A he

had recently rented. Both attended training sessions organized by IBM on the op-

eration of the 602A and were involved in the use of the punched card calculator at

Toronto. In the fall of that year, Worsley travelled to the University of Cambridge to

study the ongoing EDSAC project as work began on UTEC. Stanley followed her to

Cambridge shortly later. Neither the NRC or DRB had approved of these junkets, but

both were permitted to stay until EDSAC was operational the following spring. Not

long after, Stanley returned with a table he had computed on EDSAC, but Worsley

remained, now registered as a Ph.D. student at Newnham College of the University

Appendix A. A Short Primer on Using UTEC 333

of Cambridge, supervised by D.R. Hartree.15

Her dissertation, “Serial Programming for Real and Idealized Calculating Ma-

chines”, presented several numerical solutions to scientific problems (which she had

solved with EDSAC) but was preoccupied by the notion of an “optimum basic uni-

versal digital machine.”16 That is, she hoped to discover a general set of computer

instructions that could be implemented universally and optimally. As part of her

study, she compared the three physical computers with which she was most famil-

iar: the EDSAC, the Manchester Mark I, and UTEC. A description of each machine

was provided, including physical characteristics, the preparation of programs, and

noteworthy idiosyncrasies. This was followed in the first appendix by several pro-

grams written for all three machines, some trivial in nature but others significantly

more complex.

A selection of her UTEC programs will now be presented, using instruction set

1952a. First, a short review of her notation:

a the octal number ‘a’

(a) the storage location ‘a’

C(a) the contents of storage location ‘a’

Acc. the accumulator

At the time she wrote these programs, the odd numbered storage locations were not

available, nor were the K and C+ instructions. Instead, the C- instruction was used,

being nearly equivalent to the latter, and the K instruction is irrelevant to her exam-

ples.

A standard convention using four columns was used to transcribe the programs to

paper. The first column from the left indicates the storage location; a number on the

extreme far left is the entry point of a control transfer. The instruction code, or data, is

15The conflicts sparked by these incidents are described beginning on page 122.
16Worsley, “Serial Programming for Real and Idealized Digital Calculating Machines”, 133.

Appendix A. A Short Primer on Using UTEC 334

in the third column between the vertical lines. If enclosed in brackets, this value will

be modified by the program as it runs. The fourth column contains comments.

A.3.1 Short Example

This short, nearly trivial, four line program puts |C(004)| in (004), computing the ab-

solute value.

100 S 004 -C(004) to Acc.
102 C- 106 test sign
104 t 004 -C(004) to (004) if C(004) < 0

102 → 106 t 002 clear Acc.

In line 100, the contents of location 004 are subtracted to the accumulator (it is assumed

in advance that the accumulator is clear). If the contents of the accumulator are neg-

ative – C(004) was a positive number – line 102 causes program control to transfer to

line 106 and end the program. If the accumulator is positive – C(004) was negative –

then transfer the positive (and absolute) value in the accumulator to location 004, and

end the program.

Unsurprisingly for such a straightforward operation, the EDSAC and Mark I pro-

grams are similar. All three are four lines long and the EDSAC code is functionally

identical to the UTEC.

A.3.2 Extended Arithmetic Example

This longer example computes x
1024; x is assumed to be stored in location 004, and the

result is also placed in location 004. Notably, this code uses a subroutine to handle the

multiplication, which will be explained shortly.

Appendix A. A Short Primer on Using UTEC 335

100 S 202
}

Set counter
126 → 102 t 002

104 A 004


















































Replace C(004)
by C(004)2, using
multiplication
subroutine















































































Cycle
ten
times

106 T 160
110 t 162
112 A 112
114 U 156
116 A 164
120 t 004
122 A 002











Count
and test

124 A 200
126 C- 102

200 A 001
}

Assume
202 A 012

Simply put, this routine computes x
2 10 times, producing x

1024. In greater detail,

lines 100 and 102 prepare a counter so that the main body, lines 104–120, will cycle

10 (012 in octal) times, a number set in line 202. The cycle is controlled in lines 122–

124: the first two of those lines decrements the counter by 1 and line 124 re-enters

the cycle unless the counter equals 0. To compute x
2 in each cycle, the main body

places x in storage location 160 and 162. These are two special locations, hard coded

into the multiplication subroutine to contain the multiplier and multiplicand. The

subroutine is stored from location 156 to 306, and is entered using what appears to be

a Wheeler jump on lines 112 and 114, though no actual subroutine code exists making

verification impossible. The Wheeler jump was well known by the 1950s as one of

the most efficient means of enter and return from a subroutine. According to Worsley,

the subroutines that existed for UTEC were all of the ‘closed’ type, a term derived

from EDSAC usage. A closed subroutine was input into storage only once, generally

at the end of the main program, and called by the main program whenever needed

by a special calling sequence, in this case a Wheeler jump.17 The subroutine used in

this case put the product of the multiplication into location 164, which was transferred

17A closed subroutine would have been placed within the main body of the program. For more on
EDSAC subroutines, see Campbell-Kelly, “Programming the EDSAC: Early Programming Activity at
the University of Cambridge”, 17–18.

Appendix A. A Short Primer on Using UTEC 336

back to location 004 on line 120 so that the next cycle could begin, if necessary.

As both EDSAC and the Mark I had a multiplication operation implemented in

hardware, Worsley’s versions of the program for those machines was slightly shorter,

not having to use a subroutine, although the flow of all three was similar. The EDSAC

code is again functionally identical to that of UTEC, while the Mark I code makes

appropriate use of one of the B-lines to count the cycles.

