
Mysteries of Engineering Fluid Mechanics

Gordon D. Stubley
Mechanical Engineering Department

University of Waterloo
Waterloo ON N2L 3G1

CANADA
email: stubley@uwaterloo.ca

November 30, 2003



2



Contents

1 The Fate of Sinking Tea Leaves 1
1.1 The Mystery . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Model Flow 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Description of Flow Conditions . . . . . . . . . . . . . 1
1.2.2 Exploration . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Model Flow 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Description of Flow Conditions . . . . . . . . . . . . . 10
1.3.2 Exploration . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Further Exploration . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 Annotated Reading List . . . . . . . . . . . . . . . . . 16

2 The Extra Shock Wave 19
2.1 The Mystery . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Model Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Description of Flow Conditions . . . . . . . . . . . . . 20
2.2.2 Exploration . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Further Exploration . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Annotated Reading List . . . . . . . . . . . . . . . . . 29

3 The Corner Attraction 31
3.1 The Mystery . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Model Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Description of Flow Conditions . . . . . . . . . . . . . 33
3.2.2 Exploration . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Further Exploration . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Role of the Turbulence Model . . . . . . . . . . . . . . 44
3.3.2 Impact of Secondary Flow . . . . . . . . . . . . . . . . 46
3.3.3 Annotated Reading List . . . . . . . . . . . . . . . . . 48

i



ii CONTENTS

A Sinking Tea Leaf Model Flow Calculations 51
A.1 1: Spinning Flow Above an Infinite Plate . . . . . . . . . . . 51
A.2 2: Flow in a Container with a Spinning Lid . . . . . . . . . . 53
A.3 3: Flow above an Infinite Spinning Plate . . . . . . . . . . . . 53
A.4 4: Vortex Breakdown Flow in a Container . . . . . . . . . . . 53
A.5 5: Turbulent Flow in a Container . . . . . . . . . . . . . . . . 55

B Extra Shock Wave Model Flow Calculation 57
B.1 Physical Models and Boundary Conditions . . . . . . . . . . . 58
B.2 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.3 Discretization and Convergence Parameters . . . . . . . . . . 59
B.4 Computer Results . . . . . . . . . . . . . . . . . . . . . . . . 60

C Corner Attraction Model Flow Calculation 61
C.1 Physical Models and Boundary Conditions . . . . . . . . . . . 61
C.2 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
C.3 Discretization and Convergence Parameters . . . . . . . . . . 65
C.4 Comparison to Experiment and Other Simulations . . . . . . 65
C.5 Computer Results . . . . . . . . . . . . . . . . . . . . . . . . 68



List of Figures

1.1 Geometry of infinite spinning fluid above fixed plate. . . . . . 2
1.2 Velocity vectors at the nodes on the x− z meridional plane . 4
1.3 Meridional plane velocity vectors at the nodes on the x − z

meridional plane . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Streamlines of rotational flow over an infinite fixed plate. . . 6
1.5 Layout of four points of pressure in the x− z meridional plane. 7
1.6 Fringe plot of pressure on the on the x− z meridional plane. 8
1.7 Illustration of the radial momentum balance in the far field

and near plate regions. Relevant surface pressure forces, cen-
trifugal accelerations (c.a.), and net surface shear frictional
forces, τ , are shown. . . . . . . . . . . . . . . . . . . . . . . . 10

1.8 Geometry of flow in a container with a spinning lid. . . . . . 11
1.9 Velocity vectors at the nodes on the x − z meridional plane.

Right view shows all three vector components and left view
shows axial and radial components. . . . . . . . . . . . . . . . 12

1.10 Fringe plot of pressure on the on the x− z meridional plane. 13
1.11 Illustration of the radial momentum balance in an ideal pres-

sure gradient/ centrifugal acceleration balance and in the ac-
tual balance near the lid. Relevant surface pressure forces,
centrifugal accelerations (c.a.), and net surface shear fric-
tional forces, τ , are shown. . . . . . . . . . . . . . . . . . . . . 14

2.1 Sketch of supersonic flow over the top of a wedge. . . . . . . . 19
2.2 Fringe plot of relative pressure [Pa] field for supersonic flow

over the a wedge. The reference pressure is 101325[Pa]. . . . 20
2.3 Fringe plot of relative pressure [Pa] field for supersonic flow

over the a wedge. The reference pressure is 101325[Pa]. . . . 23

iii



iv LIST OF FIGURES

2.4 Fringe plot of relative pressure [Pa] field for supersonic flow
over the a wedge with free slip walls. The reference pressure
is 101325[Pa]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Fringe plot of the cross-stream (v) velocity [m s−1] field for
supersonic flow over a wedge. . . . . . . . . . . . . . . . . . . 24

2.6 Fringe plot of the cross-stream (v) velocity [m s−1] field for
supersonic flow over a wedge with free slip walls. . . . . . . . 24

2.7 Fringe plot of the streamwise (u) velocity [m s−1] field for
supersonic flow over a wedge. . . . . . . . . . . . . . . . . . . 25

2.8 Fringe plot of the streamwise (u) velocity [m s−1] field for
supersonic flow over a wedge with free slip walls. . . . . . . . 25

2.9 Sketch showing the control volume surrounding the boundary
layer on the lower boundary of the wedge. . . . . . . . . . . . 26

2.10 Mass flux, ρu, profiles near the lower boundary of the wedge
for x = 0[m] and x = 1.0 × 10−3[m] distances from the tip.
The mass flux is normalized by the external flow mass flux,
ρeue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11 Schlieren photograph of air at Mach number =1.965 over a
sharp 10.1◦ wedge. The lower surface is tilted downwards at
a slight angle of 0.3◦. Scan of the photograph presented by
Van Dyke[20]. Original photographs and measurements were
made by Bardsley and Mair[1]. . . . . . . . . . . . . . . . . . 29

3.1 Wireframe model of a square duct illustrating the develop-
ment of the velocity profile on the y = 0 centre-plane. . . . . 31

3.2 Fringe plot of the fully-developed velocity profile of laminar
flow through a square duct. The flow direction is out of the
page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Fringe plot of the fully developed velocity profile of turbulent
flow through a square duct. . . . . . . . . . . . . . . . . . . . 33

3.4 Fringe plots of fully developed axial velocity profiles through
a square duct. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Vector plots of cross-stream velocity for fully developed flows
in the upper right quadrant of the square duct. . . . . . . . . 36

3.6 Fringe plots of x vorticity component for fully developed flows
in the upper right quadrant of the square duct. . . . . . . . . 37

3.7 Fringe plots of the y normal stress component for fully devel-
oped flows in the upper right quadrant of the square duct. . . 38

3.8 Fringe plots of the z normal stress component for fully devel-
oped flows in the upper right quadrant of the square duct. . . 39



LIST OF FIGURES v

3.9 Fluid parcel in a region of high axial vorticity near the right
wall with normal stresses shown on the parcel corners. . . . . 42

3.10 Fluid parcel showing the signed normal stress differences on
each face. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.1 Flow visualization of the centreline vortex as reported by
Escudier[5]. The complete depth of the cylinder and the cen-
tre 34% of the diameter of the container is shown. . . . . . . 54

B.1 Geometry for the CFX-5 simulation of flow over the super-
sonic wedge airfoil. . . . . . . . . . . . . . . . . . . . . . . . . 58

C.1 Geometry for the CFX-5 simulation of fully-developed flow in
square duct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

C.2 Variation of normalized cross-stream flow speed, Vc−s, along
the corner diagonal. Normalization is with respect to the wall
shear velocity, u?. The y coordinate is shown in Figure C.1. . 67



vi LIST OF FIGURES



Preface

One of the realities of the flow of fluids found in most industrial settings,
is that the flow patterns and physics are much more complex than those
of the model flows presented in undergraduate texts on engineering fluid
mechanics. The chapters that follow give you an opportunity to increase
your ability to understand and control these complex fluid flows.

Each chapter is presented as a mystery which is unraveled as the chapter
progresses. The unraveling of the mystery will involve an exploration of
actual flows that can be easily set up and virtual flow fields obtained by
computer simulation using computational fluid dynamics (CFD) technology.

The presentation of each mystery has been designed to give ample op-
portunity for you to solve the mystery by exploring the flow fields. Take the
time to see all of the features in each flow and to identify the relevant flow
kinematics, forces, and dynamics.

Best wishes for an enjoyable learning experience.
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Chapter 1

The Fate of Sinking Tea
Leaves

1.1 The Mystery

Tea leaves are added to a beaker of still cold water. As the leaves get soggy,
they begin to sink to the bottom of the beaker. This indicates that the tea
leaves are heavier than water.

After most of the leaves have sunk to the bottom, the water in the beaker
is stirred in either a clockwise or counter-clockwise direction. Where will
the leaves on the bottom of the beaker collect - near the outer wall or near
the middle?

Those of you that set up this simple flow will notice that the tea leaves
tend to move towards the middle of the beaker. Why doesn’t centrifugal
action throw the leaves towards the outer wall?

1.2 Model Flow 1

1.2.1 Description of Flow Conditions

One of the simplest imaginable spinning flows is that of a large region of
fluid spinning with a uniform angular velocity, ω about the z axis. The fluid
is above a large fixed plate that lies in the x−y plane as shown in Figure 1.1.

It is natural to use a cylindrical r− θ− z coordinate system for spinning
flows where the z axis coincides with the axis of rotation. The three compo-
nents of the velocity in this coordinate system are the radial, Vr, tangential,
Vt, and the axial, Va velocities in the r, θ and z directions, respectively. A

1
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Figure 1.1: Geometry of infinite spinning fluid above fixed plate.

meridional plane is a plane which contains the axis of rotation and is swept
around that axis.

The pictures which follow show the flow of water with nominal STP
properties in a region which extends radially from the axis of rotation to
a radius of 0.025[m] and vertically from the plate to a height of 0.01[m].
The density and dynamic viscosity of the water are 1000[kg m−3] and 1.0×
10−3[kg m−1s−1], respectively. The rotation rate is 1[rad s−1] or just under
10[rpm]. The simulated velocity and pressure fields are presented on a
uniform mesh with 11 nodes in the radial direction (node spacing of ∆r =
0.0025[m]) and with 21 nodes in the axial direction (node spacing of ∆z =
0.0005[m]).
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1.2.2 Exploration

Kinematic Features

Figure 1.2 shows the three-dimensional velocity vectors plotted on the x− z
meridional plane. For this flow, it is sufficient to focus on a meridional plane
because the flow field does not vary in the tangential direction. Can you see
the rotational nature of the velocity field? What other characteristics of the
velocity field can you discern from this figure?

Did you notice that:

• the velocity along the top is almost aligned with the tangential direc-
tion and varies linearly as expected for solid body rotation. Note that
vt = ωr so that at the outer edge the tangential velocity is 0.025[m s−1]
as indicated by the red colour of the velocity vectors near the outer
top corner of the region;

• the velocity field becomes independent of distance in the axial direction
(or in other words the axial gradient of the velocity approaches zero,
∂~V
∂z ≈ 0) far above the fixed plate,

• the tangential velocity goes to zero as the plate is approached indicat-
ing that the no-slip condition prevails on the plate,

• the layer of fluid immediately above the fixed plate is moving towards
the axis of rotation. This negative radial velocity component is largest
near the outer edge and decreases towards the axis of rotation;

• there is a layer of fluid in the middle which appears to be moving away
from the axis of rotation, and

• the shape of each column of velocity vectors is similar?

Figure 1.3 shows a two-dimensional plot of the radial and axial velocity
components on the x − z meridional plane. Use this meridional plot to
discover more detail about the radial flow observed above. How strong is
the radial flow? Is the velocity far above the fixed plate strictly in the
tangential direction?

With this level of detail, you should now notice that:

• the magnitude of the maximum flow in the meridional plane is just be-
low 0.015[m s−1] or just under half of the maximum tangential speed,
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Figure 1.2: Velocity vectors at the nodes on the x− z meridional plane
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Figure 1.3: Meridional plane velocity vectors at the nodes on the x − z
meridional plane
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• the radial flow, both towards and away from the axis of rotation, is
clearly seen, and

• an axial velocity component develops with distance above the plate.
Far from the plate, the axial velocity component becomes independent
of both radial and axial positions.

These pictures show that there are two views of the velocity field: the top
view of a horizontal rotating flow and the side view of flow moving radially
and axially. This radial/axial flow is known as a secondary flow. The net
velocity field is the superposition of these two views: a velocity field which
has the dominant solid body rotation portion with a secondary flow.

Figure 1.4 shows the three-dimensional nature of the flow. Streamlines
starting near the plate on the far left of the flow domain spiral towards the
centreline and upwards as a result of the rotating and secondary flows. This
flow pattern is consistent with the observation that the heavy tea leaves
collected near the centreline at the bottom of the beaker.
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Figure 1.4: Streamlines of rotational flow over an infinite fixed plate.

Dynamic Features

The kinematic views of the flow field show that even though the flow geome-
try and conditions are very simple, the flow pattern is surprisingly complex.
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What causes this complexity?

Figure 1.5: Layout of four points of pressure in the x− z meridional plane.

Figure 1.5 shows the layout of the x−z meridional plane with four points
at the corners of the region of interest. Points A and B are in the far field
region well above the fixed plate and points C and D are in the near plate
region. The fringe plot in Figure 1.6 shows the pressure distribution in the
x − z plane. The values of the pressure in the four corner points are also
included in Figure 1.5.

These two figures show the following features of the pressure field in this
flow:

• The nearly rectangular pressure colour bars in Figure 1.6 indicate that
the pressure gradient in the radial direction is significantly greater than
the gradient in the axial direction;

• The decreasing widths of the pressure colour bars in Figure 1.6 indicate
that the radial pressure gradient increases with radial distance from
the axis of rotation;

• The global radial and axial pressure gradients are ∆p
∆r ≈ 12.5[Pa m−1]

and ∆p
∆z ≈ −0.096[Pa m−1], respectively. This confirms that the radial

pressure gradient dominates.
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Figure 1.6: Fringe plot of pressure on the on the x− z meridional plane.
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The connection between the pressure gradient and the velocity field can
be seen in the radial momentum equation written in cylindrical coordinates:

ρ
∂vr

∂t
+ ρvr

∂vr

∂r
+ ρ

vt

r

∂vr

∂θ
+ ρva

∂vr

∂z
− ρ

v2
t

r

= −∂p

∂r
+

µ

[
1
r

∂

∂r

(
r
∂vr

∂r

)
+

1
r2

∂

∂θ

(
∂vr

∂θ

)
+

∂

∂z

(
∂vr

∂z

)
− vr

r2
− 2

r2

∂vt

∂θ

]
(1.1)

Throughout the flow domain, the flow field has the following properties:

• the flow is steady, ∂
∂t ≈ 0, and

• there is no variation of pressure or velocity in the tangential direction,
∂
∂θ ≈ 0.

In the far field region(i.e. between Points A and B in Figure 1.5) the velocity
gradients in the axial direction are negligible, ∂~V

∂z ≈ 0. Therefore, in the far
field region the radial momentum balance reduces to:

−ρ
v2
t

r
= −∂p

∂r
(1.2)

or in other words, the radial pressure gradient solely balances the centrifugal
acceleration of the tangential velocity field.

Since the tangential velocity is vt = ωr far from the plate (z → ∞) the
radial pressure distribution far from the plate is

p(r, z →∞) =
ρω2r2

2
(1.3)

This parabolic pressure distribution is consistent with the pressure colour
bars shown on Figure 1.6 (You should check that this formula predicts the
correct pressure at Point B).

The observed axial pressure gradient is significantly smaller than the
radial pressure gradient. This is consistent with the earlier kinematic ob-
servation that the axial velocities far above the plate are very small. The
small axial pressure gradient is just sufficient to give fluid parcels a weak
axial acceleration and to move them upwards away from the plate.

Figure 1.7 illustrates the radial momentum balance between pressure
gradient and centrifugal acceleration on a parcel of fluid in the far field re-
gion. As the plate is approached, the tangential velocity decreases which
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Figure 1.7: Illustration of the radial momentum balance in the far field and
near plate regions. Relevant surface pressure forces, centrifugal accelerations
(c.a.), and net surface shear frictional forces, τ , are shown.

reduces the magnitude of the radial centrifugal acceleration. Since the ra-
dial pressure gradient does not change significantly with axial position, an
imbalance between the radial pressure gradient and the centrifugal acceler-
ation exists, as shown in the right hand sketch of Figure 1.7. The radial
pressure gradient in the near wall region drives fluid in the radial direction
towards the axis of rotation and the frictional force in the radial direction
created by this flow restores the radial momentum balance.

1.3 Model Flow 2

1.3.1 Description of Flow Conditions

Figure 1.8 shows the geometry and layout of the second model flow: flow
in a cylindrical container with a spinning lid. The container has a radius of
0.025[m] and a height of 0.025[m]. The lid of the container is spinning with
a rotation rate of ω = 0.64[rad s−1]. The fluid in the container is water with
nominal STP properties: ρ = 1000[kg m−3] and µ = 1. × 10−3[kg m−1s−1]
and it completely fills the container. The rotation rate was set so that the
Reynolds number of the flow is Re ≡ ρωR2

µ = 400. With this low Reynolds
number you can expect the flow to be laminar.

The simulated flow field is presented on an uniform mesh with 80 nodes
in the axial and radial directions.

1.3.2 Exploration

Figure 1.9 shows two views of the velocity field on the x − z meridional
plane. The left view shows the axial and radial velocity components on the
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Figure 1.8: Geometry of flow in a container with a spinning lid.

meridional plane while the right view shows all three velocity components
on the same plane.

What differences do you notice between this flow field and the infinite
flow field without the container walls?

From the right view showing all the three velocity components, you can
notice:

• the tangential velocity of the lid varies linearly with radius as expected;

• the speed of the fluid drops rapidly with distance away from the lid.
The core of the fluid is rotating much more slowly than the lid; and

• the container wall slows down the fluid in its vicinity significantly.

In the left view, which emphasizes the secondary flow, it is clear that
there is single closed cell of fluid rotating in the meridional plane about the
point (0.0188[m],0.0[m],0.0183[m])1.

Figure 1.10 shows a fringe plot of the pressure distribution on the x− z
meridional plane. This pressure field is significantly more complex than that
of the infinite flow field. What similarities and differences can you notice
between this pressure field and that shown in Figure 1.6?

1These values are in excellent agreement with the benchmark prediction of Lugt and
Haussling[11]
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Figure 1.9: Velocity vectors at the nodes on the x − z meridional plane.
Right view shows all three vector components and left view shows axial and
radial components.
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Figure 1.10: Fringe plot of pressure on the on the x− z meridional plane.
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The most striking feature of the pressure distribution in the container
is the pressure rise near the outer top corner. Some of this pressure rise is
partially due to an artiface of the numerical simulation which assumes that
there is no gap between the spinning lid and fixed container wall. However, a
portion of the pressure rise in the radial direction along the lid balances the
centrifugal acceleration of the fluid near the lid. Since the core of fluid near
the spinning lid is spinning at a much lower rate than the lid, the pressure
in the top corner, 1.8× 10−2[Pa] is considerably less than that predicted by
Equation 1.3, 0.128[Pa]. Because the radial pressure gradient is less than
that required to balance the centrifugal acceleration at the lid, a flow from
the axis of rotation to the outer wall is created along the lid as illustrated
in Figure 1.11.

Figure 1.11: Illustration of the radial momentum balance in an ideal pressure
gradient/ centrifugal acceleration balance and in the actual balance near the
lid. Relevant surface pressure forces, centrifugal accelerations (c.a.), and net
surface shear frictional forces, τ , are shown.

Between the top of container wall and the container bottom there is a
considerable pressure drop. This axial pressure gradient is required to drive
the fluid from the top to the bottom in the closed circulation cell and to
overcome the viscous drag along the container wall.

Even though there is a significant reduction of the radial pressure gra-
dient between the top and the bottom of the container, the positive radial
pressure gradient on the container bottom drives fluid from the container
wall to the axis of rotation. The radial momentum balance in the near bot-
tom region is a balance between the radial pressure gradient and the net
viscous shear forces resisting motion in the radial direction.

There is a weak negative axial pressure gradient near the axis of rotation
to drive the fluid up from the bottom and towards the top of the container.
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1.4 Further Exploration

In the previous two sections, two model flows have been explored in which
a secondary flow pattern is established by the imbalance between radial
pressure gradients and centrifugal accelerations. If either model flow were
seeded with particles slightly heavier than water then these particles would
collect at the bottom near the axis of rotation just as the tea leaves did in
the beaker of stirred water.

You can look for similar secondary flow patterns in any situation where
the flow is rotating. Common examples include flows in centrifugal pumps,
in radial flow turbines, in duct and pipe bends, near car brake disks and
near high and low pressure systems in the atmosphere.

Secondary flows can be created by other mechanisms also. For example,
secondary flows such as the earth’s large scale atmospheric circulation are
created by buoyancy forces resulting from temperature variations in the flow
field. Another subtle example is the secondary flow in rectangular ducts that
is driven by an imbalance in the turbulent stresses.

Even if you do not begin to study secondary flows due to other mech-
anisms, there is still a lot to be learned about secondary flows in rotating
flows. The following questions and suggestions can help you explore this
complex subject in further detail:

1. The flow in the beaker has a free surface between the water and the
air. Explain the shape of the water surface that is observed;

2. Explain why clear weather is associated with high pressure systems
and cloudy weather is associated with low pressure systems;

3. Model Flow 3 is a model flow that is similar to Model Flow 1. In
this model flow, the fluid far away from the plate is at rest and the
plate is spinning. Before exploring the simulated flow field, see if you
can estimate the pressure distribution and directions of the axial and
radial velocity components. What similarities are there between this
model flow and Model Flow 2 presented above?

4. Model Flow 3 can be simulated with CFD codes. You will have to take
care in modeling the boundary condition for the top (far field from the
plate). A specified total pressure and flow direction is recommended
for this inflow boundary. Why is it adequate to set a zero static pres-
sure condition for the outflow at the outside (R) of the domain?
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5. Model Flow 4 is laminar flow in a container with a slightly higher
Reynolds number, Re = 1492, and aspect ratio, H/R = 1.5. In what
significant way is this flow field dissimilar from that of Model Flow 2
(Re = 400)? This flow shows a vortex breakdown;

6. Model Flow 5 is a turbulent flow in a container with a spinning lid,
H/R = 1.5 and Re = 2.5× 105. How does the shape of the turbulent
flow field’s secondary flow pattern compare to that of Model Flow 4.
From this model flow can you see why it is that the tea leaves do not
congregate right on the axis of rotation?

7. The torque, T , required to turn the spinning lid of the container for
Model Flows 2,4, and 5, were estimated from CFX-TASCflow simula-
tions to be 2.06×10−7[N m], 1.35×10−6[N m], and 3.36×10−3[N m],
respectively. Schlichting[16] provides the following theoretical correla-
tions for the torque coefficient, CT ≡ 2T

1
2
ρω2R5 , for a spinning plate in

an infinite flow:

CT =

{
3.87
Re Re < 5× 104

0.146Re−1/5 Re > 5× 104 (1.4)

Plot the predicted torque coefficients and the experimenatal correla-
tions. After noting that the trends of the predicted torque coefficients
closely matches thoses of the correlations, provide a list of factors
explaining why the predicted values do not exactly agree with the
correlations; and

8. Which of the three model flows, 2, 4, or 5, most closely models the
flow field that exists in the beaker of stirred water?

1.4.1 Annotated Reading List

There is a large literature on centrifugally driven secondary flows and the
vortex structures that are created in theses flows. The following texts and
articles are recommended for further reading:

Schlichting[16], pp. 102-107,225-230, and 647-651 This classic text presents
semi-analytical solutions for several laminar flows involing rotation and
empirical theories for turbulent flow near spinning disks. The empha-
sis is on quantitative estimation of measures such as the drag torque
on spinning disks,
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Lugt[12], pp.138-145 An excellent description of many flow features of
rotating fluids in containers. The use of mathematics is kept to a
minimum and the emphasis is on qualitative description,

Lugt[13], pp.430-435 An updated version of his earlier presentation. This
text provides a more complete and mathematical presentation of vor-
tex theory,

Escudier[7] A comprehensive summary of the important experiments and
theories of the formation and breakdown of vortices in rotating flows,

Escudier[6] A well written article showing five examples of flow machinery
in which vortices play a significant role in the machine’s performance,
and

Daily and Nece[3] A detailed experimental study of the flow field on the
backface of impellers and the resulting frictional losses.
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Chapter 2

The Extra Shock Wave

2.1 The Mystery

Figure 2.1: Sketch of supersonic flow over the top of a wedge.

One of the features of supersonic flows is that the flow field adjusts sud-
denly to downstream disturbances. For example, when the flow approaching
the two-dimensional wedge show in Figure 2.1 is supersonic there is no physi-
cal mechanism for the flow field to adjust to the presence of the wedge before
reaching the wedge. Therefore, the flow adjusts by turning suddenly over
the oblique shock wave which radiates from the tip of the wedge. Across the
shock, the flow angle changes suddenly and there is a corresponding jump
in pressure, temperature, and density.

Figure 2.2 is a fringe plot of the relative pressure field for supersonic flow
of air over a 10◦ wedge. The oblique shock radiating upwards from the tip
of the wedge can be clearly seen. Notice that there is also an oblique shock
radiating downwards from the tip even though the bottom surface is parallel

19



20 CHAPTER 2. THE EXTRA SHOCK WAVE

Figure 2.2: Fringe plot of relative pressure [Pa] field for supersonic flow over
the a wedge. The reference pressure is 101325[Pa].

to the approach flow. What causes this second oblique shock wave?

2.2 Model Flows

2.2.1 Description of Flow Conditions

The simulation shown in Figure 2.2 is the flow of air at a pressure of
101325[Pa] and a temperature of 293.2[K] approaching the wedge. The
air is travelling at a speed of 673.3[m s−1] or a Mach number of 1.965 before
reaching the tip of the wedge. For the simulations, the air is assumed to be
an ideal gas with a constant dynamic viscosity of 1.79 × 10−5[kg m−1s−1].
Results for two simulations are presented: the first for supersonic flow over
a wedge with no-slip boundaries and the second for supersonic flow over a
wedge with free slip boundaries. The latter simulates inviscid flow over the
wedge.

The wedge has a total length of 2[mm] and angles of 10 ◦ at the front
and back tips. It is assumed that there is no heat transfer from the air to
the wedge.
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2.2.2 Exploration

Examine the following set of fringe plots showing the relative pressure1 ,
cross-stream (v) velocity, and streamwise (u) velocity fields in the vicinity
of the wedge. For each field variable two fringe plots are provided: the
first for flow over no-slip boundaries and the second for flow over free slip
boundaries.

On each fringe plot, two reference points are plotted. Above the wedge,
a point is shown along the line that radiates at a 40 ◦ angle from the tip.
This angle corresponds to the angle of an oblique shock for inviscid flow
(flow of a fluid with negligible viscous effects) turning through 10◦. Below
the wedge, a point is shown along the line that radiates at a 31.4◦ angle
from the tip. This angle corresponds to the angle of an oblique shock for
inviscid flow turning through 1◦.

Figures 2.3 and 2.4: From examining the pressure fields notice that:

• there is no shock wave radiating from the lower edge of the tip
when the flow is over free slip boundaries,

• the oblique shock angle above the wedge for the flow over the free
slip boundaries corresponds very closely to that predicted by the
oblique shock relations for inviscid flow,

• the oblique shock angle above the wedge for flow over the no-slip
boundaries is greater than that predicted by the oblique shock
relations for inviscid flow, and

• the oblique shock below the wedge corresponds closely to an
oblique shock of inviscid flow turning through an angle of 1◦.

Figures 2.5 and 2.6: From examining the cross-stream velocity fields no-
tice that:

• for the flow over the no-slip boundaries, the flow is clearly de-
flected downwards away from the bottom surface of the wedge,

• the magnitude of the deflection is greatest near the tip of the
wedge2 and then decreases with distance along the bottom surface
of the wedge,

1The relative pressure field is referenced to the approach pressure of 101325[Pa]. A
relative pressure of 0[Pa] indicates an undisturbed flow.

2The flow angle is 1◦ downwards near the tip.
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• the sudden changes in the flow direction occur over the same areas
as the sudden changes in pressure noted in the previous figures
(indicating that most flow properties change through the oblique
shock wave), and

• the flow does not deflect away from the free slip boundaries.

What causes the flow deflection observed in the cross-stream velocity
fringe plots?

Figures 2.7 and 2.8: From examining the streamwise velocity fields no-
tice that:

• for the no-slip boundary flows, the fluid adjacent to the bound-
aries is at rest,

• on these boundaries there is a thin boundary layer of relatively
slow moving fluid,

• the boundary layer grows most rapidly near the tip of the wedge,
and

• the boundary layer regions are not present when the flow is over
the free slip boundaries.
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Figure 2.3: Fringe plot of relative pressure [Pa] field for supersonic flow over
the a wedge. The reference pressure is 101325[Pa].

Figure 2.4: Fringe plot of relative pressure [Pa] field for supersonic flow over
the a wedge with free slip walls. The reference pressure is 101325[Pa].
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Figure 2.5: Fringe plot of the cross-stream (v) velocity [m s−1] field for
supersonic flow over a wedge.

Figure 2.6: Fringe plot of the cross-stream (v) velocity [m s−1] field for
supersonic flow over a wedge with free slip walls.
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Figure 2.7: Fringe plot of the streamwise (u) velocity [m s−1] field for su-
personic flow over a wedge.

Figure 2.8: Fringe plot of the streamwise (u) velocity [m s−1] field for su-
personic flow over a wedge with free slip walls.
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Figure 2.9: Sketch showing the control volume surrounding the boundary
layer on the lower boundary of the wedge.

Why does the boundary layer flow generate a cross-stream flow away
from the bottom boundary of the wedge?

The above flow field figures show that there are two flow regions for
the flow over the wedge with no-slip surfaces: a thin boundary layer region
with appreciable shear strain rates and corresponding shear stresses and an
external flow region with relatively small gradients except over shock waves.
The boundary layer flow region is not present in the flow over the wedge
with slip surfaces.

Figure 2.9 shows a control volume that encloses the boundary layer re-
gion over the span of 1.0 × 10−3[m] along the lower surface of the wedge.
The streamwise, u, velocity component carries mass into this control vol-
ume across the left face and out of the control volume across the right face.
Figure 2.10 shows the the mass flux, ρu, profiles across the left and right
faces. It is clear that the total mass flow across the left face:

Total Mass Flow =
∫ δ

0
ρudy (2.1)

exceeds that across the right face by a significant amount. Since no mass
flows across the solid boundary, there must be a cross-stream mass flow away
from the boundary layer.

The cross-stream mass flow pushes or displaces the freestream or external
flow away from the bottom surface of the wedge. It is this displacement effect
that causes the external flow over the no-slip boundary to turn 1◦ away from
the wedge. The turning occurs across the weak oblique shock wave radiating
downwards from the tip. As the boundary growth decreases with distance
along the surface, the flow angle decreases, as can be seen in Figure 2.5.
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Figure 2.10: Mass flux, ρu, profiles near the lower boundary of the wedge
for x = 0[m] and x = 1.0 × 10−3[m] distances from the tip. The mass flux
is normalized by the external flow mass flux, ρeue.

A boundary layer grows on the top surface of the wedge also. This
boundary layer causes a displacement effect on the top surface of the wedge.
The turning of the external flow that occurs across the top shock must be
sufficient to turn the flow away from the solid surface plus the displacement
effect. This explains why the oblique shock angle shown in Figure 2.3 is
greater than that predicted by the inviscid flow shock relations. While not
shown, the oblique shock angle of 41.75◦ in the flow over the no-slip upper
surface corresponds to a flow turning angle of 11.5◦ which is the flow angle
at the outside of the upper surface boundary layer near the wedge tip.

2.3 Further Exploration

The supersonic flow over the wedge, discussed above, illustrates one im-
portant consequence of the no-slip condition at solid walls: the boundary
displacement effect. This effect is quantified along the length of a developing
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boundary layer by the displacement thickness:

δ1(x) ≡
∫ ∞

0

(
1− ρ(x, y)u(x, y)

ρe(x)ue(x)

)
dy (2.2)

where x is distance along the surface, y is the distance normal to the surface
into the flow, and ρe and ue are the local external density and streamwise
velocity, respectively. The displacement thickness is the distance that the
actual surface appears to be displaced to account for the decrease in the
streamwise mass flow in the boundary layer. The displacement thickness
(1.71 × 10−5[m]) for the mass flux profile at x = 1.0 × 10−3[m] on the
wedge’s lower surface is shown in Figure 2.10 as a dashed line.

The displacement effect is present in both incompressible and compress-
ible flows over streamlined bodies. Engineers designing high efficiency low-
drag bodies routinely account for the displacement thickness in their designs.
The most recent generations of airfoils for hobby and commercial aircraft,
airfoils for wind turbines, and racing car bodies have been designed so that
the apparent displaced boundary creates the desired external flow field char-
acteristics, [4].

There are various paths that you can follow for further explorations of
these and similar flows:

1. The calculations for the wedge were carried out with a constant viscos-
ity fluid model in order to simplify the discussion. The Excel spread-
sheet, Profiles.xls, has the data for two boundary profiles on the lower
surface 1.0 × 10−3[m] back from the tip. One set of data is for the
constant viscosity model presented above and the other set is for a
variable viscosity model:

µ(T ) = µ0

(
T

T0

) 3
2 T0 + 110[K]

T + 110[K]
(2.3)

By comparing the data explain why a variable viscosity model is re-
quired for a precise simulation of this flow.

2. The results of the previous section shows that supersonic flow deac-
celeration and compression occurs over very thin thickness of oblique
shock waves. Supersonic flow acceleration and expansion occurs over
a finite region of Prandtl-Meyer waves. Identify regions of flow ex-
pansion in the supersonic flow over the wedge with no-slip surfaces
presented in the previous section. Which of these regions is caused,
directly or indirectly, by viscous effects?
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3. Drag on airfoils and other streamlined bodies is caused both by viscous
shear action and net pressure forces. The latter is often referred to
as form drag. Estimate the form drag on the wedges with no-slip and
slip surfaces. Explain the difference in the two estimates.

2.3.1 Annotated Reading List

There is a large literature on boundary layer displacement effects is incom-
pressible and compressible flows. The following are recommended for further
reading:

Van Dyke[20] Photograph 228 page 138 This mystery was inspired by
photograph shown below, Figure 2.11, which was taken from Professor
Van Dyke’s wonderful collection of flow visualization pictures. He
suggests that the wedge in the photograph has an angle of 10◦ and
that the bottom surface is parallel to the approach flow. However, the
actual experimental conditions as reported by Bardsley and Mair [1]
were for a wedge angle of 10.1◦ and the bottom surface turned 0.3◦

into the flow. In other words, in this photograph the shock radiating
downwards is caused by the turning of the bottom surface and the
boundary layer displacement effect. It is reassuring to note that the

Figure 2.11: Schlieren photograph of air at Mach number =1.965 over a
sharp 10.1◦ wedge. The lower surface is tilted downwards at a slight an-
gle of 0.3◦. Scan of the photograph presented by Van Dyke[20]. Original
photographs and measurements were made by Bardsley and Mair[1].
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upper shock angle of 41.8◦ predicted in the simulations of the previous
section is within the range, 40.3◦ − 42.3◦, of upper shock angle that
can be inferred from the measurements of Bardsley and Mair.

Eppler[4] This text covers the design philosophy and calculation techniques
used to design the high-lift and low drag subsonic airfoils in the 1980’s
and 1990’s. The role of the displacement effect and the direct and
indirect impact of viscous effects are discussed in detail.

White[21] Chapter 7 Professor White provides a modern perspective on
the physics of compressible boundary layers. The impact of tempera-
ture variations on the flow field properties in boundary layers is cov-
ered.



Chapter 3

The Corner Attraction

3.1 The Mystery
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Figure 3.1: Wireframe model of a square duct illustrating the development
of the velocity profile on the y = 0 centre-plane.

The above figure, Figure 3.1, shows a wireframe model of a long square
duct. The x axis, aligned with the duct centre-line, is in the axial direction.
If fluid enters the duct with a uniform axial velocity, ū, there will be a
region of developing flow in which the shape of the axial velocity profile over
the duct cross-sectional area changes with axial distance. Sufficiently far
downstream, the flow becomes fully developed. The axial velocity profile no
longer varies with axial distance once the flow is fully developed. The fully-
developed axial velocity profile, u(y, z), varies, over the duct cross-section,
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Figure 3.2: Fringe plot of the fully-developed velocity profile of laminar flow
through a square duct. The flow direction is out of the page.

from zero at the walls to a maximum at the duct centreline, (y = 0, z = 0).

Figure 3.2 shows the fully-developed velocity profile for incompressible
laminar flow through the square duct. Notice how the isovel contours quickly
become rounded in the corners. In the vicinity of the upper right corner,
the wall shear stresses on the right and top walls act to create a region of
relatively slow moving fluid in the corner. For a given distance off the right
wall, the axial speed is greater near the y = 0 centre-plane than near the
corner.

Figure 3.3 shows the fully-developed velocity profile for turbulent flow
in the square duct. A difference between the laminar and turbulent profiles
is that the rounding of the iso-vel contours in the corners is considerably
reduced. Indeed, for a given distance off the right wall, the axial speed
increases slightly as the corner is approached from the y = 0 centre-plane.
It appears that high speed fluid in the core of the duct is being pushed into
the corners. Why?
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Figure 3.3: Fringe plot of the fully developed velocity profile of turbulent
flow through a square duct.

3.2 Model Flows

3.2.1 Description of Flow Conditions

The simulations presented in the previous section are for the flow of STP
(Standard Temperature and Pressure) air through a square duct with a half-
width B = 0.025[m]. For all simulations, the air is an incompressible gas
with density of ρ = 1.284[kg/m3] and dynamic viscosity of µ = 1.725 ×
10−5[kg m−1s−1]. Both laminar and turbulent simulations are presented
for the fully-developed flow region. For the laminar flow simulations, the
average velocity is ū = 0.27[m/s] which is equivalent to a duct Reynolds
number, ReB ≡ 2ρūB

µ ≈ 1000. For the turbulent flow simulations, the
average velocity is 18[m/s] which is equivalent to a duct Reynolds number
of ReB ≈ 68000.

In this section more results will be presented for the laminar flow simula-
tion and for two turbulent flow simulations: the first simulation is obtained
using an eddy viscosity turbulent kinetic energy - dissipation rate, k − ε
model for the turbulent stresses and the second is obtained using a Reynolds
Stress Transport model.
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3.2.2 Exploration

Examine the set of figures on the following pages that show fringe plots of
the axial velocity, the cross-stream velocity vectors, fringe plots of the x
component of the vorticity, and fringe plots for the y and z normal friction
stress components. For each flow property, three plots are provided: the
first for laminar flow, the second for turbulent flow simulated with the k− ε
model, and the third for turbulent flow simulated with a Reynolds Stress
Transport model.

Figure 3.4: From examining the fringe plots of the axial velocity, u, fields
notice that:

• For the laminar flow simulation:

– there is a smooth variation of axial speed over the cross-
sectional area. The axial speed is maximum at the duct
centre-line (y = z = 0) and is zero at the duct walls y = ±B
and z = ±B;

– the iso-vel contours become rounded near the corners indi-
cating a zone of relatively slow moving fluid in the corner
region; and

– the central iso-vel contours are very close to circular in shape.

• For the turbulent flow simulation obtained with the k− ε model:

– there are very large gradients in the axial velocity near the
duct walls and the axial velocity is almost uniform over the
central portion of the duct (the axial speed is within 11% of
the centre-line value over the central 45% of the duct area).
The large gradients near the wall are found in other turbulent
flows; and

– the iso-vel contours are again rounded at the corners and the
central iso-vel contour is very close to circular in shape.

• For the turbulent flow simulation obtained with the Reynolds
Stress Transport model:

– there are very large gradients in the axial velocity near the
wall and the axial velocity is almost uniform over the central
portion of the duct; however

– the iso-vel contours in the centre of the duct are almost
square in shape with slightly rounded corners.
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(a) Laminar flow

(b) Turbulent flow calculated with k − ε model

(c) Turbulent flow calculated with Reynolds
Stress Transport model

Figure 3.4: Fringe plots of fully developed axial velocity profiles through a
square duct.
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(a) Laminar flow

(b) Turbulent flow calculated with k − ε model

(c) Turbulent flow calculated with Reynolds
Stress Transport model

Figure 3.5: Vector plots of cross-stream velocity for fully developed flows in
the upper right quadrant of the square duct.
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(a) Laminar flow

(b) Turbulent flow calculated with k − ε model

(c) Turbulent flow calculated with Reynolds
Stress Transport model

Figure 3.6: Fringe plots of x vorticity component for fully developed flows
in the upper right quadrant of the square duct.
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(a) Laminar flow

(b) Turbulent flow calculated with k − ε model

(c) Turbulent flow calculated with Reynolds
Stress Transport model

Figure 3.7: Fringe plots of the y normal stress component for fully developed
flows in the upper right quadrant of the square duct.
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(a) Laminar flow

(b) Turbulent flow calculated with k − ε model

(c) Turbulent flow calculated with Reynolds
Stress Transport model

Figure 3.8: Fringe plots of the z normal stress component for fully developed
flows in the upper right quadrant of the square duct.
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Figure 3.5: The cross-stream velocity is defined as ~Vc−s ≡ vĵ + wk̂ where
v and w are the velocity components in the y and z directions, re-
spectively, and ĵ and k̂ are the unit vectors in the y and z directions,
respectively. From examining the cross-stream velocity vector plots
notice that:

• For the laminar and the turbulent flow simulation obtained with
the k − ε model there is no cross-stream flow, v = w = 0. The
axial velocity component is the only component in these flows.

• For the turbulent flow simulation obtained with the Reynolds
Stress Transport model there is a cross-stream flow with:

– two vortex flows in each quadrant of the square duct;
– in each quadrant, the vortex flow is symmetrical about the

radial line running from the duct centre-line to the corner;
– the flow along the radial symmetry line is from the duct

centre-line towards the corner;
– the centre of the lower vortex is at the non-dimensional lo-

cation y
B = 0.76, z

B = 0.41; and
– the strength of the simulated secondary flow is weak. The

maximum speed of the cross-stream velocity, ~Vc−s, is 0.7% of
the centre-line axial velocity.

Figure 3.6: From examining the fringe plots of the x component of the
vorticity or the cross-stream vorticity, ζx ≡

(
∂w
∂y −

∂v
∂z

)
, notice that:

• the cross-stream vorticity or local fluid rotation velocity is only
present in the turbulent flow simulated with Reynolds Stress
Transport model;

• The cross-stream vorticity is anti-symmetrical about the radial
symmetry line in each quadrant of the square duct; and

• the position of greatest cross-stream vorticity is on the upper wall
and in from the corner a distance of 5% of the duct half-width.

Figures 3.7 and 3.8: From examining the fringe plots of the y and z nor-
mal friction stress components, τyy and τzz, notice that:

• for the laminar flow simulation there are no normal friction stress
components;

• for the turbulent flow simulation obtained with the k − ε model
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– both τyy and τzz vary from 0.77[Pa] at the duct centreline to
2.58[Pa] near the duct walls,

– τyy and τzz stress distributions are symmetrical about the
radial symmetry line in each quadrant of the square duct,
and

– the normal stress components are also isotropic in that τyy =
τzz; and

• for the turbulent flow simulation obtained with the Reynolds
Stress Transport model

– τyy varies from 0.67[Pa] at the duct centreline to 1.51[Pa]
near the top duct wall,

– τyy is weaker near the right vertical wall than it is near the
top wall,

– τzz varies from 0.67[Pa] at the duct centreline to 1.51[Pa]
near the right vertical duct wall,

– τzz is weaker near the top wall than it is near the right vertical
wall,

– the τzz distribution in the upper right quadrant is the mirror
image of the τyy distribution when reflected about the radial
symmetry line,

– the normal stress components are anisotropic in that τyy 6=
τzz.

The turbulent flow through the square duct has a set of eight weak but
significant cross-stream vortices or secondary flows. The secondary flow in
each vortex is drawn from the centreline towards the duct corner along the
radial symmetry line. The simulations demonstrate that the existence of
the secondary flow is connected to the distribution of anisotropic normal
stresses, τyy and τzz. How do the anisotropic normal stresses create the
secondary flow?

The simplest explanation of the physics of the secondary flow in a square
duct was proposed by Speziale[17] and is based on the axial vorticity, ζx.
The axial vorticity is twice the local counterclockwise (ccw) angular velocity
of fluid parcels in the cross-stream or y−z plane. From the definition of the
axial vorticity,

ζx ≡
(

∂w

∂y
− ∂v

∂z

)
(3.1)

it is clear that there will only be axial vorticity if there are velocity com-
ponents in the cross-stream plane, v and w. For the fluid parcels to have
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Figure 3.9: Fluid parcel in a region of high axial vorticity near the right wall
with normal stresses shown on the parcel corners.

angular velocity in the cross-stream plane there must be a moment in the
cross-stream plane to create the spin.

Figure 3.9 shows two views of a small fluid parcel, ∆y = ∆z = 0.000625[m],
located with its lower left corner at A(y = 0.020[m], z = 0.02375[m]). As
shown in Figure 3.6c, point A lies near the top wall and is in a region of
high (ccw) vorticity, ζx = 80[s−1]. The left view of the parcel shows the
values of the τyy normal stress on the four corners of the parcel and their
action to create forces and moments on the parcel. The right view shows
the corresponding values of the τzz normal stress.

Consider the τyy normal stresses acting at points B and D. If ∂τyy

∂z

∣∣∣
BD

>

0, or τyy|D > τyy|B, then a counterclockwise moment about the parcel’s
centre is created on face BD. However, if ∂τyy

∂z

∣∣∣
AC

> 0 then a clockwise
moment about the parcel’s centre is created on face AC. The net strength
of the counterclockwise moment on the parcel due to the τyy normal stress
is proportional to

∂2τyy

∂y∂z
(3.2)

Similarly, there will be a counterclockwise moment created on face CD
by the τzz normal stresses if ∂τzz

∂y

∣∣∣
CD

< 0. This counterclockwise moment
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will be offset by a clockwise moment on face AB if ∂τzz
∂y

∣∣∣
AB

< 0. Therefore
the net strength of the counterclockwise moment on the parcel due to the
τzz normal stress is proportional to

−∂2τzz

∂y∂z
(3.3)

Combining the above shows that a counterclockwise moment about the
parcel’s centre is created if

∂2

∂y∂z
(τyy − τzz) > 0 (3.4)

In other words, a secondary flow will exist if:

• the normal stresses are anisotropic, τyy 6= τzz, and

• the stress difference, τyy − τzz, varies in both directions in the cross-
stream plane, y and z.
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Figure 3.10: Fluid parcel showing the signed normal stress differences on
each face.

Figure 3.10 shows the fluid parcel again with the signed normal stress
differences on each face along with the moment direction implied by each
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stress difference. Applying a finite difference approximation:

∂2

∂y∂z
(τyy − τzz|parcel ≈

(−0.004[Pa] + 0.008[Pa]
(6.25× 10−4[m])2

)
≈ 1.024× 104[Pa/m2]

(3.5)
In other words there is a significant positive or counterclockwise moment
(per unit volume) acting on the fluid parcel. This moment creates a high
counterclockwise angular velocity or positive vorticity in this region.

3.3 Further Exploration

The secondary flow set up in the cross-stream plane of the square duct is
an example of a type two secondary flow. Type one secondary flows are
driven by body forces and include the secondary flow close to a spinning
disk discussed in Chapter 1, The Fate of Sinking Tea Leaves. Type two
secondary flows are driven by normal stresses. For Newtonian fluids, type
two secondary flows only exist in turbulent flows.

3.3.1 Role of the Turbulence Model

As shown in the original exploration, the simulation of the secondary flow
in the square duct is very sensitive to the choice of turbulence model for
the turbulent Reynolds stresses. The eddy viscosity k − ε model failed to
predict a secondary flow and the Reynolds stress transport model predicted
the secondary flow to reasonable accuracy. In this sub-section the physics of
these two turbulence models are briefly reviewed to explain the inadequacy
of the eddy viscosity model for this flow. Given the importance of the normal
stresses in establishing the vorticity in the cross-stream plane, the focus is
on the turbulent normal stress modelling.

The normal stresses, τxx, τyy, τzz are related to the turbulent velocity
fluctuations,

ταα = ρu′αu′α (3.6)

where α represents one spatial direction, x, y or z, no summation is implied,
and u′α is the turbulent velocity fluctuation in the α direction. The turbulent
normal stresses are also related to the turbulent kinetic energy, k ≡ u′u′

2 +
v′v′

2 + w′w′

2 ,
τxx + τyy + τzz = 2ρk (3.7)
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The relative sizes of the three normal stresses are determined by how the
turbulent kinetic energy is distributed over the three directions.

The eddy viscosity model for the turbulent normal stresses is:

ταα ≈
2
3
ρk − 2µT

∂uα

∂xα
(3.8)

where µT is the turbulent viscosity (a property of the turbulence). In the
fully developed flow through the square duct the streamwise velocity, u, is
significantly larger then the cross-stream velocity and ∂u

∂x ≈ 0. Therefore,
eddy viscosity models like the k − ε model predict that all three normal
stress components are identical, ταα = 2

3ρk. This normal stress isotropy was
noted in Figures 3.7 and 3.8.

In Reynolds stress transport models, the transport of the individual
stress components is modelled with transport equations of the form:

∂τij

∂t
+ Cij = Dij + Pij + Πij − ρεij (3.9)

where Cij is the convective transport of τij ≡ ρu′iu
′
j by the mean flow field,

Dij is the diffusive transport of τij by the turbulence field, Pij is the shear
production of τij through products of the shear stresses and mean velocity
gradients, Πij is the redistribution of the turbulent kinetic energy between
the three directions, and εij is the dissipation of τij by molecular action.
The convective transport and shear production terms can be represented
exactly in terms of the Reynolds stresses and mean flow gradients. Closure
models are required for the other three terms.

If the streamwise velocity, u, dominates and the flow is fully developed,
∂
∂x ≈ 0, then the shear production terms for the three normal stresses are:

Pxx = −2ρu′v′
∂u

∂y
− 2ρu′w′∂u

∂z
(3.10)

Pyy = 0 (3.11)
Pzz = 0 (3.12)

This shows that fluctuations in the streamwise direction, u′, are produced
directly by the mean flow gradients. However, fluctuating velocity compo-
nents, v′ and w′, exist in the two cross-stream directions, even though there
is no direct production mechanism for these fluctuations.

The Παα redistribution terms are responsible for creating fluctuations
in the cross-stream directions. There are two redistribution processes: a
slow tendency driven by the random motion of the turbulent flow field to
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move towards an isotropic state and a rapid process of cross-stream fluctu-
ation creation to conserve mass in the fluctuating velocity field. The latter
is pertinent to the study of anisotropy in the square duct flow. When a
streamwise fluctuating component is created at a point in space, there must
be cross-stream fluctuating components created to conserve mass:

∂u′

∂x
= −

(
∂v′

∂y
+

∂w′

∂z

)
(3.13)

In regions far from walls, there will be no bias in the creation of v′ and
w′ fluctuations. For the simulated flow near the centreline of the duct
τyy = τzz = 0.67[Pa] and τxx = 1.37[Pa]. The streamwise normal stress
is the highest because of the direct shear production of u′ fluctuations, Pxx.
However, approximately half of the kinetic energy produced by this produc-
tion is redistributed equally between the v′ and w′ cross-stream fluctuations.

At a point near the top wall, like point A shown in Figure 3.6c, the
presence of the wall will preferentially damp fluctuations in the z direction.
In effect, it is easier to pull fluid from the y direction to satisfy the mass
imbalance created by a shear produced u′ fluctuation then from the z di-
rection because of the blockage by the wall. At point A in the simulated
flow, τzz = 1.26[Pa], τyy = 1.43[Pa] > τzz, and τxx = 3.11[Pa]. Again the
streamwise normal stress is the greatest but the redistribution between the
v′ and w′ fluctuations is not equal. This is the mechanism that produces the
anisotropy in the cross-stream normal stresses that is responsible for creat-
ing the secondary flow. An eddy viscosity turbulence model, like the k − ε
model, is not capable of reproducing this anisotropy and therefore cannot
reproduce the secondary flow.

3.3.2 Impact of Secondary Flow

As shown in the original explorations, the secondary flow has a profound
effect on the shape of the streamwise, u, velocity contours even though the
strength of the cross-stream secondary flow is weak. How important is the
secondary flow to the dynamics of the flow through the square duct?

Table 3.1 shows the predicted friction factors from the k−ε and Reynolds
Stress Transport Model (RSTM) simulations. This data shows that the
secondary flow does not have any impact on the friction factor. Indeed,
the simulated friction factor is very close to that predicted by the Moody
diagram for fully developed flow through a round pipe with a hydraulic
diameter, Dh:

Dh ≡
4A
P

= 2B (3.14)
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Geometry Model ReB f

Square Duct CFX-5 RSTM 68,000 0.018
Square Duct CFX-5 k − ε 68,000 0.018
Round Pipe Moody Diagram[22] 68,000 0.019

Table 3.1: Comparison of the predicted friction factors from the k − ε and
RSTM simulations to the Moody diagram value.

where A is the cross-sectional area, and P is the duct perimeter.
The relative insensitivity of the friction factor to the duct geometry and

to the presence of the secondary flow is due to two factors:

1. the low speed in the secondary flow vortices, and

2. the strong velocity gradients in the thin log-law region adjacent to the
duct walls.

All of the preceding discussion has been for fully-developed duct flows.
The impact of the secondary flow is more significant in geometries with
axial acceleration. For example, in a nozzle with a square cross-sectional
area, the axial speed will increase as the flow moves through the nozzle and
the axial strain rate, ∂u

∂x > 0, is positive. The secondary vortices created
in the corner of the nozzle will be stretched in the axial direction. As the
vortices are stretched, their effective diameter will decrease. To conserve
angular momentum, the cross-stream (rotational) speed of the vortices will
increase (similar to the increase in rotational speed observed when a figure
skater draws in their arms).

These dynamics are significant for turbulent flows along corners between
two walls. Besides being observed in square ducts, they are also observed in
other non-circular duct geometries (i.e. rectangular and triangular ducts)
and at the junction of a wing and an aircraft body [10].

Options for more exploration of this complex flow include:

Law of the Wall: For many turbulent flows, the streamwise velocity pro-
file near solid walls has the universal functional form:

u+ ≡ u(x, y)
u∗

= function
(

y+ ≡ ρu∗y

µ

)
(3.15)

where u∗ ≡
√

τw(x)/ρ is the wall shear velocity, τw(x) is the local wall
shear stress, and y is distance off the wall. For y+ > 30 the function
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has a logarithmic form, [21]. Using the data from the simulation of
fully developed flow through a square duct with a Reynolds Stress
Transport Model, stored in the spreadsheet SquareDuctData.xls, plot
u+ vs y+ on semi-log plots for z = 0, 0.005, 0.01, 0.015, and0.02[m].

Normal Stress Anisotropy: Using the data stored in SquareDuctData.xls
calculate the normal stress anisotropy, v′v′ − w′w′, over the cross-
section of the duct 0 < y, z < 0.025[m]. Relate these values to the
regions of high vorticity shown in Figure 3.6.

Vortex Production Pettersson Reif and Andersson [14] show that the
secondary flow Reynolds shear stress, v′w′, plays a significant role
in maintaining the secondary flow initially created by normal stress
anisotropy. Using the data in SquareDuctData.xls, estimate the vari-
ation the secondary vortex production term,

∂2v′w′

∂z2
− ∂2v′w′

∂y2
(3.16)

over the duct cross-sectional area.

3.3.3 Annotated Reading List

The secondary turbulent corner flow makes an interesting and subtle test
base for understanding the dynamics of turbulent flows. The following is
recommended for further reading:

Johnston[10] Professor Johnston’s article gives a thorough review of the
two types of secondary flows. Secondary flows in corners are reviewed
for internal duct and external flows.

White[22] Chapter 6 In this introductory text, Professor White intro-
duces the concept of hydraulic diameter for the modelling of pressure
drop in non-circular ducts. There is a brief introduction to secondary
flow in the presentation.

Speziale[17] This pioneering article discusses the requirements for a model
of the turbulent Reynolds stresses to successfully capture the sec-
ondary flow pattern in rectangular ducts.

Huser and Biringen[9] Presents the findings from an analysis of the com-
plete transient turbulent flow field obtained by direct numerical sim-
ulation of the transient Navier-Stokes equations for flow in a square
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duct. The transient details of the turbulent eddy motion were resolved
in this simulation.

Pettersson Reif and Andersson[14] Presents a complete analysis of the
dynamics of the flow in a square duct based on a simulation obtained
with a Reynolds Stress Transport Model similar to that used in the
present work.
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Appendix A

Sinking Tea Leaf Model Flow
Calculations

All model flows were calculated using water with nominal properties:, ρ =
1000[kg m−3] and µ = 1.0−3[kg m−1s−1]. The outer radius of all containers
(and flow domains) was R = 0.025[m].

A.1 1: Spinning Flow Above an Infinite Plate

The simulated flow field of a rotating fluid above an infinite flat plate were
calculated with a semi-analytical procedure. Scale analysis of the full set
of momentum equations shows that a the solution can be obtained from a
set of non-dimensional ordinary equations. The similarity transformation
reduces the radial and axial variation to a variation in a non-dimensional
axial coordinate, ζ. The derivation and solution of the similarity equations
was first presented by U.T. Boedewadt and is reproduced (with corrections)
in Schlichting [16].

A finite volume numerical solution technique was developed for solving
the similarity equations and was implemented in Matlab 6.0. Full details
of the derivation of the solution technique are given in a separate report,
Stubley [19]. Three Matlab 6.0 script files are available for computing and
visualizing the flow field:

makeprofile.m code to calculate the finite volume solution of the non-
dimensional similarity profile functions on a fine mesh. The results
are written out to a Matlab data file, profile.mat for use in post-
processing;

51
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export2tascflow.m code to transform the non-dimensional profile func-
tions into dimensional velocity and pressure fields in Cartesian co-
ordinates. The results are interpolated onto a CFX-TASCflow mesh
and exported in an rsf file for visualization processing inside CFX-
TASCflow. Note that indirect flow field properties like shear strain
rates, stresses, streamlines, etc. are not available; and

plotstreak.m code to transform the non-dimensional profile functions into
dimensional velocity and pressure fields in Cartesian coordinates. The
solution is interpolated onto the coarse mesh and a set of streaklines
are calculated. The resulting plot is animated.

A set of CFX-TASCflow files are also available for visualizing the flow
field:

grd the grid file for a structured mesh of nodes in the x− z plane. Twenty
one nodes are placed in the axial direction (H = 0.01[m]) and eleven
nodes are placed in the radial direction, (R = 0.025[m]). For the
brave of heart, a set of files, gdf, cdf, sdf, and idf, are included
for generating this mesh with CFX-TASCGrid;

name.lun the CFX-TASCflow system control file;

prm a minimal CFX-TASCflow parameter file;

rso a minimal CFX-TASCflow field data file;

viz.state the information to create the images used in this study; and

rsf the fine grid Matlab 6.0 velocity and pressure field solution interpolated
onto the CFX-TASCflow grid. To use this information restore the post-
processing state with viz.state and then use the Command Line Tool
to execute the command:”read rsf”.

You may wonder why CFX-TASCflow (or another commercial CFD
package) was not used to generate the simulated flow field for this model
flow. The boundary conditions for the wall, axis of rotation and far field top
are all easily modeled. The boundary condition for the outer cylindrical sur-
face is the challenge. The velocity profile over this surface involves regions
of both inflow and outflow and this profile is inherently part of the solu-
tion. A well-posed CFD problem requires that the flow field properties be
uniquely specified at all inflow regions and that is not possible for this flow.
The semi-analytic solution avoids this problem by analytically accounting
for the radial variation and therefore does not require a boundary condition
for this surface.
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A.2 2: Flow in a Container with a Spinning Lid

A full set of CFX-TASCflow files are provided for this model flow. The mesh
is generated with CFX-TASCGrid and is made up three meridional planes.
The outer two meridional planes define a wedge with an included angle of
20◦. A relatively fine mesh with 80 nodes in the axial and radial directions
is used for each meridional plane.

The calculations were done in a rotating reference frame with zero rota-
tion rate (this ensures access to post-processing features for rotating flows).
The alternate numerics parameter for rotating reference frames was cho-
sen to ensure accurate discretization as fluid parcels travel into regions of
varying bulk rotation about the centre line axis. Water with nominal STP
properties, ρ = 1000[kg m−3] and µ = 1.×10−3[kg m−1s−1] was the working
fluid.

The axis of rotation was modeled as a symmetry line. The bottom and
side/outer wall of the container were fixed walls and the lid was a wall
boundary with a rotation rate of ω = 0.64[rad s−1].

A second order accurate Linear Profile Skew scheme with Physical Ad-
vection Correction (PAC) was used to discretize the advective fluxes. A time
step of 5[s] was used to obtain a steady state solution with the maximum
residual below 1.0× 10−5.

A macro, torque, is included in the [gci] file for calculating the torque,
T [N m], required to turn the spinning lid of the container.

A.3 3: Flow above an Infinite Spinning Plate

MatLab and CFX-TASCflow files similar to those for Model Flow 1 are
provided.

A.4 4: Vortex Breakdown Flow in a Container

The CFX-TASCflow set up for this model flow was identical to that of
Model Flow 2 except that the rotation rate of the spinning lid was ω =
2.387[rad s−1] and the height of the container was increased to H = 0.0375[m].
The Reynolds number, 1492, and aspect ratio, H/R = 1.5, under these con-
ditions were chosen to match the experimental study of Escudier[5].

While not shown here, the CFX-TASCflow results are in very good agree-
ment with the flow visualizations, Figure A.1, reported by Escudier[5]. Ta-
ble A.1 compares the predicted relative position of the stagnation points on
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Figure A.1: Flow visualization of the centreline vortex as reported by
Escudier[5]. The complete depth of the cylinder and the centre 34% of
the diameter of the container is shown.
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the centreline vortex with those measured in the experiments. The agree-
ment is excellent.

Stagnation Experiment Simulation
Point
Upper 0.39 0.38
Lower 0.27 0.27

Table A.1: Comparison of the predicted relative positions, z/H of the upper
and lower vortex stagnation points to those measured experimentally

A.5 5: Turbulent Flow in a Container

The CFX-TASCFlow set up for this model flow was similar to that of Model
Flow 4. The rotation rate of the lid was raised to ω = 400[rad s−1] which
was sufficient to create turbulent flow in the container.

The turbulent stresses were modeled with the standard k−ε model. Wall
functions were used to resolve the high velocity gradients in the near wall
regions. All walls were modeled as smooth walls.

The time step was reduced to 0.01[s] to promote convergence.
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Appendix B

Extra Shock Wave Model
Flow Calculation

This appendix provides the details of the the simulation of the supersonic
flow over the wedge airfoil that was performed with CFX-5.4.1. Three cases
were simulated:

Case 1: constant viscosity air flow over no-slip airfoil surfaces,

Case 2: constant viscosity air flow over free slip airfoil surfaces, and

Case 3: temperature dependent viscosity air flow over no-slip airfoil sur-
faces.

Figure B.1 shows the two-dimensional geometry that was used for all three
cases.

The wedge was 2[mm] long with an included angle of 10◦. The leading
edge of the wedge was placed at the origin of the x − y coordinate system.
The solution domain extended 0.5[mm] forward from the leading edge and
extended 2.0[mm] back from the trailing edge for a total length of 4.5[mm].
The extension of the solution domain back from the trailing edge was re-
quired to ensure that approximations in the supersonic outflow boundary
condition, especially in the vicinity of the trailing wake, do not affect accu-
racy or convergence. The solution domain extended upwards and downwards
2.0[mm] for a total height of 4.0[mm]. This height was sufficient to ensure
that any waves which were reflected off the top and bottom boundaries did
not affect the solution in the region of interest around the leading edge tip.
The solution domain had a depth of 0.02[mm]. This thin depth was chosen
so that the mesh was one layer of elements deep over most of the solution
domain.
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Figure B.1: Geometry for the CFX-5 simulation of flow over the supersonic
wedge airfoil.

B.1 Physical Models and Boundary Conditions

Air with a temperature of 293.2[K] and a pressure of 101325[Pa] flowed
across the inflow surface shown in Figure B.1 at 673.3[m s−1]. With these
properties, the Mach number of the flow before the wedge airfoil was 1.965.
The air was modelled as a perfect gas with two viscosity models:

1. constant viscosity of 1.785× 10−5[kg m−1s−1] (Cases 1 and 2), and

2. temperature dependent viscosity (Case 3) based on the Sutherland
correlation:

µ(T ) = µ0

(
T

T0

) 3
2 T0 + S0

T + S0
(B.1)

where the reference conditions, µO, T0, and S0, are 1.785×10−5[kg m−1s−1],
293.2[K], and 110[K], respectively.

The surfaces of the wedge were modelled as adiabatic surfaces with two
fluid flow conditions:

1. no-slip (Cases 1 and 3), or

2. free slip (Case 2).
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The latter was used to simulate inviscid flow over the wedge. The wedge
airfoil was short enough that the boundary layer flow remained as laminar
flow so no turbulence model was required.

The front, back, top, and bottom surfaces, shown in Figure B.1, were
treated as symmetric plane surfaces. While this boundary condition causes
artificial oblique reflections off the top and bottom surfaces, the reflected
waves did no affect the flow field over the wedge.

A supersonic outlet boundary condition was applied to the outlet surface
shown in Figure B.1. This condition allowed all flow properties and waves to
leave the solution domain without disturbance. The minimum Mach number
on the outlet surface was 1.58 for Cases 1 and 3 which indicates that the
outlet surface was placed sufficiently far downstream to avoid subsonic flow
at the outlet.

B.2 Mesh

An isotropic unstructured mesh of tetrahedral elements was used over the
solution domain. Over most of the solution domain, the average local mesh
length was 0.02[mm]. This background mesh length gave approximately 225
elements across the width of the domain, 200 elements across the height, and
1 element across the depth. The simulations for the inviscid flow over the
free slip surfaces, Case 2, with this background mesh were virtually identical
to those with a mesh length of 0.05[mm], except for the sharpness of the
shock waves.

The background mesh length was much too large to resolve the features
of the laminar boundary flows over the wedge no-slip surfaces. In the im-
mediate vicinity of the no-slip surfaces, the mesh length was reduced to
0.002[mm] and then gradually expanded by an expansion factor of 1.2 until
reaching the background mesh length. This refined mesh provided approx-
imately 15 elements across the width of the laminar boundary layer on the
wedge’s bottom surface at 1.0[mm] back from the tip. Since the mesh re-
mained isotropic, 750, 000 of the 800, 000 elements in the domain were in
the very thin boundary layer regions. This limited the amount of mesh
refinement in the boundary layer region.

B.3 Discretization and Convergence Parameters

Over large regions of the flow domain the flow properties, such as veloc-
ity, pressure, and temperature, are uniform. Over isolated shock wave and
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boundary layer regions, the flow properties change rapidly and are character-
ized by large gradients. As discussed above, a fine mesh was used to resolve
the large gradients in the boundary layer regions. Since oblique shock waves
have an almost infinitesimal thickness, a second order discretization scheme
was used to ensure that the gradients were adequately resolved over the
shock layers. The fringe plots presented in the main body show that sim-
ulated shock layers were very thin. While not obvious in the fringe plots,
there were slight overshoots and undershoots in some flow properties in the
regions of very steep gradients.

A timestep of 1.0×10−5[s] was used to control the iterative solution. This
timestep was approximately 1.5 times the advection timescale for fluid to
cross the width of the solution domain. With this timestep, approximately
60 iterations were required for each case to drive the maximum normalized
residuals of all equations to below 1.0× 10−5.

B.4 Computer Results

The calculations were carried out on an Intel I386 architecture computer
with Windows NT4.0 operating system. The following files are available:

airfoil.db : The geometry database used by CFX-Build.

airfoil 001.out : Summary of the CFX-Solver calculations for Case 1.

airfoil 002.out : Summary of the CFX-Solver calculations for Case 2.

airfoil 003.out : Summary of the CFX-Solver calculations for Case 3.

airfoil 001.res : The results files for Case 1.

airfoil 002.res : The results files for Case 2.

airfoil 003.res : The results files for Case 3.

state.cst : A state file for use in CFX-Post for setting up the processing
used to generate the fringe plots and spreadsheets.



Appendix C

Corner Attraction Model
Flow Calculation

This appendix provides the details of the simulations of fully-developed flow
through a square duct that were performed with CFX-5.5.1 (some post-
processing was done with CFX-5.6). Three cases involving incompressible air
with nominal properties, density of ρ = 1.284[kg/m3] and dynamic viscosity
of µ = 1.725× 10−5[kg m−1s−1],were simulated:

Case 1: laminar flow with no turbulence model,

Case 2: turbulent flow with the eddy viscosity k−ε turbulence model, and

Case 3: turbulent flow with the SSG form of the Reynolds Stress Transport
model.

Figure C.1 shows the two-dimensional geometry that was used for all
three cases. The duct had a half-width and half-height of B = 0.025[m].
The duct had a depth of 0.0025[m]. This thin depth was chosen so that the
mesh was only one layer of elements deep in the streamwise direction.

C.1 Physical Models and Boundary Conditions

Because the flow in the square duct is symmetrical about each centre-plane,
only the flow in the upper right quadrant was simulated. The leftsym and
botsym surfaces, shown in Figure C.1, are centre-plane surfaces and were
treated as symmetry plane surfaces. The rightwall and topwall surfaces were
treated as smooth wall (no-slip) surfaces.
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Figure C.1: Geometry for the CFX-5 simulation of fully-developed flow in
square duct.

The flow is fully-developed so all flow properties, except pressure, do
not change in the streamwise direction. Therefore, the surfaces inout1 and
inout2 were treated as a periodic pair. Since this boundary condition implies
that all fluid properties, including pressure, are periodic in the streamwise
direction, it was necessary to specify a source term to account for the role
of the streamwise pressure gradient. For fully developed flow in a duct with
a hydraulic diameter, 2B, the streamwise momentum source rate per unit
volume, Ṡx, (due to the streamwise pressure gradient)is

Ṡx ≡ −
∂p

∂x
=

2τw

B
(C.1)

where τw is the wall shear stress. For a given fluid, the source term can be
set to correspond to flow at a nominal Reynolds number based on hydraulic
diameter, ReB ≡ 2ρBū

µ with the friction factor correlation for the wall shear
stress:

Ṡx =
2τw

B
(C.2)

=
ρū2f(ReB)

4B
(C.3)
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=
ρ

4B

[
µReB

2ρB

]2

︸ ︷︷ ︸
ū2

f(ReB) (C.4)

In the above, ū is the cross-sectional average of the streamwise velocity. The
friction factor correlations for smooth walled square ducts are based on the
recommendations of White[22]:

f ≈ 57
ReB

ReB < 2000 (C.5)

f ≈
[
1.8 log10

(
6.9
ReB

)]−2

4000 < ReB (C.6)

The laminar flow simulations were based on a nominal Reynolds number
of 1000 and the two turbulent flow simulations were based on a nominal
Reynolds number of 65,000. Note that the actual Reynolds numbers were
slightly different because of differences between the computational model
and the friction factor correlation model.

For the turbulent flow simulations, two turbulence models were used for
the Reynolds stresses:

k − ε Model: The standard form of this eddy viscosity model was used.

Reynolds Stress Transport Model (RSTM): The crucial component
is the model for the redistribution terms, Πij . The standard model
of Rotta was used for the slow return to isotropy and the SSG model
of Speziale et al [18] was used for the rapid process. This latter model
was selected because of its improved ability to simulate anisotropy in
turbulent flows, especially in near wall regions.

For both turbulent models, scalable wall functions were used to resolve the
high velocity gradients in the near wall regions. The sensitivity of the simu-
lated results to the details of the wall boundary conditions are discussed in
the next sub-section.

C.2 Mesh

A mesh with one element depth in the streamwise (periodic) direction was
used. The results presented in the main body, were obtained with a 40
element by 40 element square uniform mesh in the cross-stream plane. This
choice of mesh spacing was based on the results of a grid convergence study.
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Mesh Nominal y+ k − ε RSTM - SSG
Standard Scalable Standard Scalable

10× 10 160 0.0184 0.0182 0.0173 0.0171
20× 20 80 0.0194 0.0181 0.0192 0.0177
40× 40 40 0.0242 0.0181 0.0248 0.0179
80× 80 20 0.0291 0.0183 0.0331 0.0179

Table C.1: Variation of predicted friction factor with number of mesh ele-
ments and corresponding near wall y+ values. Results were obtained with
k− ε and RSTM-SSG turbulence models using both the standard and scal-
able wall function formulations.

Table C.1 shows the variation of the predicted friction factor with num-
ber of mesh elements (and corresponding value of y+ for the first interior
node off the wall) for the k−ε and RSTM-SSG turbulence models. For each
model, results were obtained with both the standard and scalable wall func-
tion formulations. For both turbulence models, the standard wall function
formulation does not yield values which are grid converged. As the mesh is
refined, the predicted friction factors increase significantly with decreasing
mesh spacing. The scalable wall function formulation gives grid converged
values for both turbulence models. A finer grid is required with the RSTM-
SSG model than with the k−ε model in order to provide sufficient resolution
for the strong near wall gradients in the cross-stream (secondary) flow.

Mesh Nominal y+ k − ε RSTM - SSG
Standard Scalable Standard Scalable

10× 10 160 1.20 1.19 1.18 1.18
20× 20 80 1.20 1.20 1.19 1.18
40× 40 40 1.22 1.19 1.22 1.18
80× 80 20 1.25 1.19 1.25 1.18

Table C.2: Variation of centreline streamwise velocity divided by the mass
average streamwise velocity with number of mesh elements and correspond-
ing near wall y+ values. Results were obtained with k − ε and RSTM-SSG
turbulence models using both the standard and scalable wall function for-
mulations.

Table C.2 shows the variation of centreline streamwise velocity divided
by mass average streamwise velocity, uCL

ū , with number of mesh elements



C.3. DISCRETIZATION AND CONVERGENCE PARAMETERS 65

for the same cases as presented in Table C.1. Again, the results show that
the standard wall function formulation does not yield grid converged values.
The prediction of uCL

ū does not show the same sensitivty to grid spacing as
observed above for the friction factor, f .

C.3 Discretization and Convergence Parameters

All simulations for the laminar and turbulent cases were obtained with the
second order high resolution scheme applied to all transport equations.

Timesteps of 0.5[s] and 1.0× 10−3[s] were used for the laminar and tur-
bulent flow cases, respectively, to control the iterative solution. With these
timesteps, approximately 160 iterations and 700 iterations were required for
the laminar and turbulent cases, respectively, to drive the normalized root
mean square(RMS) residuals of all equations to below 1.0 × 10−6. While
the convergence was slow (typical for periodic problems like this where the
forcing velocity field is not directly set by the boundary conditions) the
convergence was mostly monotonic.

C.4 Comparison to Experiment and Other Simu-
lations

Other experimental and numerical studies of the secondary turbulent flow
in a square duct include:

Brundrett and Baines[2] (B&B): Pioneering experimental study of tur-
bulent flow in a square duct. Measurements were performed on a flow
with ReB = 83, 000.

Gavrilakis[8] (G): Direct numerical simulation was performed for flow at
a ReB = 4, 400.

Huser and Biringen[9] (H&B): Direct numerical simulation was performed
for flow at a ReB = 10, 000.

Pettersson Reif and Andersson[14](P-R&A): A Navier-Stokes solution
based on the RSTM-SSG model. A high resolution treatment of the
near wall region was used instead of the wall function formulation.
Detailed results are presented for flow at a ReB = 10, 000 and friction
factor results are presented for flow at ReB = 65, 000.
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Sata et al [15] (S,S,K&T): Particle tracking velocimetry measurements
were made for flow at a ReB = 20, 000.

Geometry Experimenters Model ReB fReB=68,000

Square Duct - CFX-5 RSTM-SSG 68,000 0.018
Square Duct - CFX-5 k − ε 68,000 0.018
Square Duct P-R& A RSTM-SSG 65,000 0.022
Square Duct H& B DNS 10,000 0.021
Square Duct B& B Experiment 83,000 0.017
Round Pipe Moody[22] Experiment 68,000 0.019

Table C.3: Comparison of friction factors to those measured or predicted by
other workers.

Table C.3 shows estimates of the friction factor obtained by various pre-
vious workers. Most of the previous work is at Reynolds numbers other
than 68,000. Reported friction factors have been adjusted to the equivalent
friction factor at a Reynolds number of 68,000 with the Haaland correla-
tion [22]:

fReB=68,000 ≈ fmeasured

 log
(

6.9
ReB=measured

)
log

(
6.9

ReB=68,000

)
2

(C.7)

The agreement of the present prediction to previous experimental work in
round and square ducts is excellent. The agreement to previous numerical
estimates is reasonable given the uncertainty in the turbulence models.

Geometry Experimenters Model ReB

(yV C
B , zV C

B

)
Square Duct - CFX-5 RSTM-SSG 68,000 (0.78,0.46)
Square Duct P-R& A RSTM-SSG 65,000 (0.78,0.46)
Square Duct H& B DNS 10,000 (0.82,0.60)
Square Duct G DNS 4,400 (0.79,0.50)
Square Duct S,S,K&T Experiment 20,000 (0.83,0.44)

Table C.4: Comparison of secondary flow vortex centre position to those
measured or predicted by other workers.

The shape of the secondary flow vortex is relatively insensitive to the
value of Reynolds number at higher Reynolds number,[9]. Table C.4 shows



C.4. COMPARISON TO EXPERIMENT AND OTHER SIMULATIONS67

estimates of the position of the vortex centre,
(yV C

B , zV C
B

)
, obtained in various

experimental and numerical studies. The agreement of the present predic-
tion to previous work is excellent.
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Figure C.2: Variation of normalized cross-stream flow speed, Vc−s, along the
corner diagonal. Normalization is with respect to the wall shear velocity,
u?. The y coordinate is shown in Figure C.1.

When scaled by the wall shear velocity, u? ≡
√

τw/ρ, the cross-stream
(secondary) velocity field, Vc−s ≡ v(y, z)ĵ + w(y, z)k̂, is independent of the
Reynolds number, ReB, [9]. Figure C.2 shows the variation of the nor-
malized cross-stream flow along the corner diagonal running from the duct
centreline to the upper right corner. As shown in Figure 3.5c, the max-
imum speed of the cross-stream veloicty field occurs along this diagonal.
Results are presented from the present study, the Direct Numerical Simu-
lation (DNS) of Gavrilakis[8] for a low Reynolds number of 4,400, and for
the experimental study of Sata et al [15] for a Reynolds number of 20,000.
The present predictions for the strength of the cross-stream velocity field
are under-predicted when compared to the experimental findings of Sata et
al. This under-prediction can be attributed to the turbulence model and has
been noted in other studies that use the Reynolds Stress Transport model,
[14]. While the strength of the cross-stream velocity field is under-predicted,
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the features of the variation along the diagonal, including the near corner
dip and spike, are well predicted.

Overall, the agreement of the present predictions to known experimental
results and to the numerical studies of previous workers is good.

C.5 Computer Results

The calculations were carried out on an Intel I386 architecture computer
with Windows NT4.0 operating system. The following files are available:

duct laminar.out : Summary of the CFX-Solver calculations for fully-
developed laminar flow in a square duct with a 40 × 40 mesh, Case
1.

duct ke.out : Summary of the CFX-Solver calculations for fully-developed
turbulent flow in a square duct using the k− ε turbulence model on a
40× 40 mesh, Case 2.

duct rstm.out : Summary of the CFX-Solver calculations for fully-developed
turbulent flow in a square duct using the Reynolds stress transport
model on a 40× 40 mesh, Case 3.

duct laminar.res The results file for Case 1.

duct ke.res The results file for Case 2.

duct rstm.res The results file for Case 3.

SquareDuctData.xls : Selected mean flow and Reynolds stress fields for
Case 3 stored in Microsoft Excel format.
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