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Introduction

¢ Several Ways to control spacecraft attitude

¢ Difficult because:
MIMO nonlinear system
Parametric uncertainties
Non-parametric uncertainties
¢ Will present a controller with the following
components:

= PD feedback

= Feedforward — tracking response

= Adaptive —robustness to parametric

= Sliding Mode — robustness to non-parametric




Model Formulation
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Spacecraft plant implemented in Simulink




Controller Design: Adaptive Control

¢ Using feedback and feedforward control, the equil. is GAS
= Must know inertia matrix exactly

¢ With adaptive control, the inertia matrix can be estimated

¢ Goal: have the system be have as if the unknown parameters are
known

= Adaptation law: @ = —TYTs

= Control law: u =Ya — Kps
= ['is the adaptation gain
»a=[l; L, I33 I, I3 I,3]7isthe unknown elements
= ais the estimated elements
= s Is the smoothed error




Controller Design: Adaptive Control

= Y Is the regressor matrix corresponding to:
[o, + w lw =Ya

W1 —Wy W3 W3 Wy Wyy — W1 Wy3 Wy3 + W1 Wy WorWyp — W3Wy3
Y = | wiwys Wy —W3Wyr1 Wy T WWr3 Wi Wy T W3Wy3 Wp3 — WaWyq
— W1 Wy W) W1 Wy3 W1 Wy, — WaWyp Wy1 — W3Wy2 Wy + W3Wpq

= Parameter estimation error:d =d — a
= Lyapunov Proof:

1 1
V() ==sTIs+=a’Tta

2 2
V=sTIs+a'Ta
sTlw — sTlw, +a’la
sT(u — wXlw) —sT(Ya — wflw) + a’T~1(a — a)
sT(Ya — Kps — w*lw) —sT(Ya — wXIw) + a'T~1(a — a)
—sTKps +sTY(@—a) —sTs*Ilw + (=sTYD)I"1(@ — a)
—sTKps

= Barbalat’s lemma: {V(t) lower bounded,V < 0,V bounded}, then
V — 0. So s converges to zero and the system is GAS.(g = &4, = 14)




Controller Design: Adaptive Control

¢ Convergence is not exact in the estimated parameters
= Controller will generate values that allow the tracking error to
converge to zero
= Trajectory must be sufficiently “rich” for convergence (d — a)

¢ Design parameters: A, Kp and I" are limited in magnitude

= Due to high frequency unmodeled dynamics
actuator dynamics

structural resonant modes

sampling limitations

measurement noise




Controller Design: Adaptive Control

Adaptive and feedforward block
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Closed loop system with adaptation




Controller Design: Robust Adaptive

¢ Non-parametric uncertainties can reduce performance of
controller when placed online

= Drifting of estimated parameter terms in the adaptive
controller
¢ Robustness in the adaptive controller can be achieved with
sliding mode control

= This creates a dead zone where the system does not adapt

Sa

¢ New smoothed error: sy

= Suchthat: [s| <@ & s, =0 | ﬁ

Illustration of saturator function with dead zone
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Controller Design: Robust Adaptive

= Modified adaptation law: @ = —TYTs,
= Motion equations with disturbance: Iow + w*Ilw =u+d
= Lyapunov Proof:

1 1
V(t) = =Isp?2 +=—a’Tr1a

. _ 2 2
V= saTIs + 4T 14
=spaT(Ya — Kps — w¥lw +d) — spT(Ya — wXlw) + a’T~1(a — a)
s
= —sATKp (SA + @ sat (6)) + 57ATY (G — a) — spTs*Iw + (=sp,TYDI (@ — a)
= —SATKDSA — Kd(DlSAl + SAd
< _SATKDSA

= Barbalat’'s lemma: V<0 =s,-0




Controller Design: Robust Adaptive

Closed loop system with adaptation and noise




Simulation Results

¢ Simulation Parameters
. _Parameter [ Symbol |  Value |
15

5 5
Inertia Matrix I [ 5 10 7 ] kg - m?
5 7 20

Spacecraft initial state x(0) [0 0 0 1]7 rad

Proportional gain in PD controller K, 200
Derivative gain in PD controller K, 20
Smoothed error ¢, weight A 25

Initial estimate of inertia matrix parameters a(0) [15 10 20 5 5 7]T kg - m?

Adaptation law gain I 15
Sliding mode dead zone 1) +0.15
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= At steady state, s < 0.1 so dead zone chosen to be @ = 0.151t0

prevent parameter drift
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Simulation Results
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Robust adaptive controller tracking results
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= Note how the tracking is almost perfect




Possible Controller Improvements

¢ Robust adaptive controller for s/c attitude tracking is
not optimal

¢ Possible solutions:

= Nonlinear Quadratic Regulator
= Nonlinear Model Predictive Controller
= MPCs considers the system actuation restrictions

= Stability and robustness can be ensured through the proper
choice of terminal constraints.




Conclusion

¢ Robust adaptive controller was designed for
spacecraft attitude tracking

¢ Closed loop system was simulated entirely in software
using Simulink

¢ Concepts from sliding mode control were used to add
system robustness
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Thank You

Questions?
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minimize Y I(x(t), u(t))

x

subject to  Ceq(x) =0
Acqr = By
b <x<ub
r(0)=z,2(T)=0

The process of calculating the optimal input is as follows:

1) Measure/estimate the current system state z

2) Solve the optimization problem for the optimal control
action plan (set U;") based on the horizon defined by T'

3) Execute the first optimal control action u; in the action
plan

4) Repeat




Controller Design: PD Feedback

Quaternion Altitude Error:
E¢ = MgE —Meq — €
Ne =1MNg + €' Ng
PD Control Law:

u(t) = —Kgo(t) — ke, (t), K;=K], k>0




Controller Design: PD Feedback

Lyapunov Function Candidate:

1
V(t) = EwTIw + kl[ele, + (n, — 1)?]

V=wXlo+2k[els, + (n, — 11j,]
h =0 @equil ~
=w*(u—w*lw)
= w (—Kzw — ke, — w*lw)

= —w*Kyw
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Figure 2: PD controller with plant




Controller Design: Feedforward

Feedforward Torque: uy= lw, + w lw
Controller Output: u =uyz + 1

Smoothed Error:s =@ + 1, = w — w,
Reference Angular Velocity: w, = wg — Ag,
Lyapunov Function Candidate:

1
V(t) = E DT D
V==aTld
=l (Il — % lw)
=o'

Integrating both sides fromt=0to T:
T
f & dt = V(T) — V(0)
0

= V(T)
=0




Controller Design: Feedforward
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Figure 3: Feedforward block
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Figure 4: PD and feedforward controller




